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Abstract. Positron emission tomography (PET) provides quantitative functional 
imaging of biomarkers unavailable in other modalities, however, images are of 
relatively low resolution compared to modalities such as magnetic resonance 
imaging (MRI). A typical approach is to reconstruct to a higher resolution and 
regularize using a structural image, but there are practical limitations to this 
approach. Alternatively, post-reconstruction approaches involve image-based 
correction, but typically rely on a segmentation which may be difficult or even 
ambiguous to find, depending on the anatomical region or deformities. 
Here, we perform super-resolution by utilising iterative deconvolution, 
regularized by minimizing shared directional total variation (dTV) with an 
anatomical MRI image. We present results on synthetic and clinical data. For the 
former, PET acquisitions were simulated using an analytic PET simulation. The 
Gaussian blurring model parameters for deconvolution were optimized on a 
simplistic phantom simulation with a total variation prior. This model was then 
applied to deconvolve realistic synthetic data using dTV, which was synthesized 
to include PET-unique lesions. The model was also applied to a single 18F-
florbetaben study acquired over 10 minutes. 
Gray matter-white matter contrast increased using dTV compared with baseline, 
however, where an accurate segmentation is available, traditional partial volume 
correction techniques are superior. Hence, dTV-regularised deconvolution can 
perform PVC and super-resolution in situations where a reliable segmentation 
cannot be achieved. With appropriate hyper-parameter selection, dTV 
deconvolution can preserve PET-unique features. 

Keywords: PET/MR, partial volume correction, super-resolution, 
deconvolution, directional total variation 
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1 Introduction 

Positron emission tomography (PET) is an important imaging modality capable of 
providing information regarding the functionality of an organ. This aids in the diagnosis 
and management of diseases such as cardiovascular diseases, oncology, and 
neurological disorders. However, the resolution is limited in comparison to other 
anatomical imaging modalities such as magnetic resonance imaging (MRI) and 
computed tomography (CT). Limited resolution can result in missing small clinically-
relevant features such as lesions, inaccurate quantification of biomarkers, and 
inconsistent quantification of biomarkers between different hardware. This has led to a 
desire for PET super-resolution techniques, especially with increasing popularity of 
hybrid PET/MR scanners. 

The partial volume effect (PVE) describes the problem that the intensity of a given 
voxel of an image represents an aggregation of a region of the object being imaged. 
One cause of PVE is the limited resolution of the image representation – practically this 
means that a given voxel represents a sum or average of the intensity within its volume. 
In PET, PVE is further complicated by the point-spread function (PSF), which is a 
model of the intensity dispersion of the imaging system and is generally the limiting 
factor of the effective image resolution, regardless of the reconstructed PET image 
voxel size. PSF can model the physical effects of photon non-collinearity, positron 
range and detector depth-of-interaction; hardware effects of detector size and geometry; 
and practical effects of reconstructed voxel size and axial/transverse mashing [1]. 
Although some of these phenomena are more naturally modelled in sinogram space, 
the PSF encompasses all effects after image reconstruction, and models them with 
either a spatially-invariant [2] or spatially varying kernel [3]–[7]. 

In this work, we use the term “PET super-resolution” to refer to techniques for 
resolving PET images beyond the physical resolution of the scanning system. It consists 
of both upsampling and partial volume correction (PVC). This means that the problem 
becomes ill-posed, and therefore it is necessary to incorporate prior information [8]. 
Often, the prior may be defined with respect to an anatomical image. Anatomical 
images are typically MR or CT images, although preferably MR due to the increased 
soft tissue contrast. 

Traditional techniques for PVC rely on the PET image being segmented into regions-
of-interest (ROIs). In neuroimaging, this means a tissue segmentation (grey and white 
matter and cerebrospinal fluid), or segmentation of lobes or gyri. The requirement for 
segmentation implies a dependency on the accuracy of the segmentation algorithm and 
can prove difficult or ambiguous, especially in the presence of structural abnormality. 
The first class of PVC correction are region-based PVC, wherein a crosstalk matrix is 
developed describing the mean observed values in each region as a weighted sum of 
the underlying true regional mean values, and inverting these to solve for the corrected 
regional means. The most simple of these approaches calculate a recovery coefficient 
for a single region, either ignoring [9] or including [10] spill-in from background 
regions; but other approaches model more complex mixing between all regions [11], 
[12]. Traditional voxel-based approaches extend these methods to be able to provide 
correction at the voxel level, but still consider the effects of spill-in and spill-out at the 
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regional level and hence require tissue segmentation [13]–[17]. These methods include 
the region-based voxel-wise correction (RBV) [18], which applies a voxel-wise 
correction to ensure regional means are close to that predicted by a regional mean 
method, and the iterative Yang (IY) algorithm [19], which iteratively applies such 
corrections. Another class of approaches utilises deconvolution. Without anatomical 
image-based regularisation [20], these approaches are prone to amplifying noise and 
producing artefacts. A comprehensive review of traditional approaches is given by 
Erlandsson et al. [2]. 

An alternate approach is to reconstruct to a higher resolution, incorporating PVC 
into the reconstruction by including an appropriate prior. Commonly, a smoothing prior 
is designed to only operate over regions with local similarity in the anatomical image. 
The Bowsher prior [21] limits smoothing to a subset of most-similar voxels in the 
anatomical image; whereas other approaches use weighted smoothing based on local 
similarity [22], [23]. Another approach attempts to force gradient changes to be shared 
between the reconstructed PET and anatomical images by regularising a weighted 
version of total variation (TV), where weights are calculated from the anatomical 
images. In regular weighted TV [24], weights reduce the penalisation in regions with 
high gradient in the anatomical image, whereas in directional TV (dTV) [25], [26], 
vectorised weights further encourage local gradient (i.e., edges) to be parallel or 
antiparallel. 

A recent class of techniques pose PVC as an image-to-image regression problem, 
which is solved using deep learning approaches [27]. These approaches are promising 
and offer qualitatively superb and very fast results but are not currently suitable for 
quantification as there are no guarantees regarding consistency with the measured data. 
Belthangady and Royer [28] describe this phenomenon in the context of fluorescence 
image reconstruction as problems due to hallucination, where statistically common but 
absent features are added or enhanced in an image; and problems due to generalisation, 
where data outside the training data manifold are poorly reconstructed. 

The traditional techniques offer an advantage in that no modifications to validated 
reconstruction methods needs be performed, and the operations can be performed 
entirely in image space. However, the reconstruction approaches avoid the need for a 
segmentation, although they can be used if available. A final class of algorithms are 
those that perform deconvolution and utilise a structural prior that doesn’t require a 
segmentation. Bousse et al. [29] propose a deconvolution with a regulariser based on a 
Markov random field that is weighted to only smooth intra-regionally within a 
segmentation. Wang et al. [30] extended this technique to regions with similar PET and 
MR structure, avoiding the need for a segmentation. These approaches are akin to 
reconstruction approaches where the forward model is restricted to PSF modelling 
without projection, and the authors believe is the only published technique for 
segmentation-free PET deconvolution. 

In this work, we extend upon the work of Wang et al. [30] and formulate PET 
reconstruction as a two-stage optimisation with a separate reconstruction. We then 
extend the previous approach and present the first dTV-regularised PET/MR 
deconvolution results on simulated and clinical data. 
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2 Methodology 

Image reconstruction can be generally stated in the following generic formulation: 
𝑥ො = 𝑎𝑟𝑔 𝑚𝑖𝑛

௫∈ோಿ
𝑓(𝐴𝑥, 𝑦) + 𝑔(𝑥) 

where 𝑥 is a reconstruction image estimate with 𝑁 voxels; 𝑥 is the estimated optimal 
reconstruction; 𝐴 is the acquisition model, modelling the imaging system; 𝑦 represents 
the measured data, typically a sinogram in PET; 𝑓  is the data fidelity function, a 
similarity metric for data consistency; and 𝑔  is a regularization function on the 
reconstructed image, encouraging the desired a priori properties. In PET imaging, the 
acquisition model is typically an affine operator that includes factors for the geometric 
projection from image to sinogram space, sensitivity, normalisation and attenuation and 
terms for random and scatter background. In addition, the acquisition model can include 
additional physical effects including motion-related resampling and, most relevantly, 
the PSF model of the scanner. 

A typical approach to PET super-resolution is to increase the resolution of 𝑥 beyond 
the physical limitations of the scanner. In this case, the reconstruction can become ill-
defined without appropriate regularisation. In this work, we instead separate the 
reconstruction and super-resolution into sequentially nested optimization problems, 
such that: 

𝑥ᇱ = 𝑎𝑟𝑔 𝑚𝑖𝑛
௫∈ோಿ

𝑓recon(𝐴PET, 𝑦) + 𝑔recon(𝑥) 

𝑥ො = 𝑎𝑟𝑔𝑚𝑖𝑛
௫∈ோಿ

𝑓deconv(𝐴PSF𝑅𝑥, 𝑥ᇱ) + 𝑔deconv(𝑥) 

here 𝑥ᇱ at standard resolution, 𝐴PETPET acquisition system, 𝐴PSF is the PSF model in 
image space, 𝑅is an upsampling operator, and 𝑓recon, 𝑓deconv, 𝑔recon and 𝑔deconv are the 
data fidelity and regularisation functions for the separate reconstruction and 
deconvolution stages. 

2.1 Anatomically-guided deconvolution using directional total 
variation 

In this work, we used convolution with a multivariate Gaussian kernel, 𝐾, as the PSF 
model: 

𝐴PSF = 𝐾 ∘ 𝑥 
with the kernel defined at each voxel index, 𝑖, with location in physical space relative 
to the centre of the kernel, 𝑙௜ ∈ 𝑅ଷ: 

𝐾௜ =
1

ඥ(2𝜋)ଷ|𝑆|
exp ൬−

1

2
𝑙௜

்𝑆ିଵ𝑙௜൰ (1) 

where 𝑆 = diag൫𝜎௫௬ , 𝜎௫௬, 𝜎௭൯ is the covariance matrix, such that convolution in 𝐾 
separable in 𝑥, 𝑦 and 𝑧 and isotropic in 𝑥 and 𝑦. 𝜎௫௬ and 𝜎௭ are the standard deviations 
in x/y and z respectively, although we report these throughout the paper in units of 
FWHM. 

We use the squared L2 norm for the deconvolution data fidelity term: 
𝑓deconv(𝑥) = ‖𝐴PSF𝑅𝑥 − 𝑥ᇱ‖ଶ

ଶ 
and dTV [25] for the deconvolution regularisation term, defined as: 
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𝑔deconv(𝑥) = dTV(𝑥) ≔ ෍|𝐷௜𝛻𝑥௜|ଶ

௜

 

where 𝐷 is a weighting vector field on the gradient in 𝑥, dependent on the normalised 
gradient of the anatomical image, 𝜉: 

𝐷 = 𝐼 − 𝜉𝜉் , 𝜉 =
𝛻𝑣

ඥ𝜂ଶ + |𝛻𝑣|ଶ
, 0<𝜂 ≪ ‖𝛻𝑣‖ 

and where 𝜂 is a small constant to avoid division by zero in locally flat regions and 𝐼 is 
the identity matrix. 

Our minimisation problem for PSF upsampling with dTV regularisation, under a 
non-negative constraint, is: 

arg min
௫ஹ଴

‖𝐴PSF𝑅𝑥 − 𝑥ᇱ‖ଶ
ଶ + 𝜆dTV(𝑥) (2)

where 𝜆 is a regularisation parameter balancing the data fidelity and the regularisation. 
The Primal-Dual Hybrid Gradient (PDHG) algorithm [31], provided by CIL [32] was 
used to solve (2). Here, the initial minimisation problem is decomposed into two 
subproblems, i.e., proximal operators, that have a closed-form solution. The proximal 
operator for dTV [26] is implemented using the fast gradient projection (FGP) 
algorithm [33] and provided by the CCPi-Regularisation Toolkit [34]. In addition, the 
dTV term enforces non-negativity by masking negative values in the reconstruction 
estimate at each FGP iteration. 

2.2 Comparison with segmentation-guided partial volume 
correction 

The PETPVC [35] library is an open source, commonly used library that implements a 
number of traditional PVC techniques for PET image. A literature search reveals that 
the RBV approach is most commonly applied in literature, however in this work we 
compare against the IY approach, as a logical extension of RBV: 

𝑥(௞ାଵ) = 𝑥(௞)
𝑠(௞)

𝐴PSF𝑠(௞)
, 𝑠(௞) = ෍ 𝜇௝

(௞)
𝑝௝

௝

, 𝜇௝
(௞)

=
∑ 𝑝௝,௜𝑥௜௜

(௞)

∑ 𝑝௝,௜௜

 

where 𝑥(௞) represents the corrected image at iteration 𝑘, 𝑠(௞) is the segmented constant 

image representing average values at each region, 𝑗, 𝜇௝
(௞) are the estimated regional 

means at iteration 𝑘 for region 𝑗, and 𝑝௝ are the probability maps for each region, also 
indexable by voxel index, 𝑖. 

Thomas et al. recognise that regional-based corrections fail to correct within regions, 
which is the case where an unsegmented lesion is present. Hence, we also compare with 
their proposed additional step of deconvolution. We investigated both IY + Richardson-
Lucy (RL) and IY + reblurred Van-Cittert (rVC). For IY+RL, only one iteration was 
performed before images would become dominated by noise, whereas 10 iterations 
were performed for IY+rVC 
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2.3 Simulation study 

Synthetic results were developed using the BrainWeb atlas [36], [37], which was 
used to provide template T1, FDG (4:1 grey to white matter contrast ratio) and 
probabilistic tissue map (CSF, grey matter, white matter) brain scans at 1x1x1 mm 
resolution. To avoid a piece-wise constant ground truth, each tissue class of each of the 
images had independent, low-frequency (0.5 mm-1) noise was added to each tissue [23]. 

An additional simulated pathological ground truth image set was generated in which 
simulated lesions were included in the PET image, with no matching contrast in the T1 
image, in order to introduce unmatched features. 

An analytic PET simulation was conducted to simulate the PET acquisition process 
using SIRF wrapping of STIR [38], [39]. PET images were resampled to 
2.09x2.09x2.03 mm, the default reconstruction resolution on the Siemens Biograph 
mMR, and forward projected using a projector modelled on the mMR geometry that 
pre-blurs with a Gaussian filter of 4.5x4.5x4.5 mm FWHM [23] to simulate the scanner 
PSF and models detector size. The sinogram was then Poisson sampled to simulate an 
acquisition with 107 counts. The effects of random coincidences, attenuation and scatter 
were not considered. The sinograms were subsequently reconstructed to 
2.09x2.09x2.03 mm3 voxel-size using OSEM with 7 subsets and 40 iterations, before 
images were resampled to the 1x1x1 mm high resolution. No PSF model was included 
in the projectors during reconstruction to introduce an unmatched acquisition model. 

Determination of forward model. The forward model for the deconvolution problem 
is approximated as a Gaussian blurring kernel, (1). In order to determine appropriate 
parameters for the forward model, 𝜎௫௬  and 𝜎௭  a simple, piece-wise constant digital 
phantom [40] was simulated with the analytic PET simulation described in Section 2.3. 
The optimal filter widths for the forward model were optimised using the Optuna 
hyperparameter optimization library [41] to minimise the outer optimisation: 

𝜎௫௬, 𝜎௭ = 𝑎𝑟𝑔 𝑚𝑖𝑛
ఙೣ೤,ఙ೥∈ோ

ቂቛ𝑎𝑟𝑔𝑚𝑖𝑛
௫ஹ଴

[‖𝐴PSF𝑥 − 𝑥ᇱ‖ଶ
ଶ + 𝜆TV(𝑥)] − 𝑥GTቛቃ (3) 

where 𝑥GT  is the ground truth PET distribution. Here, TV was selected for 
regularisation to suppress noise in the deconvolution and 𝜆  was chosen such that 
regularisation was empirically low. As such, the deconvolution problem was minimally 
regularised to prevent it from biasing the optimisation of the forward model. 

2.4 Application to a clinical 18F-florbetaben patient 

A healthy volunteer with a high polygenic risk score for Alzheimer’s Disease was 
administered with 300 MBq of the amyloid tracer, 18F-florbetaben (Ethical approval 
by QIMR HREC P2193). After 90 mins of uptake, the participant was scanned for 20 
minutes on a Siemens Biograph mMR. PET images were reconstructed to 
2.09x2.09x2.03 mm3 voxel size. The CapAIBL analysis software [42] was used to 
generate a segmentation using an atlas-based approach. 

Determination of forward model. As no ground truth is available, the method 
outlined in (3) is inappropriate. Instead, a manual optimisation was performed, again 
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using an under-regularised TV prior, but relaxing the non-negativity requirement. 𝜎௫௬ 
and 𝜎௭ were increased in increments of 0.5 mm and the last value before noticeable 
negative undershoot was seen outside the scalp. 

3 Results 

3.1 Simulation Study 

Forward model optimisation found that the Gaussian forward model was optimally 
matched at 𝜎௫௬ = 5.468 mm FWHM, 𝜎௭ = 5.269 mm FWHM, which was optimised 
with 𝜆 = 0.1 . Fig. 1 shows the input, noisy and deconvolved spheres phantom, 
demonstrating contrast recovery with minimal blurring at edges. Residual blurring and 
noise are due to deliberate under-regularisation and edge blurring is approximately 
symmetric in the 𝑥, 𝑦 and 𝑧 axes. An accuracy of ±0.1 mm yielded virtually identical 
results, so 𝜎௫௬ = 5.5  FWHM, 𝜎௭ = 5.3  FWHM were used for the BrainWeb 
experiments. 
 

Ground Truth OSEM TV 

   
Fig. 1. Results after optimising the Gaussian forward model to deconvolve the OSEM 
reconstruction (middle) to maximise similarity between the ground truth (left) and TV 

regularised deconvolution (right). 
 

Healthy simulation results are depicted in Fig. 2. 𝜆 = 4 was empirically chosen for 
dTV, although the results were not observed to be highly dependent on the parameter. 
Summary statistics are presented in Table 1. 
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T1 
Ground 
Truth OSEM IY IY+rVC IY+RL dTV 

       

       

       
Fig. 2. Healthy BrainWeb simulation and deconvolution. Axial, coronal and sagittal 
(top to bottom) views for the T1 anatomical prior, FDG ground truth, OSEM 
reconstruction, and PVC images using IY, IY+rVC, IY+RL and dTV. 
 

 
Table 1. Healthy BrainWeb simulation and deconvolution regional statistics. 
 GM mean GM SD WM mean WM SD GM/WM ratio 
Ground Truth 120.878 14.938 35.611 9.179 3.394 
OSEM 89.520 25.853 58.957 23.578 1.518 
IY 115.674 28.746 39.221 12.628 2.949 
IY+RL 105.107 56.303 42.992 24.852 2.445 
IY+rVC 127.093 43.564 43.695 26.563 2.909 
dTV (proposed) 111.556 20.786 42.950 15.876 2.597 
 
 
Pathological simulation results, where PET-unique lesions were added to the ground 
truth, are illustrated in Fig. 3. Line profiles for Tumour 1 are given in Fig. 4. 
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T1 Ground 
Truth 

OSEM IY IY+rVC IY+RL dTV 

       

       

       

       
Fig 3. Pathological BrainWeb simulation and deconvolution. Layout is per Fig. 2, with 
an additional row showing an inset of Tumour 1. 

 
 

 
Fig. 4. Line Profile of the simulated lesion in the x direction. Ground truth is compared 
against OSEM reconstruction and PVC images using IY, IY+RL, IY+rVC and dTV. 
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Clinical patient results are depicted in Fig 5. The optimal forward found was 𝜎௫௬ = 4 
mm FWHM and 𝜎௭ = 2  mm FWHM. The IY+RL results were omitted, as the 
algorithm failed to conserve activity and recovered the WM to unrealistic values. 
Summary statistics are presented in Table 2. 
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T1 OSEM IY IY+rVC dTV 

     

     

     

     
Fig 5. Pathological BrainWeb simulation and deconvolution. Layout is per Fig. 2, with 
an additional row showing an inset of cerebellum. 
 

Table 2. Clinical 18F-florbetaben and deconvolution regional statistics. 
 GM mean GM SD WM mean WM SD WM/GM 

ratio 
OSEM 1831.413 557.281 2994.332 745.869 1.635 
IY 1602.798 367.524 3281.754 624.840 2.048 
IY+rVC 1835.798 691.243 3585.860 740.194 1.953 
dTV 
(proposed) 

1787.600 469.287 3136.721 689.624 1.754 

4 Discussion 

dTV PVC offers partial contrast recovery without ROI segmentation. All 
deconvolution methods were able to empirically improve the resolution in the cortex 
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(Fig 2). All techniques had difficulty recovering the cortex in the superior parietal lobe, 
where the cortex is very thin. This was best recovered by IY (Fig 2, sagittal plane), 
which was also best able to recover gray/white matter (GM/WM) contrast (Table 1). 
However, the IY technique was unable to recover contrast in PET-unique lesions (Fig 
3, 4). dTV was best able to recover contrast in the lesion, fully recovering the peak 
intensity, followed by IY+RL then IY+rVC. (Fig 4). The tumour recovery of the IY+RL 
technique came at the expense of increased noise, especially in the GM, such that the 
tumour was not the most intense feature in the lobe. This could likely lead to false 
positive detection. 
dTV PVC suppresses noise, but segmented PVC better preserves features. dTV 
was most successful in supressing noise (Fig 2, 3), also evident by the decreased GM 
SD (Table 1). Although noise in the WM is visually reduced (Fig 2, 3), the increased 
WM SD (Table 1) may be an indication that there is a bias in the dTV results near the 
WM/GM boundary. An advantage of the technique is that the 𝜆 parameter that allows 
a trade-off between noise suppression and model consistency. The sensitivity of this 
parameter was low and simple to optimise. 
dTV is robust in the presence of mis-segmentation. dTV was able to produce a 
satisfactory high resolution PET image in the cerebellum of the presented clinical 
patient (Fig. 5). The fine GM/WM boundary in this area proves a difficult segmentation 
problem, and the IY technique demonstrated poor results in regions where the 
segmentation was poor. IT+rVC was able to partially compensate. 
Limitations. Image space PSF approaches are inadequate for reliable and consistent 
high resolution PET imaging due to their inability to determine a specific PSF kernel 
for each crystal pair [43]. Sinogram space [7], [44], and hybrid space [43] PSF 
correction can overcome this limitation but cannot be implemented in the presented 
framework. 
Future Work. The current method uses a spatially invariant filter, which may not be 
optimal for all PET systems. Spatially variant filters, which can vary across the field of 
view, more accurately model the point spread function and improve image resolution 
[7] and can be implemented in image space [3]–[6]. Future work on this method will 
focus on incorporating spatially variant filters. 

In clinical PET imaging, a true, high resolution validation is unavailable. Therefore, 
the most accurate validation of such techniques is in determining their contribution 
toward improving the effect size in a clinical study. 

5 Conclusion 

In this work, we have presented a preliminary demonstration of a dTV-PVC approach 
for PET super-resolution in combined PET/MR. dTV-PVC uses PHDG to optimise a 
deconvolution problem regularised by the dTV of the resolved PET with respect to an 
anatomical MR prior without segmentation. Compared with traditional segmentation-
driven PET PVC approaches, the technique exhibits an attractive trade-off between 
tissue contrast recovery, PET-unique lesion recovery and noise suppression. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 26, 2023. ; https://doi.org/10.1101/2023.04.23.23289004doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.23.23289004


13 

  
 

Acknowledgements 

The authors thank Kjell Erlandsson for providing advice on the comparison techniques 
implemented in PETPVC. The Prospective Imaging Study of Ageing investigators 
provided the clinical PET data. The CCP-SyneRBI and CCPi provided a forum for 
collaboration to facilitate this work. This work made use of computational support by 
CoSeC, the Computational Science Centre for Research Communities, through CCPi, 
and use of software infrastructure provided by the CCP-SyneRBI. 

Funding 

KT acknowledges support from the UK EPSRC grants ‘Computational Collaborative 
Project in Synergistic PET/MR Reconstruction’ (CCP PETMR) EP/M022587/1 and its 
associated Software Flagship project EP/P022200/1; the ‘Computational Collaborative 
Project in Synergistic Reconstruction for Biomedical Imaging’ (CCP SyneRBI) 
EP/T026693/1. EPap and EPas acknowledge support from the UK EPSRC grants “A 
Reconstruction Toolkit for Multichannel CT” (EP/P02226X/1), “CCPi: Collaborative 
Computational Project in Tomographic Imaging” (EP/M022498/1 and EP/T026677/1). 
CD acknowledges support from EPSRC grant “‘PET++: Improving Localization, 
Diagnosis and Quantification in Clinical and Medical PET Imaging with Randomized 
Optimization: (EP/S026045/1). 

References 

[1] W. W. Moses, ‘Fundamental Limits of Spatial Resolution in PET’, Nucl. Instrum. Methods 
Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip., vol. 648 Supplement 1, pp. 
S236–S240, Aug. 2011, doi: 10.1016/j.nima.2010.11.092. 

[2] K. Erlandsson, ‘Partial Volume Correction in PET Imaging’, in Basic Science of PET 
Imaging, M. M. Khalil, Ed. Cham: Springer International Publishing, 2017, pp. 355–378. 
doi: 10.1007/978-3-319-40070-9_15. 

[3] D. L. Barbee, R. T. Flynn, J. E. Holden, R. J. Nickles, and R. Jeraj, ‘A method for partial 
volume correction of PET-imaged tumor heterogeneity using expectation maximization 
with a spatially varying point spread function’, Phys. Med. Biol., vol. 55, no. 1, pp. 221–
236, Jan. 2010, doi: 10.1088/0031-9155/55/1/013. 

[4] Z. Irace, A. Reilhac, B. Vigo, H. Batatia, and N. Costes, ‘PCA-based approach for 
inhomogeneous PSF estimation and partial volume correction in PET’, Oct. 2016, pp. 1–3. 
doi: 10.1109/NSSMIC.2016.8069439. 

[5] E. Rapisarda, V. Bettinardi, K. Thielemans, and M. C. Gilardi, ‘Image-based point spread 
function implementation in a fully 3D OSEM reconstruction algorithm for PET’, Phys. 
Med. Biol., vol. 55, no. 14, p. 4131, Jul. 2010, doi: 10.1088/0031-9155/55/14/012. 

[6] F. A. Kotasidis and H. Zaidi, ‘Experimental evaluation and basis function optimization of 
the spatially variant image-space PSF on the Ingenuity PET/MR scanner’, Med. Phys., vol. 
41, no. 6Part1, p. 062501, 2014, doi: 10.1118/1.4875689. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 26, 2023. ; https://doi.org/10.1101/2023.04.23.23289004doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.23.23289004


14 

  
 

[7] A. M. Alessio et al., ‘Application and Evaluation of a Measured Spatially Variant System 
Model for PET Image Reconstruction’, IEEE Trans. Med. Imaging, vol. 29, no. 3, pp. 938–
949, Mar. 2010, doi: 10.1109/TMI.2010.2040188. 

[8] J. Nuyts, ‘Unconstrained image reconstruction with resolution modelling does not have a 
unique solution’, EJNMMI Phys., vol. 1, no. 1, p. 98, Nov. 2014, doi: 10.1186/s40658-014-
0098-4. 

[9] E. J. Hoffman, S.-C. Huang, and M. E. Phelps, ‘Quantitation in Positron Emission 
Computed Tomography: 1. Effect of Object Size’, J. Comput. Assist. Tomogr., vol. 3, no. 
3, pp. 299–308, Jun. 1979. 

[10] R. M. Kessler, J. R. Ellis, and M. Eden, ‘Analysis of emission tomographic scan data: 
limitations imposed by resolution and background’, J. Comput. Assist. Tomogr., vol. 8, no. 
3, pp. 514–522, Jun. 1984, doi: 10.1097/00004728-198406000-00028. 

[11] O. Rousset, A. Rahmim, A. Alavi, and H. Zaidi, ‘Partial Volume Correction Strategies in 
PET’, PET Clin., vol. 2, no. 2, pp. 235–249, Apr. 2007, doi: 10.1016/j.cpet.2007.10.005. 

[12] C. Labbé et al., ‘Absolute PET Quantification with Correction for Partial Volume Effects 
within Cerebral Structures’, in Quantitative Functional Brain Imaging with Positron 
Emission Tomography, R. E. Carson, M. E. Daube-Witherspoon, and P. Herscovitch, Eds. 
San Diego: Academic Press, 1998, pp. 59–66. doi: 10.1016/B978-012161340-2/50011-1. 

[13] T. O. Videen, J. S. Perlmutter, M. A. Mintun, and M. E. Raichle, ‘Regional correction of 
positron emission tomography data for the effects of cerebral atrophy’, J. Cereb. Blood 
Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab., vol. 8, no. 5, pp. 662–670, Oct. 
1988, doi: 10.1038/jcbfm.1988.113. 

[14] C. C. Meltzer, J. P. Leal, H. S. Mayberg, H. N. Wagner, and J. J. Frost, ‘Correction of PET 
data for partial volume effects in human cerebral cortex by MR imaging’, J. Comput. Assist. 
Tomogr., vol. 14, no. 4, pp. 561–570, Aug. 1990, doi: 10.1097/00004728-199007000-
00011. 

[15] H. W. Müller-Gärtner et al., ‘Measurement of radiotracer concentration in brain gray matter 
using positron emission tomography: MRI-based correction for partial volume effects’, J. 
Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab., vol. 12, no. 4, pp. 
571–583, Jul. 1992, doi: 10.1038/jcbfm.1992.81. 

[16] K. Erlandsson, A. T. Wong, R. van Heertum, J. J. Mann, and R. V. Parsey, ‘An improved 
method for voxel-based partial volume correction in PET and SPECT’, NeuroImage, vol. 
31, p. T84, Jan. 2006, doi: 10.1016/j.neuroimage.2006.04.072. 

[17] K. Erlandsson and B. Hutton, ‘A novel voxel-based partial volume correction method for 
single regions of interest’, J. Nucl. Med., vol. 55, no. supplement 1, pp. 2123–2123, May 
2014. 

[18] B. A. Thomas et al., ‘The importance of appropriate partial volume correction for PET 
quantification in Alzheimer’s disease’, Eur. J. Nucl. Med. Mol. Imaging, vol. 38, no. 6, pp. 
1104–1119, Jun. 2011, doi: 10.1007/s00259-011-1745-9. 

[19] K. Erlandsson, I. Buvat, P. H. Pretorius, B. A. Thomas, and B. F. Hutton, ‘A review of 
partial volume correction techniques for emission tomography and their applications in 
neurology, cardiology and oncology’, Phys. Med. Biol., vol. 57, no. 21, pp. R119–R159, 
Oct. 2012, doi: 10.1088/0031-9155/57/21/R119. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 26, 2023. ; https://doi.org/10.1101/2023.04.23.23289004doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.23.23289004


15 

  
 

[20] J. Tohka and A. Reilhac, ‘Deconvolution-based partial volume correction in Raclopride-
PET and Monte Carlo comparison to MR-based method’, NeuroImage, vol. 39, no. 4, pp. 
1570–1584, Feb. 2008, doi: 10.1016/j.neuroimage.2007.10.038. 

[21] J. Bowsher et al., Utilizing MRI information to estimate F18-FDG distributions in rat flank 
tumors, vol. 4. 2004, p. 2492 Vol. 4. doi: 10.1109/NSSMIC.2004.1462760. 

[22] G. Wang and J. Qi, ‘Penalized likelihood PET image reconstruction using patch-based 
edge-preserving regularization’, IEEE Trans. Med. Imaging, vol. 31, no. 12, pp. 2194–2204, 
Dec. 2012, doi: 10.1109/TMI.2012.2211378. 

[23] J. Bland et al., ‘Intercomparison of MR-informed PET image reconstruction methods’, 
Med. Phys., vol. 46, no. 11, pp. 5055–5074, 2019, doi: 10.1002/mp.13812. 

[24] M. Grasmair, ‘Locally Adaptive Total Variation Regularization’, in Scale Space and 
Variational Methods in Computer Vision, Berlin, Heidelberg, 2009, pp. 331–342. doi: 
10.1007/978-3-642-02256-2_28. 

[25] M. J. Ehrhardt et al., ‘Joint reconstruction of PET-MRI by exploiting structural similarity’, 
Inverse Probl., vol. 31, no. 1, p. 015001, Dec. 2014, doi: 10.1088/0266-5611/31/1/015001. 

[26] M. J. Ehrhardt and M. M. Betcke, ‘Multicontrast MRI Reconstruction with Structure-
Guided Total Variation’, SIAM J. Imaging Sci., vol. 9, no. 3, pp. 1084–1106, Jan. 2016, doi: 
10.1137/15M1047325. 

[27] G. Schramm et al., ‘Approximating anatomically-guided PET reconstruction in image space 
using a convolutional neural network’, NeuroImage, vol. 224, p. 117399, Jan. 2021, doi: 
10.1016/j.neuroimage.2020.117399. 

[28] C. Belthangady and L. A. Royer, ‘Applications, promises, and pitfalls of deep learning for 
fluorescence image reconstruction’, Nat. Methods, vol. 16, no. 12, Art. no. 12, Dec. 2019, 
doi: 10.1038/s41592-019-0458-z. 

[29] A. Bousse et al., ‘Markov random field and Gaussian mixture for segmented MRI-based 
partial volume correction in PET’, Phys. Med. Biol., vol. 57, no. 20, pp. 6681–6705, Oct. 
2012, doi: 10.1088/0031-9155/57/20/6681. 

[30] H. Wang and B. Fei, ‘An MR image‐guided, voxel‐based partial volume correction method 
for PET images’, Med. Phys., vol. 39, no. 1, pp. 179–194, Jan. 2012, doi: 
10.1118/1.3665704. 

[31] A. Chambolle and T. Pock, ‘A First-Order Primal-Dual Algorithm for Convex Problems 
with Applications to Imaging’, J. Math. Imaging Vis., vol. 40, no. 1, pp. 120–145, May 
2011, doi: 10.1007/s10851-010-0251-1. 

[32] J. S. Jørgensen et al., ‘Core Imaging Library -- Part I: a versatile Python framework for 
tomographic imaging’, ArXiv210204560 Cs Math, Feb. 2021, Accessed: Feb. 26, 2021. 
[Online]. Available: http://arxiv.org/abs/2102.04560 

[33] A. Beck and M. Teboulle, ‘Fast Gradient-Based Algorithms for Constrained Total Variation 
Image Denoising and Deblurring Problems’, IEEE Trans. Image Process., vol. 18, no. 11, 
pp. 2419–2434, Nov. 2009, doi: 10.1109/TIP.2009.2028250. 

[34] D. Kazantsev, E. Pasca, M. J. Turner, and P. J. Withers, ‘CCPi-Regularisation toolkit for 
computed tomographic image reconstruction with proximal splitting algorithms’, 
SoftwareX, vol. 9, pp. 317–323, Jan. 2019, doi: 10.1016/j.softx.2019.04.003. 

[35] B. A. Thomas et al., ‘PETPVC: a toolbox for performing partial volume correction 
techniques in positron emission tomography’, Phys. Med. Biol., vol. 61, no. 22, pp. 7975–
7993, Oct. 2016, doi: 10.1088/0031-9155/61/22/7975. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 26, 2023. ; https://doi.org/10.1101/2023.04.23.23289004doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.23.23289004


16 

  
 

[36] B. Aubert-Broche, A. C. Evans, and L. Collins, ‘A new improved version of the realistic 
digital brain phantom’, NeuroImage, vol. 32, no. 1, pp. 138–145, Aug. 2006, doi: 
10.1016/j.neuroimage.2006.03.052. 

[37] C. O. da Costa-Luis, ‘BrainWeb-based multimodal models of 20 normal brains’. Zenodo, 
Sep. 16, 2020. doi: 10.5281/zenodo.4032893. 

[38] K. Thielemans et al., ‘STIR: software for tomographic image reconstruction release 2’, 
Phys. Med. Biol., vol. 57, no. 4, pp. 867–883, Jan. 2012, doi: 10.1088/0031-9155/57/4/867. 

[39] E. Ovtchinnikov et al., ‘SIRF: Synergistic Image Reconstruction Framework’, Comput. 
Phys. Commun., vol. 249, p. 107087, Apr. 2020, doi: 10.1016/j.cpc.2019.107087. 

[40] D. Kazantsev, V. Pickalov, S. Nagella, E. Pasca, and P. J. Withers, ‘TomoPhantom, a 
software package to generate 2D–4D analytical phantoms for CT image reconstruction 
algorithm benchmarks’, SoftwareX, vol. 7, pp. 150–155, Jan. 2018, doi: 
10.1016/j.softx.2018.05.003. 

[41] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, ‘Optuna: A Next-generation 
Hyperparameter Optimization Framework’, in Proceedings of the 25th ACM SIGKDD 
International Conference on Knowledge Discovery & Data Mining, New York, NY, USA, 
Jul. 2019, pp. 2623–2631. doi: 10.1145/3292500.3330701. 

[42] P. Bourgeat et al., ‘Implementing the centiloid transformation for 11C-PiB and β-amyloid 
18F-PET tracers using CapAIBL’, NeuroImage, vol. 183, pp. 387–393, 2018, doi: 
10.1016/j.neuroimage.2018.08.044. 

[43] T. W. Deller et al., ‘Implementation and Image Quality Benefit of a Hybrid-Space PET 
Point Spread Function’, in 2021 IEEE Nuclear Science Symposium and Medical Imaging 
Conference (NSS/MIC), Oct. 2021, pp. 1–5. doi: 10.1109/NSS/MIC44867.2021.9875877. 

[44] J. Qi, R. M. Leahy, S. R. Cherry, A. Chatziioannou, and T. H. Farquhar, ‘High-resolution 
3D Bayesian image reconstruction using the microPET small-animal scanner’, Phys. Med. 
Biol., vol. 43, no. 4, p. 1001, Apr. 1998, doi: 10.1088/0031-9155/43/4/027. 

 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 26, 2023. ; https://doi.org/10.1101/2023.04.23.23289004doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.23.23289004

