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Malaria remains a global concern despite substantial reduction in incidence over the past 16 
twenty years. Public health interventions to increase the uptake of preventive measures have 17 
contributed to this decline but their impact has not been uniform. To date, we know little 18 
about what determines the use of preventive measures in rural, hard-to-reach populations, 19 
which are crucial contexts for malaria eradication. We collected detailed interview data on 20 
the use of malaria preventive measures, health-related discussion networks, individual 21 
characteristics, and household composition in ten tribal, malaria-endemic villages in 22 
Meghalaya, India in 2020-2021 (n=1,530). Employing standard and network statistical 23 
models, we found that social network and household exposure were consistently positively 24 
associated with preventive measure use across villages. Network and household exposure 25 
were also the most important factors explaining behaviour, outweighing individual 26 
characteristics, opinion leaders, and network size. These results suggest that real-life data on 27 
social networks and household composition should be considered in studies of health-28 
behaviour change. 29 

INTRODUCTION  30 

Following a substantial reduction in the global incidence of malaria between 2001 and 2015, 31 
the World Health Organization set a goal of global eradication by 2030 [WHO, 2015]. While 32 
large-scale interventions played a pivotal role in controlling and eliminating malaria in some 33 
countries, their impact has varied across the malarious world, resulting in little change for 34 
poor, migrant, and hard-to-reach populations [WHO, 2015]. Prevention in residual epicentres 35 
is challenging unless local populations are engaged [Dhiman, 2019]. Treating difficult pockets 36 
of transmission requires tailored and targeted approaches suited to local contexts [Gosling et 37 
al., 2020]. This is true for Meghalaya state in Northeastern India, a hilly and mountainous 38 
area of subtropical rain forests interspersed with rice-agroecosystems. The wet climate 39 
makes Meghalaya an optimal setting for malaria, with multiple Anopheles mosquito species 40 
transmitting Plasmodium falciparum and Plasmodium vivax malaria parasites [Kessler et al., 41 
2018; Kessler et al., 2021]. Meghalaya is inhabited mostly by tribal peoples, with 86% of its 42 
population of approximately 3.2 million belonging to an indigenous ethnicity or Scheduled 43 
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Tribes as referred to by the government of India [Rajagopal, 1976; Lele et al., 2009; Ministry 44 
of Tribal Affairs, 2021]. ‘Tribals’ often experience geographical marginalization, poor access to 45 
health care, and low socio-economic status [Rajagopal, 1976; Sharma et al. 2015; Kessler et 46 
al., 2018], environmental and social factors that pose a challenge to malaria prevention 47 
efforts. In Meghalaya, large-scale malaria prevention efforts are coordinated by modern, 48 
government-run public health programmes managed through local Primary Health Centres 49 
(PHC) and facilitated at the village level by Accredited Social Health Activists (ASHAs). These 50 
operate alongside largely undocumented traditional tribal treatments provided by Traditional 51 
Healers [Albert et al., 2015]. 52 

Large-scale malaria prevention measures in Meghalaya have mainly focused on reducing 53 
mosquito bites [Debboun et al., 2013] through the use of Indoor Residual Spraying (IRS) and 54 
the distribution of Long-Lasting Insecticidal Nets (LLINs), which repel and reduce the 55 
longevity of indoor-feeding and resting of Anopheles vector mosquitoes [Mishra et al., 2021]. 56 
Both methods have been associated with a substantial reduction in malaria incidence [Sahu 57 
et al., 2020] but are used only indoors [Lek et al., 2020; Sangoro, 2015; Rubio-Palis et al., 58 
1992]. Villagers working or socializing outside their dwellings, especially in the evening, night, 59 
and early morning, may use other measures to prevent mosquito bites [Sangoro, 2015; 60 
Wilson et al., 2014], such as protective clothing, insect repellent spray or body cream. IRS is 61 
contested in many Meghalayan villages [Sarkar et al., 2021; Passah et al., 2022], where 62 
households could turn to other indoor measures such as air-borne repellents (coils and 63 
vaporizers) instead.  64 

Studies that measure the adoption of – or resistance to – mosquito bite prevention methods 65 
usually evaluate how characteristics of individuals or households (gender, education, socio-66 
economic background, number of children, living conditions, etc.) relate to knowledge and 67 
practice of malaria preventive and treatment behaviours [Nlinwe et al., 2021; Matin et al., 68 
2020; Van Eijk et al., 2016; Shahandeh et al, 2012]. What these studies do not consider is that 69 
information and attitudes regarding both effective and ineffective preventive behaviours are 70 
likely to spread through social networks. These may facilitate support for but also resistance 71 
to new practices. Such often-overlooked network processes can help explain why some 72 
effective practices, like the use of vaporisers, may become common in certain areas [Van Eijk 73 
et al., 2016] while others, like IRS, may be opposed [Sarkar et al., 2021; Passah et al., 2022], 74 
or why practices whose effectiveness is unproven, like burning egg trays and jute bags, may 75 
thrive. 76 

Social network research is increasingly becoming common in the study of adoption of health 77 
behaviours, including eating habits [Salvy et al., 2012], physical activity [Proestakis et al., 78 
2018], family planning [Gayen et al., 2010; Stoebenau et al., 2003], healthy practices [Kim et 79 
al., 2015], and general diffusion of information and innovations [Rogers Everett, 1962; 80 
Coleman et al., 1957; Valente, 1996; Valente 2010; Centola; 2010; Centola, 2018]. Threshold 81 
models postulate that individuals adopt innovative behaviours depending on the proportion 82 
of the population already engaged in such behaviours [Granovetter, 1978]. They further 83 
propose that individuals comfortable with a low threshold adopt a behaviour earlier than 84 
others, while late adopters require a higher threshold. Threshold models are efficient in 85 
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predicting simple contagion, for which proximity – being close to infected subjects – is 86 
enough to trigger diffusion [Watts et al., 1998; Centola, 2010]. However, behaviours are 87 
complex phenomena that do not spread across networks in the same way an airborne 88 
disease might [Centola and Macy, 2007]. Adopting a behaviour like burning coils or jute bags 89 
is influenced both by locals who use these preventive measures as well as those who do not 90 
use them because they consider them ineffective or explicitly oppose them [Centola; 2010; 91 
Centola, 2018]. To be diffused, innovations need to be adopted and reinforced within local 92 
neighbourhoods of social networks [Coleman et al., 1957; Valente, 1996; Valente 2010; 93 
Centola; 2010; Centola, 2018].  94 

A network exposure model of diffusion [Coleman et al., 1957; Valente, 1996; Valente 2010; 95 
Centola, 2018] does not measure the threshold level of the entire population but rather, the 96 
threshold level of the proportion of adopters within the population that individuals are 97 
directly related to. It postulates that innovative behaviour spreads relatively quickly within 98 
highly clustered and homophilous regions of the networks [Christakis and Fowler, 2007; 99 
Smith et al., 2008; Crosnoe et al., 2008; Valente et al., 2009] but the spreading slows down 100 
where such clusters are disconnected [Centola, 2011]. Central actors such as persons with 101 
numerous contacts [Freeman 1979] may not be the best located actors to promote diffusion 102 
of new practices. They are usually considered opinion leaders and champions of the status 103 
quo who are reluctant to change the way things are done within a community [Valente and 104 
Pumpang 2007]. Innovations are more likely to spin off from peripheries of social networks, 105 
where people are less constrained by collective social norms, are more likely to be connected 106 
through non-redundant weak ties, and therefore are potentially more exposed to norms of 107 
different groups [Granovetter 1978, Burt 2004]. 108 

Most studies that model diffusion of diseases or information use secondary [Weston et al., 109 
2018] or synthetic data [Horsevad et al., 2022] to calibrate or validate models [Verelst et al., 110 
2016; Bedson et al. 2021]. Social network information is at best inferred from physical 111 
proximity [Levy et al., 2021]. Studies that collect primary social network data, especially from 112 
remote, hard-to-reach tribal villages, are very rare [Gayen et al., 2010; Stoebenau et al., 113 
2003; Kim et al. 2015; Holly et al., 2014; Koster, 2011]. This is so because social network data 114 
need to be gathered from the entire population of interest [Smith et al., 2008; Perkins et al., 115 
2015] with minimal missing data, which is a huge challenge in hard-to-reach populations 116 
where individuals spend most of the day working outdoors. To guarantee coverage, the 117 
population of interest must be identified and bounded [Smith et al., 2008; Marsden, 2002], 118 
while acknowledging that boundaries are always arbitrary. In practice, an individual's social 119 
network extends beyond the village they live in, even in remote areas [Stoebenau and 120 
Valente 2003; Koster 2011]. 121 

Once populations have been identified and bounded, and data have been collected, social 122 
network analysis can be used to study the links between the structure of networks and the 123 
behaviours of its actors. This requires specialised statistical techniques [Steglich et al., 2010], 124 
since dependencies in networks and between networks and behaviour violate the 125 
independence assumption at the core of most standard (non-network) statistical methods 126 
[Bartels et al., 1979; Doreian 1980; Dow et al., 1983; Dow et al., 1984; Ord 1975; Leenders 127 
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2002]. The Stochastic Actor-oriented Model (SAOM) is one of the few methods suitable to 128 
analyse the dynamics of social networks and individual behaviour [Snijders et al., 2010]. The 129 
SAOM is increasingly popular in the social sciences and has been applied in the context of 130 
various health behaviours in recent years [adams and Schaefer, 2017; de la Haye et al., 2019; 131 
Long and Valente, 2019; Franken et al., 2023]. Despite successful applications of network 132 
models, empirical data in the area of disease prevention, and specifically malaria prevention, 133 
are still predominantly analysed with non-network methods [Nlinwe et al., 2021; Matin et al., 134 
2020; Van Eijk et al., 2016; see Musoke et al. 2023 for a review]. 135 

In this study, we assess the importance of social networks in explaining the use of eight 136 
mosquito bite preventive measures in ten hard-to-reach tribal villages in northeast India. We 137 
compare the role of five groups of factors affecting villagers’ use of the preventive measures: 138 
individual characteristics, influence from village opinion leaders, social network size (within 139 
and outside villages), network exposure, and household exposure. We first examine which 140 
factors explain the use of each preventive measure by fitting village-level logistic regression 141 
models. In the results, we present the meta-analysis of all models (Snijders et al. 2012), which 142 
shows the significant variables, across villages, in explaining the use of each preventive 143 
measure. We then apply stationary Stochastic Actor-oriented Models [Snijders and Steglich, 144 
2015], an extension of SAOMs for cross-sectional data observed at a single time point, to 145 
jointly model individuals' use of preventive measures and their social relations with other 146 
villagers. In this step, we consider villagers’ use of any measure, treating the system of social 147 
ties and measure use as a multilevel network (Lazega and Snijders, 2015:36-37]. While our 148 
data is cross-sectional, the SAOM is dynamic in nature and allows inference to social 149 
processes that can explain the observed patterns of social ties, preventive behaviour, 150 
individual attributes, and household structure (see the Methods section for further details). 151 
To our knowledge, this is the first study where a social network analysis approach is used in 152 
the context of mosquito bite prevention. To date, stationary SAOMs have not been fitted to 153 
multilevel network data in the scholarly literature, while we know of only two applications of 154 
the method to a single network, both outside of the area of health-related behaviours 155 
[Snijders and Steglich, 2015; Simpson 2022]. Similar to the logistic regression models, in the 156 
results we present the meta-analysis of all SAOM models. Details of the meta-analysis 157 
procedure can be found in the Method section, while full logistic and SAOM models results 158 
are reported in the Supplementary Information, Tables 12-19 and Appendix E, Tables 41-44. 159 

We apply the above models to data we collected in the state of Meghalaya in India between 160 
January 2020 and August 2021. Data is available from ten villages in three districts: three 161 
villages in West Khasi Hills (WK1, WK2, WK3), three villages in West Jaintia Hills (WJ1, WJ2, 162 
WJ3), and four villages in South Garo Hills (SG1, SG2, SG3, SG4). In these areas, detailed 163 
malaria epidemiological and behavioural information has only recently been generated 164 
[Kessler et al., 2018; Kessler et al., 2021]. See Figure 1 for the geographic context of our study 165 
sites.  166 
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 167 

Figure 1: The map of Meghalaya state in Northeast India with the three studied districts 168 
highlighted. 169 

A structured questionnaire was administered to every reachable adult (≥18 years old) in the 170 
studied villages, resulting in information from 1,530 villagers residing in 766 households. 171 
From each participant, we collected information about: (1) use of mosquito bite preventive 172 
measures (LLINs, covering clothes, boots, gloves, insecticide cream, coils, vaporizers, burning 173 
materials), (2) demographic characteristics and role(s) within household and village, (3) 174 
health-related discussion network within and outside village, and (4) household membership. 175 
The ASHA was interviewed in all 10 villages, and in the six villages where present, the 176 
Traditional Healer was also interviewed. Both the ASHA and the Traditional Healer are 177 
considered opinion leaders for their health-related expertise and their role in administering 178 
healthcare within villages. The full list of questions, details on coding and variable descriptives 179 
are reported in the Supplementary Information, Appendix B, Tables B1-B15. 180 

By interviewing most adults in each village, we can quantify how many of the people a 181 
villager talks to about health-related matters use a given preventive measure – we refer to 182 
this as network exposure. Similarly, the number of household members using a preventive 183 
measure defines a villager’s household exposure to this measure. Figure 2 provides an 184 
illustrative example for network exposure to the use of coils, based on data from one of the 185 
villages; household exposure may be conceived similarly. We use this conceptualisation of 186 
exposure in the first part of our analysis, as it is compatible with standard logistic regression 187 
models. Figure 3 provides a different view on exposure that allows to consider all preventive 188 
measures at once: for the same village, it presents measure use and discussion ties as a 189 
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multilevel network. In this network, ties representing usage connect villagers to any measure 190 
they report using and discussion ties connect villagers to each other. We use this 191 
conceptualisation in the second part of our analysis, as it allows to study patterns of use and 192 
discussion across measures in SAOMs. 193 

 194 

Figure 2: Example of percentage of exposure to the use of coils in WK2. Nodes represent 195 
interviewed villagers; lines represent whom the villagers talk to about health-related matters; 196 
red nodes indicate villagers who use coils; grey nodes indicate villagers who do not use coils. 197 
Network exposure to coils of the node highlighted at the top right = 75%. Network exposure 198 
to coils of the node highlighted at the left = 50%. 199 

 200 

Figure 3: Multilevel network of people by people talking about health-related matters and 201 
using preventive measures in WK2. Appendix C in the Supplementary information (Figures 202 
C1-C10) reproduces multilevel network visualizations for each village. 203 
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RESULTS 204 

Factors associated with the use of different preventive measures 205 

Results of meta-analyses of village-level logistic regressions explaining the use of each 206 
preventive measure are reported in Table 1. The table presents estimates of population 207 
parameters (µ) and standard errors (SE) of variables that were retained through backward 208 
model selection performed separately for each preventive measure. See the Methods section 209 
for details about variable selection and meta-analysis models. Heterogeneity statistics for 210 
estimates are reported in the Supplementary Information (Appendix D, Tables D19-D26). 211 

  
LLINs 

Covering 
clothes 

Boots Gloves 
Insecticide 

cream 
Coils Vaporizers 

Burn 
materials 

A Intercept 
µ 0.61 -0.96* -1.51*** -2.78*** -2.93*** -1.25* -3.06*** -1.56*** 
SE (0.6) (0.42) (0.35) (0.61) (0.64) (0.62) (0.51) (0.16) 

B 

Female 
µ     -1.15***           
SE   (0.28)      

Head of 
household 

µ  -0.28     0.10  

SE  (0.21)     (0.87)  

Carer for a 
sick 

person 

µ      0.71   

SE      (0.47)   

Work in 
fields 

µ     0.04 -0.61*   

SE     (0.34) (0.26)   

Age 
µ     0.00    

SE     (0.17)    

Education 
µ    0.21 0.24** 0.10   

SE       (0.18) (0.09) (0.09)     

C 
Talks to 

Asha 
µ  0.38       
SE  (0.33)       

D 

Network 
size in 
village 

µ  0.10  -0.22  -0.12   
SE  (0.13)  (0.22)  (0.19)   

Network 
size out 
village 

µ  0.32***       
SE   (0.10)             

E 
Network 
exposure 

µ 2.21*** 1.04*** 1.39***     1.81*** 1.25 1.06* 
SE (0.38) (0.28) (0.26)   (0.48) (1.01) (0.46) 

F 
Household 
exposure 

µ 0.39 0.56** 1.04*** 2.08*** 1.98 *** 1.07** 2.38*** 0.98*** 
SE 0.42 (0.21) (0.18) (0.56) (0.31) (0.41) (0.31) (0.33) 

Number of village-
level models 8 10 9 6 7 9 4 8 

Table 1: Results of meta-analyses of parameters from village-level logistic regression models 212 
explaining the use of each preventive measure. Variables were chosen for each measure by 213 
backward model selection as described in the Methods section; variables are grouped as A: 214 
intercept; B: Individual characteristics; C: Opinion leaders; D: Network size; E: Network 215 
exposure; F: Household exposure; µ – estimated population parameters (log odds ratios); SE 216 
– standard errors of estimates; p values: * <0.05, ** <0.01, *** <0.001. 217 

Table 1 shows that at least two explanatory factors were retained in the model selection 218 
process for every preventive measure. The meta-analysis of parameters highlights that there 219 
were two of these that were consistently associated with measure use across the villages. 220 
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First, network exposure significantly increased the probability of using five of the eight 221 
measures, except for gloves, insecticide cream, and vaporizers (odds ratios ranging from 2.8 222 
to 9.1). Household exposure was significantly positively associated with the use of measures 223 
in seven cases, with the only exception LLINs (odds ratios for significant estimates between 224 
2.7 and 10.8). These effect sizes are quite substantial, considering that the average number 225 
of discussion partners and the average household size are both 2 in the entire dataset. For 226 
example, our models predict that one additional discussion partner using boots would double 227 
the odds of a villager with an average-sized network using boots (network exposure log odds 228 
ratio 1.39). 229 

Other explanatory variables did not have a consistent impact across preventive measures. Of 230 
the considered individual characteristics, only gender (boots), working in fields (coils), and 231 
education (insecticide cream) had a significant effect on measure use and only for one 232 
measure. The number of reported discussion partners outside of one’s village only had a 233 
significant positive effect on the use of covering clothes. Talking to village opinion leaders, 234 
ASHAs and Traditional Healers, did not have a significant impact on the use of any of the 235 
measures. These results do not indicate that individual variables, opinion leaders, and 236 
network size are not associated with the use of measure at all. However, the effects of these 237 
factors vary from village to village (see the Supplementary Information, Appendix D, Tables 238 
D10-D17 for village-level model results). 239 

Relevance of network and household exposure for explaining the use of measures 240 

Next, we examine the accuracy of village-level models to assess the importance of different 241 
factors in explaining the use of preventive measures. To do so, we fit seven nested models 242 
for each preventive measure in each village, which include different subsets of the 243 
explanatory variables, as marked by the letters A-F in Table 1. The Empty Model contains an 244 
intercept term only (subset A) and serves as a baseline for accuracy per measure and village. 245 
The Individual Model includes the individual variables that were used for the given measure 246 
as well (A+B). The Opinion Leader Model further includes any effects of talking to the ASHA 247 
or the Traditional Healer (A+B+C). The Network Size Model considers any included variables 248 
related to the number of discussion ties (A+B+C+D). The Network Exposure Model 249 
(A+B+C+D+E) and the Household Exposure Model (A+B+C+D+F) add the relevant exposure 250 
term to the Network Size Model. The Full Model for each preventive measure is the same as 251 
the one reported in Table 1. 252 

We compare the accuracy (correct classification rate) of the above models. The results are 253 
presented in Figure 4. The average accuracy of the Empty Model is 77%. Adding individual 254 
(77%), opinion leader (78%), and network size variables (79%) makes only a small difference. 255 
In contrast, including either network exposure or household exposure improves average 256 
accuracy by 2% and 3% compared to the Network Size Model. The Full Model, which includes 257 
both exposure terms beyond the Network Size Model, has an average accuracy of 83%. (For 258 
village- and measure-level classification rates, see the Supplementary Information, Appendix 259 
D, Tables D29-38). 260 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 25, 2023. ; https://doi.org/10.1101/2023.04.23.23288997doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.23.23288997
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

 261 

Figure 4: Distribution of the accuracy of different village-level logistic model specifications. 262 
Each bar represents models using different variable subsets of the models in Table 1, 263 
denoted by A-F; accordingly, each bar represents the accuracy of 61 models; the connected 264 
red points and values show the average accuracy of models; stars represent p-values for two-265 
sided pairwise sample t-tests of the difference in the average accuracy of models adjacent in 266 
the figure: *p<0.05, **p<0.01, ***p<0.001 (for full t-test statistics, see the Supplementary 267 
Information, Tables D27-D20). 268 

Overall, the 6 percentage point improvement in accuracy between the Empty Model and the 269 
Full Model, and the 4 percentage point increase from including network and household 270 
exposure alone, may not appear high. However, these numbers should be interpreted in the 271 
context of a high baseline accuracy due to the skewness of measure use in many cases (e.g., 272 
LLINS are adopted by nearly everyone). Considering this, it is noteworthy that network and 273 
household exposure reduce the classification error of the Network Size Model by 20%, from 274 
0.21 to 0.17. These results suggest that the two exposure factors substantially contribute to 275 
explaining the use of preventive measures. 276 

Social mechanisms associated with preventive measure use 277 

The results presented so far indicate that network and household exposure are key factors 278 
explaining the use of preventive measures in our villages. To explore the specific social 279 
mechanisms which may explain measure use, we fitted stationary SAOMs to the multilevel 280 
network of use and discussion ties, as defined earlier, in each village. We summarise the 281 
results of ten similarly specified SAOMs (one per village) by a meta-analysis of parameters in 282 
Table 2. As we are interested in the use of preventive measures, here we only discuss model 283 
effects that explain which measures are used by individuals. The models also simultaneously 284 
treat the village discussion network as an outcome that co-evolves with measure use (see the 285 
Methods section for further details on the model). This allows us to disentangle effect 286 
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directions between discussion and use, and thus take a step closer to identifying likely causal 287 
impacts of social networks on the use of measures. The full results of the SAOM meta-288 
analysis, all village-level model estimates, convergence statistics, and goodness-of-fit 289 
statistics are reported in the Supplementary Information, Appendix E, Tables E1-E6. 290 

A  Effects of structure of measure use µ SE p   
 

 

(1) Outdegree (intercept) -2.22 0.56 0.000 *** 

 

 

(2) Agreement with villagers (4-cycles) x 100 0.02 0.20 0.919  

 

 

(3) Popularity of measure 0.02 0.00 0.000 *** 

 

 

(4) Activity of villager -0.11 0.06 0.086 
 

B  Effects of individual variables 
 

 

(5) Female -0.09 0.09 0.315  

 

 

(6) Head of household -0.09 0.09 0.368  

 

 

(7) Carer for a sick person -0.06 0.11 0.597  

 

 

(8) Work in fields 0.11 0.08 0.170  

 

 

(9) Age 0.06 0.06 0.343  

 

 

(10) Education 0.07 0.04 0.110  

C  Effects of opinion leaders  

 

 

(11) Talking to the ASHA 0.26 0.12 0.030 * 

 

 

(12) ASHA’s use of a specific measure 0.23 0.16 0.158  
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(13 ASHA’s use of a measure if talking to ASHA 0.06 0.17 0.716  

 

 

(14) Talking to Healer 0.10 0.20 0.628  

 

 

(15) Healer’s use of a specific measures -0.09 0.11 0.436  

 

 

(16) Healer’s use of a measure if talking to Healer -0.01 0.33 0.995  

D  Effects of network size (talking to others)  

 

 

(17) Number of other villagers one talks to -0.33 0.11 0.003 ** 

 

 

(18) Number of other villagers who talk to one 0.01 0.04 0.728  

 

 

(19) Number of non-villagers one talks to 0.10 0.03 0.000 *** 

E  Effect of network exposure     

 

 

(20) Using same measures as that one talks to 0.82 0.18 0.000 *** 

F  Effect of household exposure     
 

 

(21) Using same measures as household members 0.07 0.03 0.048 * 

Table 2: Meta-analysis of estimates from multilevel stationary SAOMs in each village. Circles 291 
represent villagers; in each effect (explanatory variable), blue circles indicate villagers with 292 
specific characteristics (e.g., gender), squares represent preventive measures, red arrows 293 
represent health-related discussion ties, black solid arrows represent preventive measure 294 
use, and black dashed arrows represent the dependent tie, the probability of which is 295 
assessed by the given effect; rate parameters were fixed at 2.5 for both networks in all 296 
models; all models converged according to the criteria set out in Ripley et al. (2022) – see the 297 
Supplementary Information, Appendix E, Tables E5-E6 for further details; µ – estimated 298 
population parameters (log odds ratios); SE – standard errors of estimates; p values: * <0.05, 299 
** <0.01, *** <0.001. 300 

Like in any SAOM, the first set of parameters (A) control for the overall structure of the use 301 
network. The outdegree (density) effect (effect (1) in Table 2), which is significantly negative, 302 
is the intercept and highlights that using a measure is not very common on average: the 303 
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estimated baseline probability is 11%. The 4-cycle effect (2) expresses tendencies for 304 
similarity of use between individuals, which is not significant. The positive popularity of 305 
measures effect (3) reflects that villagers are significantly more likely to use measures which 306 
are already used by several others. The non-significant villager activity effect (4) suggests that 307 
there are no differences in villagers’ tendency to use a measure based on how many other 308 
measures they are currently using.  309 

The second set of parameters (B) models individual characteristics (5-10). None of these 310 
variables explain the use of preventive measures significantly, in line with the results of the 311 
logistic models. The third set of parameters (C) looks at the role of opinion leaders (11-16). 312 
Here, contrary to what we found for individual measures, talking to the ASHA significantly 313 
increases the odds of using any preventive measure, by 30% on average (11). However, 314 
talking to the Traditional Healer and considering the specific measures that the ASHA and the 315 
Traditional Healer uses do not seem to matter consistently across the villages. The fourth set 316 
of parameters (D) looks at effects of discussion network size (17-19). We find that talking to 317 
more people in one’s own village significantly reduces (17), while talking to more people 318 
outside of the village increases the odds of using any preventive measure (19) (odds ratios 319 
0.72 and 1.10). Finally, being talked to by many within one’s village does not significantly 320 
influence the likelihood of using measures (18). 321 

The last two sets of parameters (E-F) model network and household exposure (20-21). Both 322 
parameters are significant and positive. Network exposure (20) more than doubles the odds 323 
of use of a measure for each additional discussion partner who reports using the same 324 
measure (odds ratio 2.27). Further, if two members of a household use the same measure 325 
(21), it is more likely on average that they both use other measures as well (odds ratio 1.07). 326 
While both effects appear substantial in size, their relative importance may vary by individual, 327 
depending on the size of their discussion networks and households. 328 

Network and household exposure explain patterns of preventive measure use and health-329 
related discussions 330 

The above results highlight the importance of considering villagers’ discussion networks 331 
when we explain the use of preventive measures. To assess how well our village-level SAOMs 332 
capture the connections between the discussion and use networks, we compare the 333 
goodness of fit of different model specifications that include subsets of the effects in the full 334 
model in Table 2. Figure 5 shows the distribution of SAOM goodness of fit p-values with 335 
regard to the mixed triad census of the two modelled networks (Hollway et al., 2017). We 336 
find that fit of a Baseline Model considering only endogenous structural effects in the 337 
discussion and use networks (effect group A) generally achieves a poor fit on these statistics. 338 
Sequentially adding effects of individual characteristics (A+B), opinion leaders (A+B+C), and 339 
network size (A+B+C+D) does not improve the fit. Adding network exposure (A+B+C+D+E) or 340 
household exposure (A+B+C+D+F) leads to a large improvement in model fit, while there are 341 
further gains from including both types of exposure effects (Full Model). We note that 342 
excluding network exposure from the Full Model has a statistically significant negative impact 343 
on fit (paired sample one-sided t-test: difference=-0.12, t=2.22, p=0.03, df=9), while 344 
excluding household exposure does not (difference=-0.08, t=1.63, p=0.07, df=9). These 345 
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results provide a clear indication that effects from network exposure and household 346 
exposure are crucial in explaining the links between the use preventive measures and 347 
discussion networks. Village-level goodness of fit statistics are reported in the Supplementary 348 
Information, Appendix E, Tables E5-E6. 349 

 350 

Figure 5. Comparison of village-level SAOM specifications by goodness fit (GoF) p-values 351 
regarding the combination of talk network and measure use ties. Each bar represents models 352 
using different variable subsets from Table 2, denoted by A-F; accordingly, each bar 353 
represents GoF results of 10 models; the considered GoF statistic is the mixed triad census of 354 
Hollway et al. (2017); the connected red points and values show the average GoF p-values of 355 
the models; stars represent p-values for one-sided pairwise sample t-tests of the difference 356 
in the average GoF p-value of models adjacent in the figure: *p<0.05, **p<0.01, ***p<0.001. 357 

DISCUSSION 358 

Our results demonstrate that considering social networks contributes to the explanation of 359 
health-related behaviours and practices. We examined a variety of factors that may influence 360 
the uptake of eight malaria-preventive measures in ten hard-to-reach tribal communities in 361 
northeast India, using standard statistical methods and social network models. We found that 362 
exposure to the use of preventive measure in one’s social network was consistently 363 
associated with own use. In both standard and network models explaining measure use, we 364 
showed that network exposure significantly improves the explanatory power of the models. 365 
Exposure in households had a comparable role in our analyses, while factors typically 366 
considered in studies of health behaviour, such as individual characteristics [Nlinwe et al., 367 
2021; Matin et al., 2020; Van Eijk et al., 2016; Shahandeh et al, 2012] and opinion leaders 368 
[Stoebenau and Valente 2003; Valente and Pumpang 2007], had little to no effect.  369 

The findings about social network effects are theoretically relevant as they provide empirical 370 
support for core ideas of network exposure models [Coleman et al., 1957; Valente, 1996; 371 
Valente 2010; Centola, 2018]. According to these, information and attitudes regarding both 372 
effective and ineffective preventive behaviours should be less dependent on who people are 373 
and more on whom they talk to. This suggests that research on health behaviours and social 374 
influence could benefit from further theoretical work that explores specific social 375 
mechanisms of network exposure. The effect of household members’ behaviour is also 376 
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important, especially because exposure in households does not necessarily have to rely on 377 
discussions. People may use preventive measures simply because they are available in the 378 
house where they live, where exposure can be tacit and reinforced by observing use rather 379 
than talking about it. Collecting data on social networks and household composition, 380 
information on which are both not immediately available in contexts where census data are 381 
lacking, requires considerable amount of time and resources, but our analyses clearly show 382 
that these can provide novel theoretical and empirical insight into social processes explaining 383 
health behaviours.  384 

We found a positive effect of discussion ties extending outside villages on the likelihood of 385 
using malaria preventive measures. We know from our data that these ties are mainly 386 
constituted by family and in-law ties (Of the 841 ties to people from other villages, 74% are to 387 
family members, 11% to relatives, and 15% to non-blood contacts). In Meghalaya, a 388 
matrilinear society, upon marriage sons move out of their maternal homes to stay at theie 389 
spouse’ home, while daughters remain close to their families of origin. The move of sons 390 
across villages creates networks of partially weak ties [Granovetter 1978]: these relationships 391 
are weak, according to Granovetter’s definition [1978] in the sense that they are 392 
geographically distant and in infrequent contact. They are also potential sources of new 393 
information and attitudes about preventive techniques as they reach outside one’s own, 394 
closely-knit village community. At the same time, family and relatives in different villages are 395 
emotionally close enough – a characteristic normally associated with strong ties [Granovetter 396 
1978] to rely on each other for health-related discussions, which increases the chance that 397 
they actually influence villagers’ health-related attitudes and behaviours. Therefore, 398 
intervillage ties complement the effects of network and household exposure on the use of 399 
preventive measures. The relatively small effect and explanatory importance of these ties 400 
may be due to the fact that they are informationally redundant: family and relatives likely all 401 
talk to each other, so they may end up sharing similar information or opinions. These findings 402 
point to the relevance of studying the extended family as a key social unit in shaping health-403 
related behaviours and practices.  404 

Interestingly, our analysis shows almost no effects from opinion leaders on using preventive 405 
measures. The literature suggests that they are rarely early adopters, but they could be 406 
instrumental in facilitating or hampering the spread of innovations [Valente and Pumpang 407 
2007]. Our data does not allow to observe when exactly the ASHA and the Traditional Healer 408 
started using specific preventive measures, but results clearly indicate that their behaviour 409 
does not influence other villagers regardless if they talk to them or not. Talking to the ASHA 410 
does have an effect on using more measures, but this is small and it does not substantially 411 
contribute to model fit. This result may inform the planning of future interventions, as it 412 
indicates that relying solely on central actors like the ASHA may not be effective in improving 413 
disease prevention. 414 

Similarly, we find little evidence that any of the individual characteristics we considered 415 
would consistently matter for use across villages and preventive measures. We did see 416 
indications in the logistic models that gender, type of work, and education are associated 417 
with measure use in case of a single measure. Other characteristics also appear to be 418 
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relevant, but only in some villages and in case of a few preventive measures (see the 419 
Supplementary Information, Appendix D, Tables D10-D17). Overall, our analyses do not 420 
suggest that individual factors do not matter at all, only that their effects on the use of 421 
measures may differ from community to community. By exploring these differences in a 422 
localised geographic context, large-scale public health interventions can be effectively 423 
tailored to the attitudes and practices of relevant social groups. 424 

Our study has a few key limitations that may inform the design of future research into health-425 
related behaviours. First, we collected self-reported data on behaviours and social ties. Self-426 
reports are known to be sensitive to recall bias [Bernard and Killworth 1977; Small 2017] as 427 
well as socially desirable responses [Edwards 1953]. We aimed to attenuate this issue by 428 
keeping questions about prevention practices and discussion ties general. We only asked 429 
participants to report on whether they use different preventive measures or not (we queried 430 
frequency of use regarding covering clothes and insecticide cream but disregarded this detail 431 
in the analyses for comparability; see the Supplementary Information, Appendix B1 for 432 
details). We measured social networks by asking people whom they talk to about health-433 
related matters without reference to details of these exchanges. While these questions could 434 
reduce recall problems, they did not inform us about the frequency and contexts of measure 435 
use and the content of discussions. Employing field observations [Bernard and Killworth 436 
1977; Curtis et al., 1995] and smart sensor technologies [Cattuto et al., 2010; Elmer et al., 437 
2019; Voros et al. 2021] may help to gather richer data. However, trade-offs between data 438 
quality and resolutions should be carefully considered, as these methods are more intrusive 439 
and may lead to lower participation rates [Voros et al. 2021] and alter behaviour 440 
[Landsberger, 1958]. Our interview-based approach helped us to gain the trust of our 441 
participants and elicit meaningful responses about general patterns of measure use and 442 
discussion ties. 443 

Second, the validity of our findings should be assessed in the context of coverage and sample 444 
size. Our overall response rate is 68%, which is considered sufficiently high for statistical 445 
network analyses [Kossinets 2006]. However, coverage was not equal across the three 446 
regions and was only just over 60% in West Jaintia Hills. This partially compensated with the 447 
higher coverage of households (80%). Overall, our data collection efforts have resulted in 448 
reasonably high response rates that indicate the adequate internal validity of our results. In 449 
turn, our findings should not be generalised beyond the studied contexts. We only had the 450 
resources to observe a small proportion of communities in just three districts of Meghalaya 451 
state. Nonetheless, we found some common patterns in the studied communities which 452 
suggest that processes from network and household exposure may help to explain the use of 453 
preventive measures. We need larger-scale, regionally representative datasets to confirm 454 
these findings and gain a more complete picture of the social mechanisms driving health-455 
related behaviours. Our results further suggest that future work should focus on collecting 456 
detailed data on weak ties and inter-villages relationships. Combined with a large-scale 457 
approach, this could improve our understanding of how effectively preventive measure 458 
spread across malaria endemic regions. 459 

Third, we interpret our key results in terms of social processes, while we collected and 460 
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analysed cross-sectional data. Clearly, analysing one snapshot of networks and behaviours 461 
comes with limitations. We do not know how the use of measures changed over time. It is 462 
also possible that some measures were becoming popular, while others unpopular at the 463 
time of the data collection. We do not have information about the stability of health-related 464 
discussion ties either, although the network literature suggests that such relations should be 465 
stable in the short-term [Hogan et al., 2022]. In line with these concerns, our logistic 466 
regression results only highlight associations, without considering the effects of measure use 467 
on social networks. The Stochastic Actor-oriented Model is better suited to identify the social 468 
processes at play. Even when applied to cross-sectional data, the SAOM is dynamic: it 469 
assumes that villagers may still change their behaviour and network ties, but these changes 470 
keep the overall structure of the multilevel network in a stable state (in a “short-term 471 
dynamic equilibrium”; Snijders and Steglich 2015). This means that the model considers both 472 
the effects of network ties on measure use and vice versa (see full results the Supplementary 473 
Information, Appendix E, Tables E1-E2). By concurrently modelling the dependencies 474 
between network ties and behaviours, we may infer to the social mechanisms that are likely 475 
to maintain the network system [Lusher et al. 2012], such as network or household exposure. 476 
Any causal claims that are made on the basis of “multi-mechanistic” network models 477 
[Stadtfeld and Amati 2021], such as the SAOM, are stronger than those based on results from 478 
non-network models. At the same time, collecting longitudinal data and studying the actual 479 
changes of networks and behaviour will be required to gain a clear understanding of the 480 
dynamics of measure use. Our approach can be easily adapted to serve as a basis of such a 481 
longitudinal design. 482 

For the first time since 2015, when malaria elimination efforts were initiated in India [PIB 483 
2020], local elimination may be within reach. However, current control efforts rely solely on 484 
mass interventions. These include the large-scale distribution of LLINS that was interrupted in 485 
India in recent years [WHO 2022], and IRS which is met with high levels of refusal in 486 
Meghalaya [Sarkar et al., 2021; Passah et al., 2022]. Our study suggests that these 487 
interventions could be complemented with targeted efforts that leverage social influence in 488 
interpersonal relations and households to increase uptake. This could help to achieve 489 
downstream elimination goals. However, further research is needed to map the patterns of 490 
measure use across different areas and social groups and to understand the social 491 
mechanisms that may facilitate or hamper the adoption of various health behaviours. This 492 
line of work may contribute to increasing the acceptance of a malaria vaccine in the future. 493 
Beyond the context of malaria, exploring the role of social networks in health behaviour 494 
could benefit the prevention of other serious mosquito-borne diseases, such as Dengue, 495 
Chikungunya and the newly emerging Zika virus [Gulland 2016], which are on the rise both 496 
globally and in India [Shepard et al. 2014]. 497 

METHODS 498 

Data collection 499 

From January 2020 through August 2021, we collected data from three villages in West Khasi 500 
Hills (WK1, WK2, WK3), three in West Jaintia Hills (WJ1, WJ2, WJ3) and four in South Garo 501 
Hills (SG1, SG2, SG3, SG4) in Meghalaya, India. Villages were selected based on their 502 
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manageable size (<500 eligible adults), their known willingness to participate in similar 503 
studies (we avoided villages where previous epidemiological studies encountered high rates 504 
of refusal, see Kessler et al., 2018), and their accessibility by either car or foot. Village-level 505 
coverage ranged from 53% of residents in WJ3 (80% of households) to 88% in WK3 (97% of 506 
households), with an average of 68% of individuals (n=1,530) and 80% households (a total of 507 
766) interviewed. The topic of coverage is addressed in the Discussion section. Characteristics 508 
of non-respondents are reported in the Supplementary Information, Appendix A, Table A2. 509 

Structured interviews were conducted in the appropriate local language (Khasi, Pnar or Garo) 510 
and translated into English by the interviewing team. Respondents were asked a series of 511 
questions regarding their individual background, household and village roles, their use of 512 
malaria preventive measures, and the people in and outside of their village they talk to about 513 
health-related issues. In total, each interview consisted of 26 questions and lasted about 30 514 
minutes. The full list of interview questions, details about data coding and processing, and 515 
descriptive statistics for variables are reported in the Supplementary Information, Appendix 516 
B, Tables B1-B15. 517 

The ASHA was interviewed in all ten villages, and in the six villages where present, the 518 
Traditional Healer was also interviewed. As we consider the ASHA and the Traditional Healers 519 
as opinion leaders, whose behaviour and influence may be substantially different from those 520 
of other villagers, we removed these two actors as respondents from our analyses. We still 521 
utilize information about their use of measures and about who talks to them to explain the 522 
behaviour and social networks of other villagers. 523 

Permission to conduct the study was granted by the Headman of each village, and all 524 
respondents also signed an individual informed consent form. Identifiers of the villages and 525 
individual participants were removed from the dataset and this article to protect anonymity. 526 
Ethical approval for the study was obtained from the Institutional Review Boards (IRBs) of 527 
Martin Luther Christian University, Shillong, Meghalaya, India and New York University, New 528 
York, NY, USA. 529 

Variables 530 

The dependent variables in our analyses represent the use of eight malaria prevention 531 
measures by participants: Long-Lasting Insecticidal Nets (LLINs), covering clothes, boots, 532 
gloves, insecticide cream, coils, vaporisers, and burning materials. We considered how a 533 
variate of explanatory variables were associated with these outcomes in different 534 
multivariate statistical models. In total, 14 relevant explanatory variables were available in 535 
the dataset and were considered in our analyses. We reduced this set for the meta-analysis 536 
of logistic regressions by a model selection procedure described below. The fitted social 537 
network models estimated a larger number of parameters, because each variable can affect 538 
the outcome in multiple ways in these models. 539 

The starting set of explanatory variables was the following: 540 

- Individual characteristics and roles in the household: (1) gender, (2) being the head of 541 
the household, (3) looking after family members when they are sick (4) working in 542 
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fields, (5) age, and (6) educational background. 543 
- Contact with opinion leaders: the participant or someone from their household talks 544 

to the Asha (7-8) or the Traditional Healer (9-10) of the village about health-related 545 
issues. 546 

- Social network size: the number of people in and outside the village the participant 547 
talks to about health-related issues (11-12). 548 

- Social network exposure: the amount of people the participant talks to who use a 549 
given preventive measure (13) 550 

- Household exposure: the amount of people in the participant’s household who use a 551 
given preventive measure (14) 552 

Logistic regression model selection procedure 553 

We considered 14 explanatory variables for each logistic model explaining the use of a given 554 
preventive measure in a specific village (see the Supplementary Information, Appendix B, for 555 
the complete list of variables). Given the size of our villages and the often skewed distribution 556 
of measure use, we found that in most cases models including all 14 explanatory factors 557 
could not be estimated. Therefore, we employed a two-stage model selection procedure 558 
aimed at reducing the set of explanatory variables while providing a single specification per 559 
measure that can be estimated in every village. First, we carried out backward model 560 
selection based on the p-values of parameter estimates for each of the 8 (measures) x 10 561 
(villages) = 80 models. This resulted in different optimal model specifications across measures 562 
and villages. Second, considering each measure separately, we added variables back that had 563 
a significant estimate in at least two of the villages. This resulted in 8 different model 564 
specifications, one for each preventive measure, that were identical across the villages. The 565 
exact steps of our procedure are detailed in Procedure 1. Estimating the reduced models was 566 
still difficult in case of some villages and preventive measures. We omitted models from the 567 
meta-analyses reported in the text that had very large estimated parameters and/or standard 568 
errors for at least one explanatory variable. The presented results are based on 61 models. 569 
See the Supplementary Information, Appendix D, Table D18 for the excluded models. 570 

Procedure 1. Two-stage model selection approach 
Denote villages as viÎV where iÎ{1,…,10}, preventive measures as mj ÎM where jÎ{1,…,8}, 
and explanatory variables as ekÎE where kÎ{1,…,18}. 
 
Stage I. Backward model selection 
Repeat for every combination of i and j: 

Estimate a logistic model in vi with mj as dependent and E as explanatory variables 
Define E’ = E 
Repeat until p<0.05 for all estimates for variables in E’: 

Identify the explanatory variable e* with the highest p-value of the estimate 
E’ = E’ \ e* (exclude e* from E’) 

Estimate a new logistic model with E’ as the explanatory variable set 
Define Eij = E’ 
Return Eij 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 25, 2023. ; https://doi.org/10.1101/2023.04.23.23288997doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.23.23288997
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

Stage II. Find identical specifications for each measure across villages 
Repeat for every j: 

Define d = 1 
Repeat until all parameters and standard errors can be estimated in all models: 

Define E* as set containing all elements that occur in E1j, …, E10j at least d 
times (for d=1, this is the union of the ten sets) 
Estimate logistic models in every vi with mj as dependent and E* as 
explanatory variables 
If not all models can be estimated then d = d+1 

Define Ej* = E* 
Return Ej* 
 

 571 

Meta-analyses of village-level logistic regressions 572 

To explore recurrent patterns of association between the use of different measures and our 573 
explanatory variables across villages, we meta-analysed the model results obtained from the 574 
model selection procedure described above. We perform parameter-wise meta-analyses with 575 
random-effects models estimated by restricted maximum likelihood using the metafor 576 
package (v3.8-1) in R (Viechtbauer 2010). Estimates provide information about the mean and 577 
standard error of parameters. Heterogeneity statistics are reported in the Supplementary 578 
Information, Appendix D, Tables D19-D26. The meta-analysis results are presented in Table 1. 579 

Comparison of the explanatory power of nested logistic regression models 580 

We compared the explanatory power of the village-level logistic models described above and 581 
of nested models that contain different subsets of the explanatory variables. We calculated 582 
the accuracy for each model as the correct classification rate: the percentage of cases for 583 
which the observed value of the dependent variable (whether a villager uses a given measure 584 
or not) equals the estimated value obtained from the model. We used the standard 0.5 cut-585 
off for transforming probabilities into estimated binary outcomes. The results of this analysis 586 
are presented in Figure 4, while the accuracy of the village-level models for each village are 587 
reported in Supplementary Information, Appendix D, Tables D29-D38. 588 

Meta-analysis of village-level stationary Stochastic Actor-oriented Models 589 

For a more detailed analysis of the social mechanisms affecting the use of preventive 590 
measures, we employed stationary Stochastic Actor-oriented Models (SAOMs). Stationary 591 
SAOMs are an extension of the original model [Snijders et al. 2010; Snijders 1996] for the 592 
analysis of cross-sectional network data. In this case, it is assumed that the networks studied 593 
are in a short-term dynamic equilibrium: their structure (but not single network ties) is at 594 
least temporarily in a stable state [Snijders and Steglich 2015]. SAOMs are empirically 595 
calibrated simulation models that aim at identifying the relative strength of a set of social 596 
mechanisms, operating on network ties, individual and pairwise (dyadic) covariates, that over 597 
time could have generated an observed network. In a standard longitudinal SAOM, the model 598 
is conditional on the first observation of the network [Snijders et al. 2010]. In a stationary 599 
SAOM, the initial and final states of the network are identical, and the modelled social 600 
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processes will, at least stochastically, maintain the existing structure of the network (hence 601 
the ‘stationary’ label) [Snijders and Steglich 2015]. 602 

To apply stationary SAOMs, we defined a multilevel network that consists of two interlinked 603 
networks in each village: 1) the network of health-related discussions, which is a one-mode 604 
network where villagers A and B are connected by a binary tie if A reports talking to B; and 2) 605 
the network of preventive measure use, which is a two-mode network where villager A is 606 
connected to measure M if A reports using M. An example of this network for one of the 607 
villages is presented in Figure 3. Similar visualisations for all villages can be found in the 608 
Supplementary Information, Appendix C. 609 

We fit stationary SAOMs using the RSiena (v1.3.0) package in R (Ripley et al. 2022). We set 610 
the rate parameter to 2.5 for both networks in all villages, as this value enabled model 611 
convergence and led to good model fit in every case. The key results are interpreted in the 612 
main text. The full list of estimates, goodness of fit tests and robustness checks for rate 613 
parameters are presented in the Supplementary Information, Appendix E. Similar to the case 614 
of logistic regressions above, we perform parameter-wise meta-analyses of village-level 615 
SAOMs with random-effects models estimated by restricted maximum likelihood using the 616 
metafor package (v3.8-1) in R (Viechtbauer 2010). Estimates provide information about the 617 
mean and standard error of parameters. Heterogeneity statistics are reported in the 618 
Supplementary Information, Appendix E, Table E4. The meta-analysis results are presented in 619 
Table 2. 620 

Comparison of the explanatory power of nested SAOMs 621 

We compared the explanatory power of the village-level SAOMs described above and of 622 
nested models that contain different subsets of the model effects. We calculated p-values of 623 
Mahalanobis distances for a mixed triad census fit test for different SAOM specifications in 624 
the results section. These reflect how well the distribution of simulated networks based on 625 
the fitted models represent the mixed triad census [Hollway et al., 2017] of the observed 626 
networks: a p-value close to 1 signifies very good fit and one close or equal to 0 marks poor 627 
fit [Ripley et al., 2022]. Calculations in each model are based on 5000 simulations and follow 628 
the steps described in Lospinoso and Snijders [2019]. The goodness of fit tests were carried 629 
out using the RSiena R package [Ripley et al., 2022]. The results are presented in Figure 5. 630 
Further details of the goodness of fit analyses can be found in the Supplementary 631 
Information, Appendix E, Table E5. 632 
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