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Abstract 27 

Background  28 

Autism spectrum disorder (ASD) is a heterogenous multifactorial neurodevelopmental 29 

condition with a significant genetic susceptibility component. Thus, identifying genetic 30 

variations associated with ASD is a complex task. Whole-exome sequencing (WES) is an 31 

effective approach for detecting extremely rare protein-coding single-nucleotide variants 32 

(SNVs) and short insertions/deletions (INDELs). However, interpreting these variants' 33 

functional and clinical consequences requires integrating multifaceted genomic information.  34 

Methods  35 

We compared the concordance and effectiveness of three bioinformatics tools in detecting 36 

ASD candidate variants (SNVs and short INDELs) from WES data of 220 ASD family trios 37 

registered in the National Autism Database of Israel. We studied only rare (<1% population 38 

frequency) proband-specific variants. According to the American College of Medical 39 

Genetics (ACMG) guidelines, the pathogenicity of variants was evaluated by the InterVar 40 

and TAPES tools. In addition, likely gene-disrupting (LGD) variants were detected based on 41 

an in-house bioinformatics tool, Psi-Variant, that integrates results from seven in-silico 42 

prediction tools.  43 

Results  44 

Overall, 605 variants in 499 genes distributed in 193 probands were detected by these tools. 45 

The overlap between the tools was 64.1%, 17.0%, and 21.6% for InterVar–TAPES, InterVar–46 

Psi-Variant, and TAPES–Psi-Variant, respectively. The intersection between InterVar and 47 

Psi-Variant (I∩P) was the most effective approach in detecting variants in known ASD genes 48 

(OR = 5.38, 95% C.I. = 3.25–8.53), while the union of InterVar and Psi-Variant (I U P) 49 

achieved the highest diagnostic yield (30.9%).   50 

Conclusions  51 
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Our results suggest that integrating different variant interpretation approaches in detecting 52 

ASD candidate variants from WES data is superior to each approach alone. The inclusion of 53 

additional criteria could further improve the detection of ASD candidate variants. 54 

 55 

Background 56 

Autism spectrum disorder (ASD) comprises a collection of heterogeneous 57 

neurodevelopmental disorders that share two behavioral characteristics—difficulties in social 58 

communication and restricted, repetitive behaviors and interests1,2. The etiology of ASD has 59 

a significant genetic component, as is evident from multiple twin and family studies3–6. Yet, 60 

over the years, very few genetic causes of ASD have been discovered; thus, today, despite 61 

extensive research, an understanding of the overall genetic architecture of ASD remains 62 

obscure6,7. 63 

The emergence of next-generation sequencing (NGS) approaches in the past decade has 64 

transformed the genetic research of complex traits8. These NGS technologies have facilitated 65 

high-throughput DNA sequencing for large cohorts of patients, allowing the comparison of 66 

multiple variants that includes single-nucleotide variants (SNVs) and short 67 

insertions/deletions (INDELs) between large groups of patients9–12. In this realm, whole-68 

exome sequencing (WES) is particularly suitable for studying the genetics of heterogenous 69 

traits such as ASD, as it focuses on a relatively limited number of protein-coding 70 

variants9,10,13–18.  71 

However, understanding the functional consequences of coding Variants is not a trivial 72 

task. In 2015, the American College of Medical Genetics and Genomics (ACMG) and the 73 

Association for Molecular Pathology (AMP) published standards and guidelines to generalize 74 

sequence variant interpretation and to address the issue of inconsistent interpretation across 75 

laboratories8. The resulting system for classifying variants recommends 28 criteria (16 for 76 
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pathogenic and 12 for benign variants) and provides a set of scoring rules based on variant 77 

population allele frequency, variant functional annotation, variant familial segregation, 78 

etc.8,19; Variants are classified as pathogenic (P), likely pathogenic (LP), variants of uncertain 79 

significance (VUS), likely benign (LB) or benign (B). Subsequently, multiple in-silico tools 80 

were developed to implement these ACMG/AMP criteria for annotating the prospective 81 

pathogenicity of variants detected in WES studies.  82 

While the ACMG/AMP scoring approach is highly effective for detecting de-novo highly 83 

penetrant mutations for rare Mendelian disorders, it is less suitable for detecting inherited 84 

partially penetrant variants20. Such variants, usually annotated as VUS in terms of the 85 

ACMP/AMP criteria, are expected to contribute significantly to the risk of developing 86 

neurodevelopmental conditions, including ASD9,17,18,21,22. Thus, relying solely on the 87 

ACMG/AMP criteria for variant annotation in WES studies of ASD may result in an under-88 

representation of susceptibility variants, which will lead to a lower diagnostic yield for ASD. 89 

To overcome this potential limitation, we have developed “Psi-Variant,” a pipeline to detect 90 

different types of likely gene-disrupting (LGD) variants, including protein truncating and 91 

deleterious missense variants. We applied Psi-Variant – in comparison with InterVar and 92 

TAPES, two variant interpretation tools that use the ACMG/AMP criteria – to a large WES 93 

dataset of ASD to evaluate the concordance between these tools to detect variants and to 94 

assess their effectiveness in detecting ASD susceptibility variants.  95 

 96 

Methods 97 

Study sample 98 

Initially, the study sample comprised 250 children diagnosed with ASD who are registered in 99 

the National Autism Database of Israel (NADI)23,24 and whose parents gave consent for 100 

participation in this study. Based on our clinical records, none of the parents in the study has 101 
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been diagnosed with ASD, intellectual disability, or any other type of neurodevelopmental 102 

disorder. Genomic DNA was extracted from saliva samples from participating children and 103 

their parents using Oragene®•DNA (OG-500/575) collection kits (DNA Genotek, Canada). 104 

  105 

Whole exome sequencing 106 

WES analysis was performed on the above-mentioned samples with Illumina HiSeq 107 

sequencers, followed by the Illumina Nextera exome capture kit at the Broad Institute as part 108 

of the Autism Sequencing Consortium, described previously11. Sequencing reads aligned to 109 

Genome Reference Consortium Human Build 38 and aggregated into BAM/CRAM files were 110 

analyzed using the Genome Analysis Toolkit (GATK)25 to generate a joint variant calling 111 

format (vcf) file for all subjects in the study. We excluded data for 30 probands from the raw 112 

vcf file due to incomplete pedigree information or low-quality WES data. Thus, WES data for 113 

220 ASD trios were analyzed in this study (Fig. 1).  114 
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 115 

Fig. 1 Analysis workflow for detecting LP/P/LGD Variants from the WES data. InterVar and 116 

TAPES detected LP/P Variants by implementing ACMG/AMP criteria. Psi-Variant detected 117 

LGD Variants by utilizing in-house criteria. 118 

 119 

 120 
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Data analysis 121 

The SNV detection process in this study is outlined in Fig. 1. and explained below. 122 

 123 

Data cleaning 124 

The raw vcf file contained 1,935,632 variants. From this file, we removed variants with 125 

missing genotypes and/or variants in regions with low read coverage (≤ 20 reads) and/or with 126 

low genotype quality (GQ ≤ 50). In addition, we removed all common variants (i.e., those 127 

with a population minor allele frequency >1%)26 as well as those that did not pass the 128 

GATK’s “VQSR” and “ExcessHet” filters. Thereafter, we used an in-house machine learning 129 

(ML) algorithm to remove other potentially false-positive variants. The details of this ML 130 

algorithm and its efficiency in classifying true positive and false positive variants are 131 

summarized in the supplementary file S1. Finally, we used the pedigree structure of the 132 

families to identify proband-specific genotypes, including de-novo variants, recessively 133 

inherited variants, and X-linked variants (in males). Recessively inherited variants occur in 134 

the same loci of both copies of a gene in autosomes (where both the parents are carriers). 135 

Whereas one altered copy of the gene in chromosome X among males is defined as X-linked 136 

(males). We removed multiallelic variants from these genotypes and those classified as “de-137 

novo” that appeared in more than two individuals in the sample. In this study, we haven’t 138 

considered compound heterozygote variants (in cis/trans).  139 

 140 

Identifying ASD candidate variants 141 

We searched for candidate ASD Variants using three complementary approaches. First, we 142 

applied InterVar19 and TAPES27, two commonly used publicly available command-line tools 143 

that use ACMG/AMP criteria8, to detect LP/P Variants. In addition, we assigned the 144 

ACMG/AMP PS2 criterion to all the de-novo Variants to detect additional LP/P Variants 145 
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from the list of VUS. Since InterVar and TAPES are less sensitive tools for detecting 146 

recessive possible gene disrupting (LGD) variants20, we developed an integrated in-house 147 

tool, Psi-Variant, to detect LGD variants. The Psi-Variant workflow starts using Ensembl’s 148 

Variant Effect Predictor (VEP)26 to annotate the functional consequences for each variant in a 149 

multi-sample vcf file. Then, all frameshift indels, nonsense, and splice acceptor/donor variants 150 

are further analyzed by the LoFtool28 with scores of < 0.25 are annotated as intolerant 151 

variants. In addition, it applies six different in-silico tools to all missense substitutions and 152 

annotates them as “deleterious/damaging” if at least three (≥ 50%) of them exceed the 153 

following cutoffs: SIFT29 (< 0.05), PolyPhen-230 (≥ 0.15), CADD31 (> 20), REVEL32 (> 0.50), 154 

M_CAP33 (> 0.025) and MPC34 (≥ 2). These scores were extracted by utilizing the dbNSFP 155 

database35.  156 

 157 

Comparison between InterVar, TAPES, and Psi-Variant  158 

We compared the number of variants detected by the three tools and the percentages of 159 

variants detected by different combinations. Thereafter, we used the list of ASD genes (n = 160 

1031) from the SFARI Gene database36 (accessed on 11 January 2022) as the gold standard to 161 

compute the odds ratio (OR) and positive predictive value (PPV) for detecting candidate ASD 162 

variants in SFARI genes. In addition, we assessed the detection yield for each tool 163 

combination by computing the proportion of children with detected candidate ASD variants in 164 

SFARI genes.  165 

 166 

Software 167 

Data storage, management, and analysis were conducted on a high-performing computer 168 

cluster in a Linux environment using Python version 3.5 and R Studio version 1.1.456. All the 169 

statistical analyses and data visualizations were incorporated into R Studio. 170 
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 171 

Results 172 

Detection of candidate variants by the different tools  173 

A total of 605 variants in 193 probands (highlighted in the supplementary Table S2) were 174 

detected by at least one of InterVar (n = 220), TAPES (n = 199), or Psi-Variant (n = 483) from 175 

a dataset of 2,035 high-quality, ultra-rare variants with proband-specific genotypes (Fig. 1). 176 

Of these, 90 variants (14.9%) were detected by all three tools. The highest concordance in 177 

detected variants was observed between InterVar and TAPES (64.3%), followed by TAPES 178 

and Psi-Variant (21.6%) and InterVar and Psi-Variant (17.0%).  179 

The characteristics of the detected variants are shown in Table 1. Significantly higher 180 

rates of LoF and missense variants were detected by all three tools compared to the rates of 181 

these variants in the clean vcf file (P < 0.001). As expected, missense variants comprised the 182 

majority of detected variants, with 81.6%, 58.8%, and 51.4% of the variants detected by Psi-183 

Variant, TAPES, and InterVar, respectively. Notably, a higher number of frameshift variants 184 

were detected by Psi-Variant than by InterVar and TAPES (58 vs. 39 and 22, respectively), 185 

but the percentages of these variants out of the total number of detected variants were lower 186 

due to the markedly higher number of variants detected by Psi-Variant.    187 

Almost all (≥ 95%) variants detected by either InterVar or TAPES were de-novo variants, 188 

while de-novo variants comprised only 36.2% of the variants detected by Psi-Variant, which 189 

also detected a high portion of X-linked and autosomal recessive variants (37.1% and 26.7%, 190 

respectively). Examination of the distribution of the detected variants in genes associated 191 

with ASD according to the SFARI Gene database36 revealed a two-fold enrichment of 192 

variants distributed in ASD genes (for all detection tools) compared to their portion in the 193 

clean vcf file and even a higher enrichment of Variants distributed in high-confidence ASD 194 

genes (P < 0.001).  195 
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 196 

 197 

Table 1 Characteristics of the detected Variants by InterVar, TAPES, and Psi-Variant from the WES data 

Characteristics  
Preliminary output 

(n = 1213319) 
InterVar  
(n = 220) 

TAPES  
(n = 199) 

Psi-Variant  
(n = 483) 

Functional consequence          

Frameshift (insertions/deletions) 4232 (0.349%) 39 (17.7%) * 22 (11.1%) * 58 (12.01%) * 

Missense 95919 (7.91%) 113 (51.4%) * 117 (58.8%) * 394 (81.6%) * 
Stop Gain/Loss/retain,  
Start Gain/Loss 

2105 (0.17%) 16 (7.27%) * 13 (6.53%) * 16 (3.31%) * 

Non-frameshift/in-frame 4062 (0.33%) 42 (19.1%) * 43 (21.61%) * -- 

Splice acceptor/donor/region 18817 (1.55%) 4 (1.82%) 4 (2.01%) 12 (2.48%) 

Synonymous, downstream/upstream 
gene, intron variant  

871205 (71.8%) 6 (2.73%) 0 (0%) 3 (0.62%) 

Other 216979 (17.9%) -- -- -- 

Inheritance pattern wise         

De-novo 43052 (3.55%) 209 (95%) * 193 (97%) * 175 (36.2%) * 

Autosomal recessive 70948 (5.85%) 9 (4.09%) 5 (2.51%) 179 (37.1%) * 

X-linked 9103 (0.75%) 2 (0.91%) * 1 (0.5%) * 129 (26.7%) * 

Other 1090216 (89.8%) -- -- -- 

Gene type wise         

SFARI genes with a score 1  19236 (1.58%) 15 (6.82%) * 12 (6.03%) * 21 (4.35%) * 

All SFARI genes (with scores 1-3) 93681 (7.72%) 32 (14.5%) * 24 (12.1%) * 75 (15.5%) * 

Other genes 1119638 (92.28%) 188 (85.4%) * 175 (87.9%) * 408 (84.5%) * 

 * <0.05 level of significance; two-sided two proportions Z test 
 198 

Effectiveness of ASD candidate Variants detection 199 

To assess the effectiveness of the different tools in detecting ASD candidate SNVs, we 200 

calculated the PPV and the OR for detecting ASD genes (i.e., those listed in the SFARI Gene 201 

database36) for different combinations of utilization of the three tools. The results of these 202 

analyses are shown in Fig. 2. Utilization of any of the three tools resulted in a significant 203 

enrichment of ASD genes, with the highest enrichment being observed in SNVs detected by 204 

InterVar (PPV = 0.178; OR = 4.10, 95% confidence interval (C.I.) = 2.77–5.90) followed by 205 

TAPES (PPV = 0.158; OR = 3.53, 95% C.I. =  2.28–5.27) and Psi-Variant (PPV = 0.143; OR 206 

= 3.21, 95% C.I. = 2.39–4.22). Notably, better performance in detecting ASD candidate 207 

SNVs was obtained at the intersection of the detected SNVs between InterVar and Psi-208 
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Variant (I ∩ P) (PPV = 0.222; OR = 5.38, 95% CI = 3.25–8.53). The I ∩ P combination was 209 

also the most effective in detecting SNVs in high-confidence ASD genes (i.e., those with a 210 

score of 1 in the SFARI Gene database 36 (Fig. 2A -2B). However, the I ∩ P combination had 211 

a relatively low diagnostic yield of 9.1% for SFARI genes. On the other hand, the union of 212 

InterVar and Psi-Variant (I U P) achieved a diagnostic yield of 30.9% (Fig. 2C) (three times 213 

more than I ∩ P) but had a reduced effectiveness in detecting variants in SFARI genes (PPV 214 

= 0.141; OR = 3.18, 95% C.I. = 2.43–4.10) (Fig. 2A - 2B).  215 
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Fig. 2 Effectiveness of InterVar (I), TAPES (T), Psi-Variant (P), and their combinations in 216 

detecting candidate variants in ASD genes. A Positive predictive value (PPV) of detecting 217 

A 

B 
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candidate variants in SFARI 1 and all SFARI genes. B Odds Ratios (ORs) of detecting 218 

candidate variants in SFARI 1 and all SFARI genes. C Diagnostic yield (%) achieved by the 219 

different tool combinations for detecting candidate variants in SFARI 1 and all SFARI genes. 220 

 221 

Discussion 222 

In this study, we assessed the concordance and effectiveness of three bioinformatics tools in 223 

the interpretation of variants detected in the WES of children with ASD. There was better 224 

agreement in variant detection between InterVar and TAPES than between Psi-Variant and 225 

each of these two tools, probably because both InterVar and TAPES are based on the 226 

ACMG/AMP guidelines8, while Psi-Variant uses the interpretation of seven in-silico tools in 227 

assessing the functional consequences of LGD variants. In addition, most (94%) of the 228 

variants detected by either InterVar or TAPES were de-novo variants, compared to only 36% 229 

of the variants detected by Psi-Variant. This difference may be attributed to the fact that 230 

ACMG/AMP guidelines are particularly designed to detect de-novo highly penetrant variants, 231 

while inherited variants (autosomal recessive and X-linked) are usually classified as VUS20. 232 

Importantly, such rare inherited variants have been found to be associated with a variety of 233 

neurodevelopmental conditions, including ASD9,17,18,21,22. Another major difference between 234 

these tools lies in the detection of in-frame insertions/deletions that comprised ~20% of the 235 

variants detected by either InterVar or TAPES, while such SNVs were discarded by Psi-236 

Variant. We decided to exclude these variants from Psi-Variant because their clinical 237 

relevance has been demonstrated in several genetic disorders37,38 but not in ASD39–41.   238 

Another important factor that could affect the concordance between the three tools is the 239 

annotation tools they use. Specifically, both InterVar and TAPES use AnnoVar42 for their 240 

variant annotation, while Psi-Variant uses Ensembl’s VEP26. It has already been shown that 241 

AnnoVar and VEP have a low concordance in the classification of LoF variants43. In 242 
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addition, each tool, InterVar, TAPES, and Psi-Variant, utilizes a different set of in-silico tools 243 

for the classification of missense variants, with SIFT29 alone being shared by all three tools. 244 

These differences are probably the reason for the large differences in the detection of 245 

missense variants between the three tools (Table 1).   246 

Today, there are no accepted guidelines for the detection of ASD susceptibility variants 247 

from WES data. Many genetic labs use the ACMG/AMP guidelines8, leading to a relatively 248 

low diagnostic yield44,45. Our findings suggest that different combinations of bioinformatics 249 

tools for variant interpretation may improve the detection of ASD susceptibility variants. 250 

Furthermore, combining these tools provides more flexibility in selecting the desired 251 

proportion between the detection yield and false positives. Thus, future guidelines for the 252 

detection of ASD susceptibility variants should consider the integration of different variant 253 

interpretation criteria.  254 

Of note, many of the variants detected by the integrative pipeline affect genes with no 255 

known association with ASD, according to the SFARI Gene database36. This finding 256 

highlights the capability of the integrative pipeline to detect novel ASD genes. Obviously, the 257 

association of these genes and variants with ASD susceptibility needs to be validated in 258 

additional studies.  259 

The results of this study should be considered under the following limitations. First, the 260 

effectiveness assessments of the different tools and their combinations were based on ASD 261 

genes from the SFARI Gene database36. While this is the most commonly used database for 262 

ASD genes and is continuously updated, it is based on data curated from the literature and 263 

may thus include genes falsely associated with ASD. Second, the variant detection analyses 264 

were performed on WES data of a cohort from the Israeli population, which may not 265 

necessarily be representative of the genetic architecture of ASD. Third, the tools used in this 266 

study were designed to detect only extremely rare variants with relatively large functional 267 
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effects. Thus, a more effective approach for the detection of ASD susceptibility variants 268 

should also include the interpretation of other types of genomic variations, such as copy-269 

number and compound heterozygote variants46–51, as well as other variants with milder 270 

functional effects17,52,53.  Finally, it should be noted that there are many other approaches for 271 

variant interpretation from WES data. Thus, it is possible that combinations of other 272 

approaches would be more effective in the detection of ASD susceptibility variants from 273 

WES data than the approaches investigated in this study.  274 

 275 

Conclusions 276 

Our findings suggest that combination of different bioinformatics tools is more effective in 277 

the detection of ASD candidate variants from WES data than each of the examined tools 278 

alone. Future guidelines for the detection of ASD susceptibility variants should consider 279 

integrating different variant interpretation approaches to improve the effectiveness of ASD 280 

candidate variants detection from whole exome sequencing data.  281 
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