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Abstract 

 

Background 

Body composition assessment using abdominal computed tomography (CT) images is increasingly applied 

in clinical and translational research. Manual segmentation of body compartments on L3 CT images is time-

consuming and requires significant expertise. Robust high-throughput automated segmentation is key to 

assess large patient cohorts and ultimately, to support implementation into routine clinical practice. By 

training a deep learning neural network (DLNN) with several large trial cohorts and performing external 

validation on a large independent cohort, we aim to demonstrate the robust performance of our automatic 

body composition segmentation tool for future use in patients. 

Methods 

L3 CT images and expert-drawn segmentations of skeletal muscle, visceral adipose tissue, and 

subcutaneous adipose tissue of patients undergoing abdominal surgery were pooled (n = 3,187) to train a 

DLNN. The trained DLNN was then externally validated in a cohort with L3 CT images of patients with 

abdominal cancer (n = 2,535). Geometric agreement between automatic and manual segmentations was 

evaluated by computing two-dimensional Dice Similarity (DS). Agreement between manual and automatic 

annotations were quantitatively evaluated in the test set using Lin’s Concordance Correlation Coefficient 

(CCC) and Bland-Altman’s Limits of Agreement (LoA). 

Results 

The DLNN showed rapid improvement within the first 10,000 training steps and stopped improving after 

38,000 steps. There was a strong concordance between automatic and manual segmentations with median 

DS for skeletal muscle, visceral adipose tissue, and subcutaneous adipose tissue of 0.97 (interquartile range, 

IQR: 0.95-0.98), 0.98 (IQR: 0.95-0.98), and 0.95 (IQR: 0.92-0.97), respectively. Concordance correlations 

were excellent: skeletal muscle 0.964 (0.959-0.968), visceral adipose tissue 0.998 (0.998-0.998), and 

subcutaneous adipose tissue 0.992 (0.991-0.993). Bland-Altman metrics (relative to approximate median 

values in parentheses) indicated only small and clinically insignificant systematic offsets : 0.23 HU (0.5%), 
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1.26 cm2.m-2 (2.8%), -1.02 cm2.m-2 (1.7%), and 3.24 cm2.m-2 (4.6%) for skeletal muscle average 

radiodensity, skeletal muscle index, visceral adipose tissue index, and subcutaneous adipose tissue index, 

respectively. Assuming the decision thresholds by Martin et al. for sarcopenia and low muscle radiation 

attenuation, results for sensitivity (0.99 and 0.98 respectively), specificity (0.87 and 0.98 respectively), and 

overall accuracy (0.93) were all excellent. 

Conclusion 

We developed and validated a deep learning model for automated analysis of body composition of patients 

with cancer. Due to the design of the DLNN, it can be easily implemented in various clinical infrastructures 

and used by other research groups to assess cancer patient cohorts or develop new models in other fields. 
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Introduction 

 

Body composition assessment using routine abdominal computed tomography (CT) images is increasingly 

applied in clinical and translational research. By measuring the tissue area at the level of the third lumbar 

vertebra (L3) and scaling for subject height, precise assessments of total body mass of skeletal muscle (SM), 

visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT) can be made.1 Body composition 

has been found to be highly independently predictive of survival, especially among cancer patients. In 

particular, low skeletal muscle mass (i.e., sarcopenia), low adipose tissue mass, and decreased skeletal 

muscle radiodensity (i.e., myosteatosis) have been shown to be associated with shorter overall survival in 

various cancer types.2-4 

Body composition exhibits substantial  heterogeneity among people due to natural variation in age, sex, 

race, and build.5 These intrinsic inter-personal differences are unrelated to disease and may therefore 

obscure disease related body composition effects, necessitating large population-based data cohorts to 

adjust for them. 

Manual segmentation of body compartments on L3 CT images is time-consuming and requires significant 

expertise. Therefore, robust high-throughput automated segmentation is key to body composition 

assessment in large patient cohorts and ultimately, to support implementation of body compositon 

assessment into routine clinical practice. A deep learning neural network (DLNN) can be an essential part 

of such an automated workflow.  

One challenge for developing a robust DLNN is that patients do not always have the ideal CT scans for 

body composition assessment, such that variable orientation of the patient, degradation of image quality 

due to radiation artefacts, and individual-specific anatomical attributes may result in poor performance of 

an automated segmentation algorithm.6 A systematic review revealed that one in three DLNN studies of 

body composition segmentation have been developed with less than 100 unique human subjects, and more 

than half of the reviewed studies used exclusively single-institutional datasets.7 Robust DLNNs need to be 

trained on datasets that are large enough to incorporate the heterogeneity created by a variety of scanners, 
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image acquisition settings, image reconstruction kernels, patient positioning protocols, and sufficiently high 

heterogeneity of subject clinical presentations. Additionally, the quantitative performance of DLNNs need 

to be comprehensively evaluated with external test datasets sourced from a wholly independent clinical 

workflow and a separate clinical setting from the one used to train the DLNN.8 

In previous work, the DLNN that is the subject of this paper had been independently validated using a large 

polytrauma patient cohort extracted from the same university hospital, albeit a different department and for 

a clinically distinct setting.9 This was nonetheless considered a challenging validation attempt due to the 

large variation in patient positioning (including arms and hands appearing inside the field of view) as well 

as radiation artifacts (e.g., from metal devices attached to the patient). Even with this challenging cohort, 

the present DLNN model performed very well. 

This paper presents the first validation of the MosaMatic DLNN in a surgical oncology cohort using data 

from a separate hospital, using previously unseen scanners, with independent radiology scan protocols, and 

with reference delineations provided by independent clinicians.  
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Patients and methods 

 

Subjects 

A total of 3,187 abdominal surgical subjects contributed by 32 distinct centres were used for DLNN 

development (see general subject characteristics in Table 1). These comprised of de-identified data 

abstracted from previously ethics board-approved clinical studies; permission for secondary analysis was 

obtained via the principal investigators of the respective studies. We used L3 CT slices from: three 

colorectal liver metastases trials - two from multiple sites across the UK and a single-institution study in 

The Netherlands; two ovarian cancer trials among five participating Dutch centers; and one pancreatic 

cancer trial of patients operated either in Aachen, Germany, or in Maastricht, the Netherlands. 

An independent external validation set comprised 2,535 L3 CT slices at different time intervals taken from 

1,054 unique subjects diagnosed with either resectable colorectal or pancreatic cancer (see Table 1).10,11 

Ethical approval was granted by the West of Scotland Research Ethics Committee, Glasgow.  

 

Image acquisition and reference segmentations 

The aforementioned datasets comprised CT scans from a broad range of equipment vendors and image 

acquisition settings. Images were archived in DICOM (Digital Imaging and Communications in Medicine) 

format. Table S1 (see online supplementary materials) summarizes the diverse imaging settings as recorded 

in DICOM metadata. 

All human-made segmentations in this study were created with Slice-o-matic (Tomovision, Quebec, 

Canada). Regions of interest (ROIs) were defined using standardized Hounsfield Unit (HU) ranges (SM: -

29 to +150, VAT: -150 to -50, SAT: -190 to -30). Absolute areas were normalized by physical height 

squared to derive skeletal muscle index (SMI), visceral adipose tissue index (VATI), and subcutaneous 

adipose tissue index (SATI).  Mean HU in SM at L3 was used as the skeletal muscle radiation attenuation 

(SMRA). All human reference segmentations were made by clinical researchers trained to perform body 

compostion analysis in Slice-o-matic. 
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Previously published analyses on the external validation dataset had been made with ImageJ (National 

Institutes of Health, v1.47, http://rsbweb.nih.gov/ij/), but this method was shown to overestimate adipose 

tissue areas relative to other software.12 Every validation subject in this study was therefore independently 

re-annotated in Slice-o-matic by the original data owners. To ensure consistency for direct comparison, we 

re-computed areas and mean HU for all subjects with independent Python code, and confirmed equivalent 

values with each version of Slice-o-matic used to 2 decimal places or better. 

 

Deep learning neural network (DLNN) 

A DLNN for multi-label segmentation of SM, VAT, and SAT was built from a canonical 2D U-Net,13 with 

minor change in the input layer to match the dimensions of a CT slice (512x512). An essential development 

for this work was to chain two independently-trained U-Net networks; the first U-Net was developed to 

segment the whole abdomen, whilst ignoring hands, arms, CT mattress and extraneous medical devices that 

sometimes appeared in the CT field of view. The second U-Net was specialized for segmenting SM, VAT, 

and SAT within the abdominal outline detected by the first U-Net (see online supplementary materials 

Figure S1 and its accompanying text). 

Pixel intensities were clipped to the range [-500, +500] HU for the abdomen segmentation network. The 

reference abdominal region was generated by computing the outermost continuous contour of the human 

expert’s SAT region before morphologically filling in every pixel inside. The range of intensities was 

further clipped to [-200, +200] HU to train the multi-label segmentation of muscle and fat. In each network, 

clipped intensities were scaled between [0,1] via standard min-max normalization. Pre-processed CT 

images where stored and handled in DICOM format. Human expert segmentations were extracted from 

Slice-o-matic in its proprietary TAG format and converted to Python (NumPy) array objects before training 

the deep learning model. 

Hands, arms, and other extraneous objects were rare within the training set, thus we synthetically over-

sampled images with extraneous objects outside the abdomen until they comprised 50% of each training 

batch while developing the abdomen U-Net. To train the muscle and fat multi-level segmentation network, 
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all available 3,187 subjects were randomly shuffled and split into 80% for training and 20% for validation. 

Given the relatively large sample size, a (non-overlapping) 80-20 split is superior to alternative methods 

like K-fold cross-validation where each validation block ultimately ends up being “seen” by the training 

algorithm, potentially introducing bias due to data leakage. More details of DLNN construction have been 

provided in online supplementary materials. 

CT slices and human-drawn (reference) annotations for the external validation were not revealed until the 

final DLNN model had been selected and all its model weights permanently fixed. Pre-processing of the 

test set followed the same steps as aforementioned. The full DLNN code (stripped of all trained models and 

patient data) is made open access (see data availability statement). 

 

Analysis 

Geometric agreement was evaluated by using 2D Dice Similarity (DS) comparing the DLNN segmentations 

of SM, SAT, and VAT against the corresponding annotation made by human experts. DS computes the area 

of the intersection between human and DLNN segmentations as a fraction of half the summated area 

(human-drawn area plus DLNN-drawn area). Perfect geometric agreement implies DS = 1, and if the 

intersection area is zero then DS = 0. Agreement of SMI, VATI, SATI, and SMRA between manual and 

automatic annotations were quantitatively evaluated in the test set using Lin’s Concordance Correlation 

Coefficient (CCC) and Bland-Altman’s Limits of Agreement (LoA) (with and without repeated 

measurements). By using the human-drawn annotations in the test set as reference and then applying the 

risk classification supplied by Martin et al,2 we computed the diagnostic performance (sensitivity, 

specificity, balanced accuracy, and agreement kappa) of the DLNN results. Statistical analyses were 

performed in R (version 4.2.0). 
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Table 1. General case-mix characteristics for the deep learning neural network development sets and 

the external test set. 

 MODEL DEVELOPMENT SETS TEST SET 

Study ID FROGS* 

New 

EPOC* 

Zuyd+ MUMC** MUMC / Aachenx UG^ 

Diagnosis 

Emergency 

laparotomy 

Colorectal liver metastases Ovarian cancer Pancreatic cancer 

Pancreatic cancer + 

colorectal cancer 

Time 

interval 

2017-2019 2007-2012 2013-2017 2002-2015 2015-2019 2008-2019 

Sample size 804 153 1587 339 304 

1054 

(147 pancreatic,  

907 colorectal) 

No. male 

(%) 

374 

(47%) 

- 

883 

(56%) 

0 

(0%) 

161 

(53%) 

567 

(54%) 

No. female 

(%) 

430 

(53%) 

- 

704 

(44%) 

339 

(100%) 

143 

(47%) 

487 

(46%) 

Ages 

(median) 

25-95 

(68) 

- 

32-98 

(70) 

30-101 

- 

10-88 

(74) 

23-93 

(69) 

Range BMI 

in kg.m-2 

(median) 

14-58 

(26) 

- 

15-53 

(26) 

- 

- 

- 

(25.4) 

14-59 

(27) 

*Bristol, Poole, Bournemouth, Royal Marsden, Surrey, Portsmouth, Velindre, Sheffield, Imperial Charing Cross, Imperial St. Mary, 

Christie, Southend, Yeovil, North Middlesex, Southampton, Guys, Aintree, Winchester, Cambridge, Princess Alexandra, Bedford, 

Salisbury, University College London, Basingstoke, Pennine (UK). +Zuyderland Medical Centre Geleen/Heerlen (The 

Netherlands). **Maastricht University Medical Centre, Radboud University Medical Centre Nijmegen, Bernhoven Medical Centre 

Uden, St. Jansdal Medical Centre Ede (The Netherlands). x Maastricht University Medical Centre (Netherlands), RWTH Uniklinik 

Aachen (Germany). ^Glasgow Royal Infermary (UK). - No individual values extracted. 
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Results 

 

Model training 

Total loss and DS curves in the training dataset show DLNN model convergence within about 40,000 steps 

(see Figure S2). There was rapid improvement within the first 10,000 steps but DS was largely stable 

thereafter. Total (Dice+L2) loss continued to decrease gradually but we stopped model training after 38,000 

steps, since there was very little to gain with further training. The DLNN weights after the last training step 

were thus fixed as the “final model” for subsequent testing. The established segmentation tool was named 

MosaMatic. 

 

Concordance between manual and DLNN segmentations 

The overall distribution of DS for SM, VAT, and SAT in the quarantined validation dataset are summarized 

in the box-whisker plot shown in Figure 1(a). The median DS for SM was 0.97 (interquartile range, IQR: 

0.95-0.98), with a tail of outliers down to a minimum DS of 0.45. The distributions of DS for VAT (median: 

0.98, IQR: 0.95-0.98) and SAT (median: 0.95, IQR: 0.92-0.97) were highly skewed, with extreme outliers 

landing near zero (these were patients with very small amounts of total adipose tissue). The DS is known 

to be overly sensitive for small volumes, and this can also be seen in our results – Figure 1(b, c, and d). 

Lin’s CCC evaluation of SMRA, SMI, VATI, and SATI comparing expert segmentations (as reference) 

and DLNN results (as test) was excellent, as shown in Figure 2 (a-d). Numerical measures of the 

concordance correlation coefficient (CCC), bias correction factor for slope of agreement, and finally the 

Bland-Altman intervals of agreement without repeated scans are provided in Table 2. The CCC ranges from 

0.964 (for SMI) up to 0.998 (for VATI). The errors in the agreement slope, as indicated by deviation from 

the dotted line in Figure 2, were all close to unity, indicating no major deviations from the ideal, which is 

supported by bias correction multipliers being better than 0.991 (i.e. no correction implies 1.00). Based on 

our large cohort, median in vivo values (which are in reality age- and sex-dependent) of SMRA, SMI, VATI 

and SATI roughly fall in the vicinity of 50 HU, 45 cm2.m-2, 60 cm2.m-2 and 70 cm2.m-2. The Bland-Altman 
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metrics (with percentages in parentheses) indicate only small systematic offsets of 0.23 HU (1.0%), 1.26 

cm2.m-2 (2.9%), 1.02 cm2.m-2 (2.5%), and 3.24 cm2.m-2 (4.9%) for SMRA, SMI, VATI, and SATI, 

respectively. The upper and lower limits of the Bland-Altman tests indicate SATI had the widest random 

variation component (-6.7 to 13 cm2.m-2). Most importantly for risk stratification by muscle fat content, the 

random noise component of SMRA was estimated at about 2 to 3 HU in magnitude, and correspondingly 

for SMI about 3 to 5 cm2.m-2 in magnitude.  

 

Consistent concordance for repeated measurements 

In 449 subjects, we obtained a repeated CT image at varying time intervals ranging from within a month 

up to 12 months. Whereas the scope of this study was not to objectively quantify longitudinal precision, we 

can already derive some preliminary insight into stability with repeated imaging over time using this data. 

The concordance plots for SMRA, SMI, VATI, and SATI for repeated scans are equivalent to Figure 2 (see 

Figure S3). There was no evidence of divergence from the high concordance observed in the agreement on 

primary CTs. According to CCC metrics and Bland-Altman limits with repeated measures, there are no 

notable changes between agreement of body composition indices between primary (top half of Table 2) and 

repeat scans (bottom half of Table 2).  

 

Accuracy  

We tested the clinical significance of using the DLNN segmentations with respect to a change in 

stratification for sarcopenia and low SMRA using the widely used thresholds defined by Martin et al.2 

Overall accuracy of stratification was 0.93 for sarcopenia (sensitivity: 0.99, specificity: 0.87) and 0.98 for 

low SMRA (sensitivity: 0.98, specificity: 0.98). The discretized agreement (Cohen’s inter-rater kappa) was 

0.85 for sarcopenia and 0.96 for low SMRA, which is generally considered as being excellent. For 

completeness, a 2x2 confusion matrix for sarcopenia and low SMRA is included in the online supplemental 

materials as Figure S4. 
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Figure 1: Distribution of geometric DS on L3 slice for skeletal muscle (SM), subcutaneous fat (SAT), 

and visceral fat (VAT) 

(a) Box-whisker plot showing the median DS as the solid horizontal line and the interquartile range as the 

upper and lower limits of the box. The vertical line ends indicate 1%-tile and 99%-tile, and outliers outside 

this range are shown as individual dots. (b) – (d) show the distribution of DS as a function of SM area, VAT 

area, and SAT area, respectively. 
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Figure 2: Lin’s concordance correlation (CCC) plots 

(a) skeletal muscle attenuation (SMRA), (b) skeletal muscle index (SMI), (c) visceral fat index (VATI) and 

(d) subcutaeous fat index (SATI). The units of SMRA are HU. The units of SMI, VATI, and SATI are all 

cm2.m-2. Reference values were defined as those extracted from human-drawn segmentations. Predicted 

values were extracted from DLNN-made segmentations. 
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Table 2. Concordance correlation, bias correction factor, and Bland-Altman agreement without 

repeated measures (n = 1054) 

 

 

 

  

Bland-Altman estimates of agreement for primary scan only (n = 1054) 

 Concordance correlation 

(95% confidence interval) 

Bias correction 

factor 

Bland-Altman agreement 

(95% lower-upper limits) 

SMRA 0.991 (0.990 – 0.992) 0.999 0.23 (-2.06 – 2.52) HU 

SMI 0.964 (0.959 – 0.968) 0.991 1.26 (-3.11 – 5.63) cm2.m-2 

VATI 0.998 (0.998 – 0.998) 0.999 -1.02 (-4.55 – 2.50) cm2.m-2 

SATI 0.992 (0.991 – 0.993) 0.997 3.24 (-6.69 – 13.2) cm2.m-2 

Bland-Altman estimates of agreement for repeated scans only (n = 449) 

 

Concordance correlation 

(95% confidence interval) 

Bias correction 

factor 

Bland-Altman agreement 

(95% lower-upper limits) 

SMRA 0.991 (0.990 – 0.992) 0.999 0.18 (-2.08 – 2.45) HU 

SMI 0.973 (0.969 – 0.976) 0.997 0.75 (-3.56 – 5.06) cm2.m-2 

VATI 0.998 (0.998 – 0.998) 0.999 -1.07 (-4.55 – 2.41) cm2.m-2 

SATI 0.992 (0.991 – 0.993) 0.998 2.55 (-8.36 – 13.4) cm2.m-2 
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Discussion 

In this study, we present our high performing and externally validated deep learning model for automated 

segmentation of CT-based L3 slices. Due to its excellent performance in both internal and external 

validation cohorts, the DLNN-generated segmentation can reliably replace manual segmentation when 

performing body composition assessment. This opens up new possibilities both in clinical and scientific 

settings, such as cost- and time-effective clinical implementation and large cohort/population studies.  

Clinically, our automated L3 body composition segmentation tool can be easily implemented in standard 

practice for all routine CT-scans, which clinicians can then use for prognostic risk assessment and treatment 

decision making. Changes in body composition over time can be detected during oncologic follow-up, 

which might provide early indications of treatment effect or disease progression/recurrence. Going from a 

prognostic tool to a predictive tool – in which the tool is used for treatment decisions - still remains a large 

step to take as large international data-sets are needed to provide clinical reference values.  

Body composition is highly variable among sex, age, race, and cancer types.3,4,14-16 For this reason, 

developed clinical cut-offs vary greatly among different patient cohorts and prognostic models of outcome 

(e.g. survival) are likely to fail during external validation.3,17 In addition, body composition can be 

dependent on other clinical parameters and may have stronger prognostic effects when combined with 

parameters such as systemic inflammation and weight loss.10,18,19 We have previously demonstrated that 

such combinations or “host phenotypes” are more predictive of overall survival than tumor-based 

prognostic scores in patients with colorectal liver metastases.18 This supports the use of body composition 

analysis in the standard diagnostic work-up, as it can aid in clinical treatment decision-making. Automated 

body composition analysis is the only way of acquiring sufficient data for adequate Z-scoring and 

accounting for the aforementioned patient characteristics. While cut-offs are necessary for clinical use, we 

advocate the development of a clinical risk calculator, as the prognostic effect of body composition 

variables are incremental4 and should therefore not be arbitrarily forced into dichotomic cut-offs.  

Scientifically, our L3 segmentation tool enables assessment of large (incl. historical) cohorts that would be 

unfeasible to segment manually. In addition, as the AI has learned from multiple observers, it has not 
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learned an expert’s specific signature, ensuring a more stable output. However, the true value of automated 

segmentation is that it facilitates the inclusion of body composition as a study parameter in RCTs, as the 

time and effort of analysis is reduced from a couple of months to a few minutes. This enables stratification 

and selection of patients with different body compositions, creating either homogenous or heterogeneous 

cohorts as required. Including body composition is particularly important in oncology as it is related to 

chemotherapy effectiveness and toxicity.20 Ideally, chemotherapy dosing should be based on lean mass to 

prevent dose-limiting toxicities for which DLNN would be a logical application in the future. 

Some other automated segmentation tools have been developed. The largest cohort (n=12,128) was used 

for development of the AI tool published by Magudia et al.14 Their tool performed well with similar dice 

scores to our algorithm. Their training cohort only included 604 pancreatic cancer patients while the large 

(n= 12,128) hospital dataset was used to derive reference curves. However, the large hospital dataset only 

included patients without cancer and cardiovascular disease, making it less applicable to a clinical 

population of subjects with cancer which frequently display body composition alterations. In addition, 

analysis of CT-scans of cancer patients can be more challenging due to anatomic abnormalities and 

suboptimal patient positioning. As patients with cancer were excluded, the tool by Magudia et al. could 

perform worse in cancer cohorts. Our analyses did not exclude patients with anatomical variations or 

unconventional patient positioning, likely resulting in a more robust segmentation tool. Dabiri et al. 

published an automated segmentation tool which was trained on two cohorts of patients with cancer 

(n=2529).21 Their segmentation tool performed similarly well compared with our segmentation tool. 

However, in contrast to our study, they did not perform external validation, making it uncertain how their 

AI performs in other cohorts.  

The key step forward will be implementing automated segmentation into clinical practice and making it 

easily accessible for new research initiatives. Our tool was created in such a way that it can be easily 

integrated in clinical imaging software or work independent alongside existing imaging infrastructure. To 

ensure easy access for research purposes, the untrained AI will be freely available for scientific use and the 
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trained AI can be used under license through a web-app or docker by other research groups. This enables 

rapid implementation and much needed data collection to develop clinical prediction tools. 

 

Conclusion 

In this study, we developed a reliable deep learning model that was externally validated for automated 

analysis of body composition of patients with cancer. Due to the design of the tool, it can be easily 

implemented in various clinical infrastructures and used by other research groups to assess cancer patient 

cohorts or develop new models in different fields. 
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