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Abstract 13 

Lewy body (LB) pathology commonly occurs in individuals with Alzheimer’s disease (AD) pathology. 14 

However, it remains unclear which genetic risk factors underlie AD pathology, LB pathology, or AD-15 

LB co-pathology. Notably, whether APOE-ε4 affects risk of LB pathology independently from AD 16 

pathology is controversial. We adapted criteria from the literature to classify 4,985 subjects from the 17 

National Alzheimer’s Coordinating Center (NACC) and the Rush University Medical Center as AD-LB 18 

co-pathology (AD+LB+), sole AD pathology (AD+LB–), sole LB pathology (AD–LB+), or no pathology 19 

(AD–LB–). We performed a meta-analysis of a genome-wide association study (GWAS) per 20 

subpopulation (NACC/Rush) for each disease phenotype compared to the control group (AD–LB–), 21 

and compared the AD+LB+ to AD+LB– groups. APOE-ε4 was significantly associated with risk of AD+LB– 22 

and AD+LB+ compared to AD–LB–. However, APOE-ε4 was not associated with risk of AD–LB+ 23 

compared to AD–LB– or risk of AD+LB+ compared to AD+LB–. Associations at the BIN1 locus exhibited 24 

qualitatively similar results. These results suggest that APOE-ε4 is a risk factor for AD pathology, but 25 

not for LB pathology when decoupled from AD pathology. The same holds for BIN1 risk variants. 26 

These findings, in the largest AD-LB neuropathology GWAS to date, distinguish the genetic risk 27 

factors for sole and dual AD-LB pathology phenotypes. Our GWAS meta-analysis summary statistics, 28 

derived from phenotypes based on postmortem pathologic evaluation, may provide more accurate 29 

disease-specific polygenic risk scores compared to GWAS based on clinical diagnoses, which are 30 

likely confounded by undetected dual pathology and clinical misdiagnoses of dementia type.31 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 20, 2023. ; https://doi.org/10.1101/2023.04.21.23288938doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:yleguen@stanford.edu
https://doi.org/10.1101/2023.04.21.23288938
http://creativecommons.org/licenses/by-nc/4.0/


 2 

Introduction 32 

Alzheimer’s disease (AD) pathology has been the focus of many studies, but Lewy body (LB) 33 

pathology has received less attention. In individuals with AD, LB pathology frequently co-occurs with 34 

AD pathology, while LB pathology alone or accompanied by limited AD pathology is characteristic of 35 

Parkinson’s disease (PD) and LB dementia [30, 53, 49, 54]. Genetic variants associated with AD 36 

pathology, LB pathology, and/or AD-LB co-pathology remain to be distinguished. Characterizing each 37 

set of risk factors and any potential overlap will help clarify the etiology of AD and LB pathology. AD 38 

pathology is found in 19–67% of older individuals at autopsy, depending on the population, the 39 

individual’s age, and the diagnostic criteria used [44]. LB pathology is observed in 6–39% of older 40 

individuals, but in 60% of individuals with AD pathology [44, 30, 34]. Positive classification for LB 41 

pathology requires, at a minimum, the presence of α-synuclein-bearing Lewy bodies in the brainstem, 42 

with further extension of LB pathology into the limbic system associated with the clinical diagnosis 43 

of dementia [38]. Positive classification for AD pathology requires the presence of tau neurofibrillary 44 

tangles (NFTs) in the limbic system along with amyloid-β core neuritic plaques in the cortex [8, 39]. 45 

Lewy bodies and NFTs spread to the cortex late in the progression of either pathology [38, 8]. Braak 46 

staging is the primary scheme used to classify NFT progression, while the Consortium to Establish a 47 

Registry for Alzheimer’s Disease (CERAD) scoring is the primary scheme used to classify neuritic 48 

plaque density. AD has traditionally been defined pathologically as Braak stage IV or higher, and at 49 

least moderate CERAD [17], although some studies have used less stringent criteria (Braak stage III 50 

or higher, and at least sparse CERAD) [28]. Thal phasing of amyloid-β non-neuritic plaques [51], 51 

based on another staging devised by Braak [9], has more recently been used as a third essential 52 

metric to classify AD [11]. Of the five Thal phases, only the last two, in which plaques are present in 53 

the brainstem and cerebellum, are specific to dementia patients [17].  54 

Clinical diagnoses of AD and LB dementia are challenging and error-prone in comparison to the gold 55 

standard of a pathologic diagnosis [19]. However, most study participants have only been clinically 56 

diagnosed due to the scarcity of postmortem pathologically confirmed data. In a study of 919 57 

autopsied individuals comparing clinical diagnosis of AD to pathological diagnosis, the diagnosis of 58 

clinically probable AD had an 83% positive predictive value (PPV) for pathological criteria of Braak 59 

state III or higher and moderate/high CERAD [1]. This study was conducted before AD biomarkers 60 

like spinal fluid amyloid and tau levels, or amyloid and tau PET scans, were more commonly used, so 61 

the PPV of the clinical diagnosis is now likely higher than 83%; however, it remains imperfect. The 62 

PPV for a clinical diagnosis of probable LB dementia against the pathologic diagnosis is also around 63 

80% [21, 50, 45]. In general, it has been difficult to clinically distinguish between AD without Lewy 64 
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bodies, AD with Lewy bodies, and LB dementia [25]. Additionally, individuals who may have 65 

advanced pathology, but mild symptoms are frequently misdiagnosed clinically or missing from 66 

clinical datasets altogether because they do not seek medical attention.  67 

Motor function and neuropsychiatric and cognitive symptoms have been suggested as diagnostic 68 

clues of AD pathology, LB pathology, or co-pathology [14, 48]. Moreover, developing AD pathology 69 

biomarkers such as assays of amyloid-β, tau, and phosphorylated tau levels in the cerebrospinal fluid 70 

or blood plasma has been valuable in closing the gap between diagnosis during life and pathologic 71 

AD diagnosis [6, 32]. LB pathology biomarkers, including promising assays of α-synuclein aggregates 72 

in the cerebrospinal fluid, are similarly improving the diagnosis of LB dementia [47, 43, 36]. Still, 73 

because LB biomarkers have been developed more recently, most existing genetic datasets consist of 74 

only clinically diagnosed subjects. Ultimately, as a histological and molecular endophenotype, 75 

pathologic diagnosis offers the most reliable insights into the genetic drivers of disease.  76 

Previous research has produced contrasting and somewhat ambiguous findings on the genetic risk 77 

loci for AD and LB pathology. This could be because most studies include only clinically assessed 78 

subjects or have relatively few pathologically assessed subjects. Importantly, most prior studies on 79 

AD and LB pathology, even with pathologic confirmation, do not stratify subjects into distinct groups 80 

for sole AD pathology (AD+LB–), LB pathology (AD–LB+), co-pathology (AD+LB+), and neither 81 

pathology (AD–LB–), making the results difficult to accurately interpret. It is well known that the ε4 82 

allele of the Apolipoprotein E (APOE) gene is the strongest common genetic risk factor for AD [4, 31]. 83 

However, various studies have reported that APOE-ε4 is also associated with increased risk of sole 84 

LB pathology (AD–LB+) [52, 18], LB dementia [5, 2, 24, 48, 13], or increased risk of AD-LB co-85 

pathology (AD+LB+) in AD individuals [14]. Walker and Richardson (2023) found that APOE-ε4 was 86 

associated with AD, LB, or limbic-predominant age-related TDP-43 encephalopathy pathology as well 87 

as with the presence of multiple of these pathologies [54]. This suggests that APOE-ε4 could be 88 

associated with AD–LB+ pathology.  89 

How APOE-ε4 affects the severity of LB pathology has also been investigated. Studies reported that 90 

α-synuclein pathology mouse models expressing APOE-ε4 develop more extensive inclusions [22, 91 

16]. In humans, LB pathology was found to be more severe among APOE-ε4 carriers independent of 92 

AD pathology severity [23], as well as among APOE-ε4-carrying AD–LB+ subjects relative to non-93 

carriers [18, 22, 57]. However, when Kaivola et al. (2022) categorized pathologically confirmed cases 94 

from the cohort in [13] by not only LB but also AD pathology status, APOE-ε4 was not associated with 95 

risk of AD–LB+ pathology [28]. Robinson et al. (2018) found that APOE-ε4 was associated with cortical 96 

LB co-pathology (cortical LB pathology accompanied by an amyloidopathy, tauopathy, or TDP-43 97 
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proteinopathy) compared to sole LB pathology; however, APOE-ε4 was not associated with AD-LB 98 

co-pathology compared to sole AD pathology [46]. Furthermore, Dickson et al. (2018) found that 99 

APOE-ε4 was not associated with more severe LB pathology in individuals with moderate or high AD 100 

pathology [18]. It, therefore, remains unclear whether APOE-ε4 in fact increases risk of AD–LB+ 101 

pathology.  102 

Importantly, beyond APOE-ε4, there may be other pathology-specific genetic risk loci yet to be 103 

identified. Along this line, it is relevant to note that removing individuals that are not pathologically 104 

evaluated from study cohorts has been shown to reduce noise in genome-wide association studies 105 

(GWAS) and to improve polygenic risk score analyses of AD [15, 20, 19]. These observations 106 

emphasize the need for novel GWAS of AD/LB pathology to better characterize the genetic 107 

architecture of these complex dementias. 108 

To this end, we assembled a preliminary cohort of 5,254 individuals with genetic data and autopsy-109 

confirmed AD and LB pathology status, the largest such cohort to date. We adapted criteria from the 110 

literature to categorize these individuals as AD+LB+, AD+LB–, AD–LB+, or AD–LB–, yielding 1,072 111 

AD+LB+, 2,492 AD+LB–, 158 AD–LB+, and 1,263 AD–LB– individuals in our study cohort (total N = 112 

4,985). We compared each disease category to controls by performing separate GWAS meta-analyses. 113 

We also compared AD+LB+ pathology to AD+LB– pathology in another analysis.   114 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 20, 2023. ; https://doi.org/10.1101/2023.04.21.23288938doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.21.23288938
http://creativecommons.org/licenses/by-nc/4.0/


 5 

Materials and methods 115 

Study cohort 116 

We analyzed data from individuals from the National Alzheimer’s Coordinating Center (NACC) and 117 

Rush University Medical Center databases who were evaluated postmortem for both AD and LB 118 

pathology. We excluded NACC individuals who were classified as having Lewy bodies in the olfactory 119 

bulb or in an “unspecified” region (individuals for whom the NACCLEWY parameter was equal to 4). 120 

We also excluded individuals missing sex or age-at-death information. In total, our preliminary 121 

cohort comprised 5,254 individuals before classification according to AD and LB pathology status. 122 

This cohort was distinct from that analyzed in [13], the largest genetic study of LB dementia (which 123 

included subjects without pathology verification), and [28], the largest previous genetic study of 124 

subjects categorized by both AD and LB pathology status. 125 

Pathological criteria 126 

We classified individuals as having both AD and LB pathology (AD+LB+), AD pathology only (AD+LB–127 

), LB pathology only (AD–LB+), or neither pathology (AD–LB–) (Fig. 1). Individuals who could not be 128 

classified using our criteria were excluded (Fig. 1c). In sensitivity analyses, we applied the pathology 129 

criteria from [52] and [28] to our preliminary cohort (Fig 1. a–b). Criteria were set as follows for LB 130 

pathology. 131 

▪ LB+ pathology were individuals with Lewy bodies spread to the limbic system or cortex, as 132 

in [28] and [52]. 133 

▪ LB– pathology were individuals with no Lewy bodies or Lewy bodies limited to the brainstem, 134 

as in [28], but not in [52], which excluded individuals with brainstem-limited Lewy bodies. 135 

▪ Some gray zones, representing rare subcategories with unclassified individuals, are defined 136 

based on Braak stage and CERAD score below. 137 

Criteria for AD pathology were less straightforward because of borderline subcategories and possible 138 

confounding with other pathologies. In agreement with [28] and [52] (Fig. 1), 139 

▪ AD+ pathology included individuals with Braak stage IV or higher and CERAD score moderate 140 

or frequent. 141 

▪ AD– pathology included individuals with Braak stage II or lower, or Braak stage III/IV and 142 

CERAD score absent. 143 

Other subcategories were largely classified differently between [28] and [52], and we settled on the 144 

following criteria. First, we defined three gray zones of unclassified individuals corresponding to rare 145 

pathologic profiles (N = 269 total). 146 
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▪ Individuals who had Braak stage V/VI and CERAD score absent, regardless of LB category, 147 

were not classified for the reason of likely having a rare tauopathy distinct from AD [41]. 148 

▪ Similarly, individuals with absent or brainstem Lewy bodies (LB–) who had Braak stage V/VI 149 

and CERAD score sparse were not classified. 150 

▪ Braak stage III and CERAD score frequent in LB– individuals were insufficient for 151 

classification as AD+, but too high for a confident classification as AD–. Ultimately, our goal 152 

was to obtain a clean control (AD–LB–) group.  153 

Second, certain borderline subcategories were classified differently (AD+ or AD–) depending on LB 154 

category. 155 

▪ Individuals with absent or brainstem Lewy bodies (LB–) were AD– for Braak stage III and 156 

CERAD score sparse or moderate; or Braak stage IV and CERAD score sparse. 157 

▪ Individuals with limbic or cortical Lewy bodies (LB+) were AD+ for Braak stage III or higher 158 

and CERAD score sparse; or Braak stage III and CERAD score moderate or frequent. 159 

Using our criteria (Fig. 1c), we categorized our preliminary cohort into 1,072 AD+LB+, 2,495 AD+LB–, 160 

158 AD–LB+, and 1,263 AD–LB– individuals; these 4,985 individuals formed our study cohort (Table 161 

1). Overall, the set of four phenotypes was better represented in our study than in previous studies 162 

(Suppl. Table 1), which stratified subjects less completely or had fewer individuals in total (Tsuang 163 

et al.). 164 

Genome-wide analysis 165 

We performed a meta-analysis of separate GWAS in the NACC and Rush subsets of our cohort for each 166 

of AD+LB+, AD+LB–, and AD–LB+ pathology compared to AD–LB– pathology, as well as for AD+LB+ versus 167 

AD+LB– pathology. We used PLINK 2.0 for logistic regression and included sex, age-at-death, and the 168 

top ten principal components accounting for genetic ancestry as covariates [11]. We removed 169 

duplicates and first-degree relatives within and between genomic datasets using KING [37]. In each 170 

pair of relatives, the relative with younger age at death was preferentially kept or the oldest control 171 

in the absence of pathology cases. We filtered out genetic variants that had a minor allele frequency 172 

below 0.01, departed from Hardy-Weinberg equilibrium with a significance below P < 10−5, or had a 173 

missingness rate above 20%. We imputed data on the TOPMed reference panel as described in [33] 174 

and considered variants with R2 > 0.8. We meta-analyzed the separate NACC and Rush GWAS using 175 

the inverse variance weighted method in METAL [55]. Manhattan plots from summary statistics were 176 

produced using the R package CMplot [56]. The significance threshold was set at P < 5 × 10−8, the 177 

standard threshold for genome-wide significance. We estimated the association of APOE-ε4 with risk 178 

of AD+LB+, AD+LB–, and AD–LB+ pathology relative to AD–LB– pathology, and the association with risk 179 
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of AD+LB+ pathology relative to AD+LB– pathology, in terms of odds ratio (OR). We also estimated the 180 

association of APOE-ε2. We compared our estimates to those in the literature [52, 28, 13, 2, 10, 14, 181 

18, 46, 48] and when relevant we computed measures of linkage disequilibrium between variants in 182 

European ancestry populations using LDlink [35]. We examined loci besides APOE that led to 183 

genome-wide significant signals. We explored lead variant annotation at significant loci using 184 

gnomAD [45]. Finally, we surveyed AD and PD risk loci reported in large clinical case-control GWAS 185 

[3, 12, 40] and report the ones associated with pathology at the nominal significance level (P < 0.05) 186 

in our study.187 
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Results 188 

We observed that APOE-ε4 (rs429358) was associated with risk of AD+LB+ pathology versus AD–LB– 189 

pathology (OR = 4.24, 95% CI = 3.52–5.10, P = 1.5 × 10−52) and risk of AD+LB– pathology versus AD–190 

LB– pathology (OR = 4.22, 95% CI = 3.60–4.96, P = 1.4 × 10−69) (Fig. 2a–b; Table 4). We did not 191 

observe an association of APOE-ε4 with the risk of AD–LB+ pathology versus AD–LB– pathology (OR = 192 

0.93, 95% CI = 0.60–1.43, P = 0.73) or risk of AD+LB+ pathology versus AD+LB– pathology (OR = 1.01, 193 

95% CI = 0.90–1.13, P = 0.83) (Fig. 2c–d; Table 4). Another gene locus that yielded significant 194 

associations was BIN1. Like APOE-ε4, we observed that rs4663105 on the BIN1 locus was associated 195 

with risk of AD+LB– pathology compared to AD–LB– pathology (OR = 1.40, 95% CI = 1.26–1.56, P = 6.5 196 

× 10−10) and risk of AD+LB+ pathology compared to AD–LB– pathology (OR = 1.53, 95% CI = 1.35–1.75, 197 

P = 1.4 × 10−10) (Fig. 2a–b; Table 5). rs4663105 was not observed to be associated with risk of AD–198 

LB+ pathology versus AD–LB– pathology (OR = 1.10, 95% CI = 0.85–1.41, P = 0.48) or risk of AD+LB+ 199 

pathology versus AD+LB– pathology (OR = 1.13, 95% CI = 1.02–1.25, P = 0.019) at the genome-wide 200 

significance level (Fig. 2c–d; Table 5).  When using pathological criteria from Tsuang et al. (2013) 201 

(Fig. 1a), effect estimates for APOE-ε4 differed considerably from those reported in the original 202 

study, particularly so for the effect on AD–LB+ vs. AD–LB– (Table 4). On the contrary, there was fair 203 

agreement when using pathological criteria from Kaivola et al. (2022) (Fig. 1b; Table 4). APOE-ε2 204 

showed similar results to APOE-ε4, except with the opposite direction of effect in the GWAS where 205 

APOE-ε4 exhibited an association (Suppl. Table 3). Overall, we observed an enrichment among the 206 

79 variants listed in the clinical AD GWAS (Bellenguez et al. (2022)) and tested in our analyses; we 207 

observed an enrichment of nominally significant associations with concordant direction of effect: 208 

20.3% variants (16/79) in the AD+LB– vs. AD–LB– contrast and 24.1% (19/79) in the AD+LB+ vs. AD–209 

LB– (with the chance level being at 2.5%). In contrast, we did not observe a significant enrichment 210 

for the 76 variants identified in PD clinical GWAS Chang et al. (2017) and Nalls et al. (2019): 2.6% 211 

(2/76) in the AD+LB+ vs. AD–LB– contrast, 3.9% (3/76) in the AD–LB+ vs. AD–LB– contrast, and 2.6% 212 

(2/76) in the AD+LB+ vs. AD+LB– contrast. Among known AD risk loci besides BIN1 and APOE reported 213 

by Bellenguez et al. (2022), ADAM17 (rs72777026), COX7C (rs62374257), HLA (rs6605556), TREM2 214 

(rs143332484), HS3ST5 (rs785129), SEC61G (rs76928645), CLU (rs11787077), ECHDC3 215 

(rs7912495), TPCN1 (rs6489896), FERMT2 (rs17125924), DOC2A (rs1140239), PRDM7 216 

(rs56407236), ABI3 (rs616338), ABCA7 (rs12151021), and SIGLEC11 (rs9304690) were concordant 217 

and nominally associated with AD+LB+ versus AD–LB–; and CR1 (rs679515), ADAM17 (rs72777026), 218 

INPP5D (rs10933431), CLNK/HS3ST1 (rs6846529), ANKH (rs112403360), COX7C (rs62374257), 219 

HLA (rs6605556), TREM2 (rs143332484),  ZCWPW1/NYAP1 (rs7384878), PTK2B (rs73223431), 220 
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CLU (rs11787077), ECHDC3 (rs7912495), PICALM (rs3851179), SORL1 (rs11218343), FERMT2 221 

(rs17125924), APH1B (rs117618017), MAF (rs450674), and ABCA7 (rs12151021) were concordant 222 

and nominally associated with AD+LB– pathology versus AD–LB– (Table 6; Suppl. Table 5). Among 223 

known PD risk loci reported by Chang et al. (2017) and Nalls et al. (2019), SCN3A (rs353116) and 224 

HLA-DRB6/HLA-DQA1 (rs9275326) were concordant and nominally associated with AD+LB+ versus 225 

AD–LB–; TMEM175/DGKQ (rs34311866), FAM200B/CD38 (rs11724635), and SNCA (rs356182) were 226 

concordant and nominally associated with AD–LB+ versus AD–LB–; and GBA (rs35749011) and 227 

TMEM175/DGKQ (rs34311866) were concordant and nominally associated with AD+LB+ versus 228 

AD+LB– (Table 6; Suppl. Table 5). Notably, the TPCN1 locus, reported to be associated with LB 229 

dementia by Kaivola et al. (2023), was associated with AD+LB+ pathology and AD+LB– pathology 230 

versus AD–LB– pathology below or near the nominal significance level, but not so with AD–LB+ 231 

pathology versus AD–LB– pathology or AD+LB+ pathology versus AD+LB– pathology.232 
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Discussion 233 

Our study emphasizes that APOE-ε4 is associated with the risk of both AD+LB– pathology (OR = 4.22, 234 

P = 1.4 × 10−69) and AD+LB+ co-pathology (OR = 4.24, P = 1.5 × 10−52) compared to AD–LB– pathology. 235 

These OR estimates were lower than the estimates in Tsuang et al. for APOE-ε4-associated risk of 236 

AD+LB– pathology (OR = 12.6, P = 2.1 × 10−28) and AD+LB+ co-pathology (OR = 9.9, P = 1.2 × 10−24) 237 

(Table 4) [52]. Tsuang et al. appear to have overestimated the true effect size of APOE-ε4 in their 238 

positive pathology subjects, possibly due to the smaller size of their cohort [52] (N = 640 versus N = 239 

4,985 in the current study) (Table 3). Our estimate of APOE-ε4-associated risk for AD+LB+ pathology 240 

is in line with the estimate in Kaivola et al., the next largest study of pathologically assessed 241 

individuals (OR = 4.25, P = 1.29 × 10−32) [28]. Our data substantiate that APOE-ε4 is a driver of AD 242 

pathology. Notably, we estimated a similar effect size of APOE-ε4 on the risk of AD+LB– pathology (OR 243 

= 4.22) and on the risk of AD+LB+ co-pathology (OR = 4.24) versus AD–LB– pathology, suggesting that 244 

APOE-ε4 does not have a specific effect on the development of LB pathology in individuals with AD 245 

pathology. Consistent with this finding, we did not observe APOE-ε4 to be associated with the risk of 246 

AD+LB+ co-pathology compared to sole AD+LB– pathology (OR = 1.01, P = 0.83). 247 

This finding contradicts the results presented by Chung et al. (2015), where APOE-ε4 was found to 248 

be associated with AD+LB+ co-pathology when compared to sole AD+LB– pathology (P = 0.03) [14]. 249 

However, their AD+LB+ group was five times smaller than ours (N = 215 versus N = 1,072), and the 250 

AD+LB– group was eight times smaller (N = 316 versus N = 2,492). Our result is consistent with the 251 

finding in Robinson et al. (2018) that APOE-ε4 is not associated with the co-occurrence of AD 252 

pathology with other pathologies (OR = 0.71, P = 0.64 for intermediate AD pathology; and OR = 0.93, 253 

P = 0.83 for high AD pathology) [46]. Our result is also consistent with the finding in Dickson et al. 254 

(2018) that APOE-ε4 is not associated with higher Lewy body count in individuals with moderate AD 255 

pathology (P ≥ 0.30 for all regions) or high AD pathology (P ≥ 0.069 for all regions) [18]. Taken 256 

together, APOE-ε4 appears similarly prevalent in AD pathology cases with or without LB pathology. 257 

Furthermore, we did not find APOE-ε4 to be associated with risk for sole LB pathology (AD–LB+) 258 

pathology (OR = 0.93, P = 0.73) compared to no pathology (AD–LB–). This is in contradiction with [52] 259 

where APOE-ε4 was strongly associated with risk for AD–LB+ pathology (OR = 6.1, P = 1.3 × 10−10). 260 

This discrepancy could be because Tsuang et al. used a more stringent definition of AD pathology 261 

(Fig. 1a), leaving open the possibility that individuals whom we would have classified as AD+LB+ with 262 

our criteria were instead classified as AD–LB+. Indeed, when we categorized our initial pathologically 263 

evaluated cohort using the exact same criteria as in [52], testing the association of APOE-ε4 with risk 264 

of AD–LB+ pathology yielded a modestly higher OR and nominal significance (OR = 1.46, P = 5.5 × 265 
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10−3) (Table 4). The main difference between our criteria and those of Tsuang et al. is that we lower 266 

the threshold for AD pathology to Braak stage III NFTs plus sparse neuritic plaques in LB+ individuals, 267 

suggesting that LB pathology commonly occurs in APOE-ε4 carriers with potential early-stage AD but 268 

not in firmly non-AD APOE-ε4 carriers. Knowing the breakdown of the APOE-ε4-positive subjects in 269 

[52] by Braak stage and CERAD score would establish further support for this interpretation.  270 

Dickson et al. also found an association of APOE-ε4 with the risk of diffuse LB pathology and low AD 271 

pathology (OR = 3.46, P = 0.001) while classifying individuals with Braak stage III NFTs and Thal 272 

phase 0, 1, or 2 amyloid-β non-neuritic plaques as having low AD pathology [18]. In this AD–LB+ 273 

group, the median Braak stage was III and the median Thal phase was 1. We would have classified 274 

this subset as AD+LB+. A Thal phase of 1 tends to correspond to a CERAD score of sparse neuritic 275 

plaques or higher [7]. Therefore, many individuals in this AD–LB+ group in [18] had a Braak stage of 276 

III and at least sparse neuritic plaques; this subset was likely the source of the elevated frequency of 277 

APOE-ε4 in the group. We would have classified this subset as AD+LB+ instead. It should be noted that 278 

this AD–LB+ group in Dickson et al. was smaller than ours (N = 54 versus N = 158) and the controls 279 

were not pathologically confirmed. Another cause of the discrepancy between our result that APOE-280 

ε4 was not associated with the risk of AD–LB+ pathology and Tsuang et al.’s finding that APOE-ε4 281 

increased risk for LB pathology may have been that the pathologically confirmed AD–LB– group in 282 

[52] was more than four times smaller than ours (N = 269 versus N = 1,263). Remarkably, the 283 

frequency of APOE-ε4 was 31.9% in the AD–LB+ group [52], which was far higher than in our AD–LB+ 284 

group (8.9%). Our result was consistent with the finding in Dickson et al. that APOE-ε4 was not 285 

associated with the risk of the AD–LB+ phenotype of transitional (limbic) LB pathology and low AD 286 

pathology (OR = 0.73, P = 0.31) [18].  287 

In a larger study than [52] of pathologically confirmed LB dementia cases and mixed pathologic and 288 

clinical controls, Chia et al. found that APOE-ε4 was associated with risk of LB dementia: OR = 2.45 289 

with P = 4.65 × 10−63 for rs769449, which is in linkage disequilibrium with APOE-ε4 with R2 = 0.766 290 

[13]. However, this could have been because Chia et al. did not categorize individuals by AD pathology 291 

status, and many AD+LB+ individuals were inevitably included in the LB+ case group. When Kaivola et 292 

al. studied the cohort in Chia et al. using more precise pathological categorization, APOE-ε4 was not 293 

observed to have a significant effect on risk for AD–LB+ pathology (OR = 0.75, P = 0.31) [28]. 294 

Associations of APOE-ε4 with risk of LB pathology (OR = 1.63, P = 2.8 × 10−11) and LB dementia (OR 295 

= 2.71, P = 7.1 × 10−35; OR = 2.40, P = 1.05 × 10−48; and OR = 2.94, P = 6.6 × 10−20) reported in Beecham 296 

et al. (2014), Bras et al. (2014), Guerreiro et al. (2018), and Sabir et al. (2019), respectively, could 297 

similarly have been because these studies did not exclude AD+LB+ individuals from their LB+ case 298 
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groups [2, 10, 24, 48]. Our finding was also consistent with the result in Robinson et al. that APOE-ε4 299 

was associated with the co-occurrence of cortical LB pathology with other pathologies, including AD 300 

pathology, versus sole cortical LB pathology (OR = 9.32, P = 0.003) [46]. The latter result would imply 301 

that APOE-ε4 was rarer in the AD–LB+ individuals in [46] than in LB+ individuals with advanced LB 302 

pathology. Presumably, because 80% of LB+ individuals also had AD pathology, the prevalence of 303 

APOE-ε4 in LB+ individuals was most likely unrelated to the presence of LB pathology.   304 

The balance of evidence thus suggests that APOE-ε4 does not affect risk for AD–LB+ pathology when 305 

strictly defined to exclude possible early-stage AD. Subjects with LB pathology and no AD pathology 306 

have been rare, and more are needed to substantiate this conclusion. This concept does not oppose 307 

the observations in Dickson et al. and Zhao et al. (2020) that APOE-ε4 was associated with higher LB 308 

counts in AD–LB+ subjects, as neither analysis compared cases to controls without pathology [18, 57]. 309 

Similarly compatible is the observation in Goldberg et al. (2020) that APOE-ε4 was associated with 310 

further propagated Lewy bodies; although Goldberg et al. adjusted for AD pathology level, their 311 

analysis did not specifically compare LB+ to LB– subjects [23]. It is conceivable that APOE-ε4 worsens 312 

LB pathology but does not influence its actual emergence in individuals without AD pathology. 313 

Overall, our data suggest APOE-ε4 is most likely not involved in the emergence of LB pathology in the 314 

absence or presence of AD pathology. This interpretation is further supported by the lack of an effect 315 

of APOE-ε4 in the largest GWAS of clinically defined PD (OR = 1.02, P = 0.49) [40]. 316 

A second gene locus that yielded significant associations was BIN1. As for APOE-ε4, the BIN1 lead 317 

variant was associated with the risk of sole AD (AD+LB–) and AD+LB+ co-pathology, but not sole LB 318 

(AD–LB+) when compared to no pathology (AD–LB–). BIN1 was also not associated with the risk of 319 

AD+LB+ co-pathology when compared to sole AD pathology (AD+LB–) pathology. These results further 320 

corroborate that BIN1 is also a driver of AD pathology. In the largest previous GWAS of LB pathology, 321 

Chia et al. found that BIN1 is a risk locus for pathologically confirmed LB dementia (OR = 1.25, P = 322 

4.16 × 10−9 for rs6733839, in linkage disequilibrium with rs4663105 with R2 = 0.8968) [13]. 323 

However, when gathering individuals, Chia et al. did not select against AD pathology, which was 324 

presumably far more prevalent in the LB+ case group than in the control group. Given that we do not 325 

observe an association of rs4663105 with risk for AD–LB+ pathology, the BIN1 association reported 326 

in [13] may have been driven by the AD+LB+ subgroup within the LB+ group. However, our findings 327 

are limited by the size of our AD–LB+ group (N = 158); the lower statistical power of the AD–LB+ 328 

pathology versus AD–LB– pathology GWAS was likely also the reason that known synucleinopathy 329 

risk loci like GBA and SNCA did not yield genome-wide significant associations in this analysis. 330 

Altogether, the current balance of evidence suggests that variants on the BIN1 locus behave like 331 
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APOE-ε4: pathogenic BIN1 variants increase the overall risk of LB pathology simply by increasing the 332 

risk of AD pathology (which is frequently accompanied by LB pathology), but they do not affect the 333 

risk of AD–LB+ pathology or the risk of co-pathology (AD+LB+) among AD+ individuals. It is worth 334 

mentioning that the effect of BIN1 on the risk of AD pathology may be lifestyle-dependent, as we did 335 

not observe any association of BIN1 with pathology in the subset of Rush individuals alone (Suppl. 336 

Fig. 2; Suppl. Table 4). The monastic life of these subjects likely militates against disease. 337 

Future studies should continue the effort of determining the risk loci for AD pathology, LB pathology, 338 

or AD-LB co-pathology using pathologically well-categorized and clinically unbiased cohorts. It may 339 

be worth focusing on comparing AD+LB+ to AD+LB– groups to identify LB pathology risk loci because 340 

the sample size of either phenotype is larger than AD–LB+. Further study of the AD+LB+ versus AD+LB– 341 

and AD–LB+ versus AD–LB– contrasts may also reveal possible differences between genetic risk factors 342 

underlying LB pathology in the presence or absence of AD pathology; we propose a hypothetical 343 

genetic model in Suppl. Fig. 3.  344 

 345 

Conclusion 346 

In conclusion, our set of GWAS meta-analyses indicates that while APOE-ε4 is a risk factor for AD 347 

pathology and increases risk of AD-LB co-pathology, it is not a risk factor for LB pathology 348 

independent of AD pathology or along with AD pathology. This is also true of variants on the BIN1 349 

locus; therefore, neither APOE-ε4 nor BIN1 variants appear to play a specific mechanistic role in the 350 

emergence of LB pathology. We provide GWAS meta-analysis summary statistics that will enable 351 

more reliable, pathologically precise polygenic risk score calculations for AD, LB dementia, and 352 

related disorders. Ultimately, we shed light on the genetic bases of AD and LB pathology, which will 353 

be useful for further unraveling the etiology of these debilitating pathologies and developing accurate 354 

and effective interventions.  355 
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 556 
 557 
Figure 1. Schemes used to classify individuals. a. Criteria from Tsuang et al. (2013) [52]. b. Criteria 558 
from Kaivola et al. (2022) [28]. c. Criteria in the present study. 559 
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 560 
Figure 2. Manhattan plots of genetic association with pathology contrasts. a. Association with 561 

AD+LB+ pathology versus AD–LB– pathology. b. Association with AD+LB– pathology versus AD–LB– 562 

pathology. c. Association with AD–LB+ pathology versus AD–LB– pathology. d. Association with 563 

AD+LB+ pathology versus AD+LB– pathology. Variants at two novel loci exhibited genome-wide 564 

significant associations in the AD–LB+ versus AD–LB– analysis (rs112017605 on both an intron of 565 

AC024598.1 and an intron of AC067752.1 on chromosome 10 and rs116691607 on an intron of BLMH 566 

on chromosome 17) (c; Suppl. Table 2), but we do not discuss these candidates in the main text 567 

because neither was flanked by a set of nearby variants in linkage disequilibrium, raising concern 568 

that these could be spurious signals. 569 
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Table 1 Demographics from participants included in the current study, pathologically 570 

evaluated in the National Alzheimer’s Coordinating Center (NACC) or Rush University Medical 571 

Center databases. AD+LB+ corresponds to AD-LB co-pathology individuals, AD+LB– corresponds to 572 

sole AD pathology individuals, AD–LB+ corresponds to sole LB pathology individuals, and AD–LB– 573 

corresponds to individuals with neither pathology. AAD is age-at-death, reported as mean ± standard 574 

deviation. 575 

 576 

 Overall NACC Rush 

 N N female AAD N N female AAD N N female AAD 

AD+LB+ 1,072 544 (51%) 82.9 ± 9.3 851 395 (46%) 80.8 ± 8.9 221 149 (67%) 91.0 ± 5.8 

AD+LB–  2,492 1,435 (58%) 83.5 ± 9.4 1,973 1,055 (53%) 81.5 ± 9.2 519 380 (73%) 91.1 ± 5.7 

AD–LB+ 158 76 (48%) 86.6 ± 8.1 84 34 (40%) 85.4 ± 8.9 74 42 (57%) 88.0 ± 6.8 

AD–LB– 1,263 706 (56%) 87.3 ± 8.1 724 376 (52%) 86.8 ± 8.8 539 330 (61%) 87.9 ± 7.1 

  577 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 20, 2023. ; https://doi.org/10.1101/2023.04.21.23288938doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.21.23288938
http://creativecommons.org/licenses/by-nc/4.0/


 23 

Table 2. APOE-ε4 allele frequency by pathology category. The second and third columns indicate 578 
the frequency of APOE-ε4 among the NACC or Rush individuals in each category. Frequencies are 579 
reported as count of APOE-ε4 alleles out of total allele count. 580 
 581 

 Overall NACC Rush 

AD+LB+ 744/2,144 (34.7%) 662/1,702 (38.9%) 82/442 (18.6%) 

AD+LB– 1,685/4,984 (33.8%) 1,492/3,946 (37.8%) 193/1,038 (18.6%) 

AD–LB+ 28/316 (8.9%) 20/168 (11.9%) 8/148 (5.4%) 

AD–LB– 249/2,526 (9.9%) 166/1,448 (11.5%) 83/1,078 (7.7%) 

  582 
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Table 3. Number of individuals in pathology categories across analyses. Not all classifications 583 

were necessarily pathologically confirmed (Suppl. Table 1). First column: our study cohort. Next 584 

two columns: our preliminary cohort (before the removal of individuals not classified by our criteria) 585 

classified using literature criteria (Fig. 1a–b) [52, 28]. Remaining columns: category sizes in 586 

literature cohorts [52, 28, 13, 2, 10, 14, 18, 24, 46, 48]. For Beecham et al., Robinson et al., and Sabir 587 

et al., only analyses of APOE-ε4-associated risk for LB pathology or dementia are considered [2, 46, 588 

48]. For Guerreiro et al., we describe the larger discovery cohort [24]. 589 

 590 

  
Current 

sample 

Initial sample × 

Tsuang et al. 

(2013) criteria 

Initial sample × 

Kaivola et al. 

(2022) criteria 

Tsuang 

et al. 

(2013) 

Kaivola 

et al. 

(2022) 

Chia  

et al. 

(2021) 

AD+LB+  1,072 916 695 224 66/341a ? 

AD+LB–  2,492 2,492 3,493 244 0 0 

AD–LB+  158 316 158 91 88 ? 

AD–LB–  1,263 1,358 908 269 2,928 4,027 

LB+ b  N/A N/A N/A N/A N/A 2,591 

LB– b  N/A N/A N/A N/A N/A N/A 

 591 

 

Beecham 

et al. 

(2014) 

Bras  

et al. 

(2014) 

Chung 

et al. 

(2015) 

Dickson  

et al.  

(2018) 

Guerreiro 

et al. 

(2018) 

Robinson 

et al. 

(2018) 

Sabir  

et al. 

(2019) 

AD+LB+ ? ? 215 
10/27/115/19/

111/209a 
? 130/96a,c ? 

AD+LB– ? 0 316 0 0 16/60a 0 

AD–LB+ ? ? 0 46/80/33a ? 10/12/22a ? 

AD–LB– ? 2,624 0 660 3,791 0 591 

LB+ b 2,391 667 N/A N/A 1,216 N/A 525 

LB– b 1,135 N/A N/A N/A N/A N/A N/A 

 592 
aIn Dickson et al., the AD+LB+ individuals were subdivided into individuals with moderate or high 593 
AD pathology and brainstem, transitional, or diffuse LB pathology; the subgroup sizes are listed 594 
in the order moderate-brainstem, moderate-transitional, et cetera [18]. In Robinson et al., the 595 
AD+LB+ individuals were subdivided into individuals with primary intermediate or high AD 596 
pathology and secondary LB pathology and individuals with primary brainstem, limbic, or 597 
neocortical LB pathology [46]. In Kaivola et al., the AD+LB+ individuals were subdivided into 598 
individuals with intermediate or high AD pathology [28]. A separate analysis was performed on 599 
each subgroup in each of these three studies. bThese rows are populated only if an analysis was 600 
performed on an LB– or LB+ group. In this case the sizes of the corresponding subgroups are 601 
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marked as unknown (e.g., AD+LB+ and AD–LB+ if LB+ is known). cThe six subgroups of this 602 
category were consolidated into two subgroups analyzed separately for association of APOE-ε4 603 
with AD co-pathology versus sole intermediate or high AD pathology or LB co-pathology versus 604 
sole brainstem, limbic, or neocortical LB pathology: 130 individuals with primary AD pathology 605 
and secondary LB pathology and 96 with primary LB pathology and secondary AD pathology, 606 
respectively [46].  607 
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Table 4. Association of APOE-ε4 (rs429358) with different pathology contrasts. The first 608 

column corresponds to the current study, while the following two columns correspond to results 609 

obtained using the current sample using literature criteria to classify participants into pathology 610 

groups (Fig. 1a–b) [52, 28]. The other columns correspond to results reported in the literature [52, 611 

28, 13, 2, 10, 14, 18, 24, 46, 48]. Effect sizes are reported as OR with 95% confidence interval [CI] and 612 

significance (P-value). 613 
 614 

 
Current 

sample 

Initial sample × 

Tsuang et al. 

(2013) criteria 

Initial sample × 

Kaivola et al. 

(2022) criteria 

Reported by 

Tsuang et al. 

(2013) 

Reported by 

Kaivola et al. 

(2022) 

Reported by 

Chia et al. 

(2021) 

AD+LB+ vs.  

AD–LB– 

4.24 [3.52 5.10] 

(1.49e-52) 

3.86 [3.23 4.63] 

(5.10e-49) 

5.02 [3.97 6.35] 

(2.21e-41) 

12.6 [8.1 19.8] 

(2.1e-28) 

2.31 [1.40 3.83] 

(1.1e-03) 

4.25 [3.35 4.39] 

(1.29e-32) 

 

N/A 

AD+LB– vs.  

AD–LB– 

4.22 [3.60 4.96] 

(1.41e-69) 

3.55 [3.07 4.12] 

(3.27e-64) 

4.66 [3.87 5.60] 

(3.90e-60) 

9.9 [6.4 15.3] 

(1.2e-24) 
N/A N/A 

AD–LB+ vs.  

AD–LB– 

0.93 [0.60 1.43] 

(7.34e-01) 

1.46 [1.12 1.90] 

(5.47e-03) 

1.17 [0.74 1.84] 

(4.95e-01) 

6.1 [3.5 10.5] 

(1.3e-10) 

0.75 [0.43 1.30] 

(3.1e-01) 
N/A 

AD+LB+ vs. 

AD+LB– 

1.01 [0.90 1.13] 

(8.33e-01) 

1.09 [0.97 1.22] 

(1.66e-01) 

1.00 [0.88 1.14] 

(9.93e-01) 
N/A N/A N/A 

LB+ vs.       

AD–LB– 
N/A N/A N/A N/A N/A 

2.45 [2.22 2.74] 

(4.65e-63) 

LB+ vs.  

LB– 
N/A N/A N/A N/A N/A N/A 

LB+ vs.       

AD–LB+ 
N/A N/A N/A N/A N/A N/A 

AD+ vs.       

AD+LB– 
N/A N/A N/A N/A N/A N/A 

 615 

  616 
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Reported by 

Beecham  

et al.  

(2015) 

Reported by 

Bras et al. 

(2014) (at 

rs769449)b 

Reported 

by Chung 

et al. 

(2015) 

Reported by 

Dickson  

et al.  

(2018) 

Reported by 

Guerreiro  

et al.  

(2018) 

Reported by 

Robinson  

et al.  

(2018) 

Reported 

by Sabir et 

al. (2019) 

AD+LB+ vs. 

AD–LB– 
N/A N/A N/A 

1.88 [0.37 9.49] 

(4.5e-01) 

3.42 [1.48 7.92] 

(4e-03) 

3.74 [2.34 5.97] 

(4e-08) 

9.37 [2.90 30.24] 

(2e-04) 

5.58 [3.38 9.20] 

(2e-11) 

6.96 [4.70 10.29] 

(3e-22) 

N/A N/A N/A 

AD+LB– vs. 

AD–LB– 
N/A N/A N/A N/A N/A N/A N/A 

AD–LB+ vs. 

AD–LB– 
N/A N/A N/A 

0.30 [0.10 0.87] 

(2.7e-02) 

0.73 [0.40 1.34] 

(0.31) 

3.46 [1.66 7.22] 

(1e-03) 

N/A N/A N/A 

AD+LB+ vs. 

AD+LB– 
N/A N/A (3e-02) N/A N/A N/A N/A 

LB+ vs.  

AD–LB– 
N/A 

2.711 [2.313 

3.177]  

(7.09e-35) 

N/A N/A 

2.40 [2.14 

2.70]  

(1.05e-48) 

N/A 

2.94 [2.34 

3.71] 

(6.6e-20) 

 LB+ vs.  

LB– 

1.63 [1.52 

1.76]  

(2.8e-11) 

N/A N/A N/A N/A N/A N/A 

LB+ vs.  

AD–LB+ 
N/A N/A N/A N/A N/A 

2.25 [0.25 19.90] 

(4.66e-01) 

8.69 [0.70 107.39] 

(9.2e-01) 

9.32 [2.12 40.95] 

(3e-03) 

N/A 

AD+ vs. 

AD+LB– 
N/A N/A N/A N/A N/A 

0.71 [0.17 2.95] 

(6.4e-01) 

0.93 [0.48 1.82] 

(8.3e-01) 

N/A 

aIn Kaivola et al., Dickson et al., and Robinson et al., analyses were performed on separate 617 
subgroups [28, 18, 46]. The order of the results is the same as the order in which the 618 
corresponding subgroups were listed in Suppl. Table 1. bAPOE-ε4 and rs769449 reported in [13] 619 
and [10] are in linkage disequilibrium (R2 = 0.766).  620 
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Table 5. Association of rs4663105 on the BIN1 locus with different pathology contrasts. The 621 

first column corresponds to the current study, while the following two columns correspond to results 622 

obtained using the current sample using literature criteria to classify participants into pathology 623 

groups (Fig. 1a–b) [52, 28]. The last column corresponds to a result reported in the literature [13]. 624 

Effect sizes are reported as OR with 95% confidence interval [CI] and significance (P-value). 625 

 626 

 Current study  

Initial sample × 

Tsuang et al. 

(2013) criteria 

Initial sample × 

Kaivola et al. 

(2022) criteria 

Reported by Chia 

et al. (2021)  

(at rs6733839)a 

AD+LB+ vs. 

AD–LB– 

1.53 [1.35 1.75] 

(1.35e-10) 

1.55 [1.35 1.77] 

(2.19e-10) 

1.56 [1.33 1.82] 

(1.99e-08) 
N/A 

AD+LB– vs. 

AD–LB– 

1.40 [1.26 1.56] 

(6.51e-10) 

1.36 [1.23 1.51] 

(4.45e-09) 

1.36 [1.22 1.52] 

(6.32e-08) 
N/A 

AD–LB+ vs. 

AD–LB– 

1.10 [0.85 1.41] 

(4.76e-01) 

1.20 [1.00 1.44] 

(4.81e-02) 

1.11 [0.86 1.43] 

(4.18e-01) 
N/A 

AD+LB+ vs. 

AD+LB– 

1.13 [1.02 1.25] 

(1.91e-02) 

1.14 [1.03 1.28] 

(1.57e-02) 

1.20 [1.07 1.35] 

(2.10e-03) 
N/A 

LB+ vs.       

AD–LB– 
N/A N/A N/A 

1.25 [1.16 1.35] 

(4.16e-09) 

ars4663105 and rs6733839 reported in [13] are in linkage disequilibrium (R2 = 0.8968).  627 
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Table 6. Known Alzheimer’s disease risk loci reported in Bellenguez et al. (2022) and known 628 

Parkinson’s disease risk loci reported in Chang et al. (2017) and Nalls et al. (2019) which are 629 

associated with the corresponding pathology contrasts at the nominal significance level (P < 630 

0.05) [3, 12, 40]. For AD risk loci, associations with AD+LB+ vs. AD–LB– or AD+LB– vs. AD–LB– are 631 

shown. For PD risk loci, associations with AD+LB+ vs. AD–LB–, AD–LB+ vs. AD–LB–, or AD+LB+ vs. AD+LB– 632 

are shown. Chr:Pos:Minor:Major is chromosome, position (genome build hg38, GRCh38), and minor 633 

allele and major allele in our study. Lit. effect is the effect size reported in the literature. MAF is the 634 

minor allele frequency in our study. Loci with results discordant in terms of direction of effect are 635 

colored orange. 636 

 637 

Variant Chr:Pos:Minor:Major Locus Lit. effect Study MAF GWAS Effect 

rs35749011 1:155162560:A:G GBA 
1.72 [1.59 1.89] 

(2.59e-35) 
Chang et al. 

(2017) 
1.3% 

AD+LB+ vs.  
AD+LB– 

1.94 [1.24 3.06] 
(4.04e-03) 

rs679515 1:207577223:T:C CR1 
1.13 [1.11 1.15] 

(7.20e-46) 
Bellenguez et al. 

(2022) 
20.2% 

AD+LB– vs.  
AD–LB– 

1.19 [1.04 1.36] 
(9.99e-03) 

rs72777026 2:9558882:G:A ADAM17 
1.06 [1.04 1.08] 

(2.70e-08) 
Bellenguez et al. 

(2022) 
14.2% 

AD+LB+ vs.  
AD–LB– 

1.30 [1.09 1.56] 
(3.92e-03) 

rs72777026 2:9558882:G:A ADAM17 
1.06 [1.04 1.08] 

(2.70e-08) 
Bellenguez et al. 

(2022) 
14.2% 

AD+LB– vs.  
AD–LB– 

1.17 [1.01 1.37] 
(4.19e-02) 

rs6733839 2:127135234:T:C BIN1 
1.17 [1.16 1.19] 

(6.10e-118) 
Bellenguez et al. 

(2022) 
41.9% 

AD+LB+ vs.  
AD–LB– 

1.52 [1.34 1.74] 
(4.60e-10) 

rs6733839 2:127135234:T:C BIN1 
1.17 [1.16 1.19] 

(6.10e-118) 
Bellenguez et al. 

(2022) 
41.9% 

AD+LB– vs.  
AD–LB– 

1.43 [1.29 1.60] 
(7.49e-11) 

rs353116 2:165277122:T:C SCN3A 
0.94 [0.92 0.96] 

(2.98e-08) 
Chang et al. 

(2017) 
38.7% 

AD+LB+ vs.  
AD–LB– 

0.85 [0.74 0.96] 
(1.14e-02) 

rs10933431 2:233117202:G:C INPP5D 
0.93 [0.92 0.95] 

(3.60e-18) 
Bellenguez et al. 

(2022) 
21.8% 

AD+LB– vs.  
AD–LB– 

0.79 [0.70 0.90] 
(3.09e-04) 

rs34311866 4:958159:C:T 
TMEM175/ 

DGKQ 
1.23 [1.20 1.27] 

(1.47e-50) 
Chang et al. 

(2017) 
19.1% 

AD–LB+ vs. 
AD–LB– 

1.33 [1.01 1.75] 
(4.29e-02) 

rs34311866 4:958159:C:T 
TMEM175/ 

DGKQ 
1.23 [1.20 1.27] 

(1.47e-50) 
Chang et al. 

(2017) 
19.1% 

AD+LB+ vs.  
AD+LB– 

1.22 [1.07 1.38] 
(2.83e-03) 

rs6846529 4:11023507:C:T 
CLNK/ 

HS3ST1 
1.07 [1.05 1.08] 

(2.20e-17) 
Bellenguez et al. 

(2022) 
28.0% 

AD+LB– vs.  
AD–LB– 

1.15 [1.02 1.29] 
(2.12e-02) 

rs11724635 4:15735478:C:A 
FAM200B/ 

CD38 
0.90 [0.88 0.92] 

(1.22e-19) 
Chang et al. 

(2017) 
45.3% 

AD–LB+ vs. 
AD–LB– 

0.71 [0.55 0.92] 
(9.03e-03) 

rs356182 4:89704960:G:A SNCA 
0.75 [0.74 0.77] 

(5.21e-123) 

Chang et al. 

(2017) 
34.9% 

AD–LB+ vs. 

AD–LB– 

0.74 [0.57 0.97] 

(2.60e-02) 

rs11240336
0 

5:14724304:A:T ANKH 
1.09 [1.06 1.12] 

(2.30e-09) 
Bellenguez et al. 

(2022) 
7.4% 

AD+LB– vs.  
AD–LB– 

1.30 [1.06 1.59] 
(1.13e-02) 

rs62374257 5:86927378:C:T COX7C 
1.07 [1.05 1.09] 

(1.40e-15) 
Bellenguez et al. 

(2022) 
22.8% 

AD+LB+ vs.  
AD–LB– 

1.21 [1.04 1.41] 
(1.63e-02) 

rs62374257 5:86927378:C:T COX7C 
1.07 [1.05 1.09] 

(1.40e-15) 
Bellenguez et al. 

(2022) 
22.8% 

AD+LB– vs.  
AD–LB– 

1.26 [1.11 1.43] 
(3.83e-04) 

rs6605556 6:32615322:G:A HLA 
0.91 [0.90 0.93] 

(7.10e-20) 

Bellenguez et al. 

(2022) 
16.0% 

AD+LB+ vs.  

AD–LB– 

0.81 [0.69 0.96] 

(1.67e-02) 
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rs6605556 6:32615322:G:A HLA 
0.91 [0.90 0.93] 

(7.10e-20) 
Bellenguez et al. 

(2022) 
16.0% 

AD+LB– vs.  
AD–LB– 

0.87 [0.76 1.00] 
(4.57e-02) 

rs9275326 6:32698883:T:C 
HLA-DRB6/ 

HLA-DQA1 

0.85 [0.82 0.89] 

(1.26e-13) 

Chang et al. 

(2017) 
9.8% 

AD+LB+ vs.  

AD–LB– 

0.74 [0.60 0.91] 

(4.75e-03) 

rs10947943 6:41036354:A:G TREM2 
0.94 [0.93 0.96] 

(1.10e-09) 
Bellenguez et al. 

(2022) 
14.4% 

AD+LB– vs.  
AD–LB– 

0.86 [0.75 1.00] 
(4.51e-02) 

rs14333248
4 

6:41161469:T:C TREM2 
1.41 [1.32 1.50] 

(2.80e-25) 
Bellenguez et al. 

(2022) 
1.3% 

AD+LB+ vs.  
AD–LB– 

1.99 [1.09 3.62] 
(2.50e-02) 

rs14333248

4 
6:41161469:T:C TREM2 

1.41 [1.32 1.50] 

(2.80e-25) 

Bellenguez et al. 

(2022) 
1.3% 

AD+LB– vs.  

AD–LB– 

1.87 [1.11 3.16] 

(1.97e-02) 

rs785129 6:114291731:T:C HS3ST5 
1.04 [1.03 1.06] 

(2.40e-09) 
Bellenguez et al. 

(2022) 
34.7% 

AD+LB+ vs.  
AD–LB– 

1.19 [1.04 1.36] 
(1.25e-02) 

rs13237518 7:12229967:A:C TMEM106B 
0.96 [0.94 0.97] 

(4.90e-11) 
Bellenguez et al. 

(2022) 
42.1% 

AD+LB+ vs.  
AD–LB– 

1.23 [1.08 1.39] 
(1.29e-03) 

rs13237518 7:12229967:A:C TMEM106B 
0.96 [0.94 0.97] 

(4.90e-11) 

Bellenguez et al. 

(2022) 
42.1% 

AD+LB– vs.  

AD–LB– 

1.12 [1.01 1.24] 

(3.34e-02) 

rs76928645 7:54873635:T:C SEC61G 
0.93 [0.91 0.95] 

(1.60e-10) 
Bellenguez et al. 

(2022) 
10.2% 

AD+LB+ vs.  
AD–LB– 

0.81 [0.65 1.00] 
(4.84e-02) 

rs7384878 7:100334426:C:T 
ZCWPW1/ 

NYAP1 
0.92 [0.91 0.94] 

(1.10e-26) 
Bellenguez et al. 

(2022) 
29.3% 

AD+LB– vs.  
AD–LB– 

0.85 [0.75 0.95] 
(5.45e-03) 

rs591323 8:16839582:A:G MICU3 
0.91 [0.89 0.94] 

(2.38e-11) 
Chang et al. 

(2017) 
27.2% 

AD+LB+ vs.  
AD–LB– 

1.18 [1.02 1.36] 
(2.28e-02) 

rs73223431 8:27362470:T:C PTK2B 
1.07 [1.06 1.08] 

(4.00e-22) 
Bellenguez et al. 

(2022) 
36.4% 

AD+LB– vs.  
AD–LB– 

1.16 [1.04 1.29] 
(6.67e-03) 

rs11787077 8:27607795:T:C CLU 
0.91 [0.90 0.92] 

(1.70e-44) 

Bellenguez et al. 

(2022) 
38.5% 

AD+LB+ vs.  

AD–LB– 

0.85 [0.74 0.97] 

(1.33e-02) 

rs11787077 8:27607795:T:C CLU 
0.91 [0.90 0.92] 

(1.70e-44) 

Bellenguez et al. 

(2022) 
38.5% 

AD+LB– vs.  

AD–LB– 

0.89 [0.80 0.99] 

(3.43e-02) 

rs7912495 10:11676714:G:A ECHDC3 
1.06 [1.05 1.08] 

(9.70e-19) 

Bellenguez et al. 

(2022) 
46.1% 

AD+LB+ vs.  

AD–LB– 

1.17 [1.03 1.33] 

(1.47e-02) 

rs7912495 10:11676714:G:A ECHDC3 
1.06 [1.05 1.08] 

(9.70e-19) 

Bellenguez et al. 

(2022) 
46.1% 

AD+LB– vs.  

AD–LB– 

1.13 [1.01 1.25] 

(2.56e-02) 

rs3851179 11:86157598:T:C PICALM 
0.90 [0.89 0.92] 

(3.00e-48) 

Bellenguez et al. 

(2022) 
35.2% 

AD+LB– vs.  

AD–LB– 

0.86 [0.77 0.96] 

(7.92e-03) 

rs11218343 11:121564878:C:T SORL1 
0.84 [0.81 0.87] 

(1.40e-21) 
Bellenguez et al. 

(2022) 
3.6% 

AD+LB– vs.  
AD–LB– 

0.72 [0.55 0.95] 
(2.12e-02) 

rs329648 11:133895472:T:C MIR4697 
1.09 [1.07 1.12] 

(1.11e-13) 

Chang et al. 

(2017) 
35.0% 

AD+LB+ vs.  

AD+LB– 

0.88 [0.79 0.99] 

(2.62e-02) 

rs6489896 12:113281983:C:T TPCN1 
1.08 [1.05 1.10] 

(1.80e-09) 

Bellenguez et al. 

(2022) 
7.0% 

AD+LB+ vs.  

AD–LB– 

1.31 [1.01 1.69] 

(4.04e-02) 

rs11610045 12:132487182:A:G FBRSL1 
1.06 [1.04 1.08] 

(1.77e-10) 
Nalls et al. (2019) 48.2% 

AD+LB+ vs.  

AD–LB– 

0.86 [0.76 0.98] 

(2.03e-02) 

rs12147950 14:37520065:T:C MIPOL1 
0.95 [0.93 0.97] 

(3.54e-08) 
Nalls et al. (2019) 43.2% 

AD–LB+ vs. 
AD–LB– 

1.29 [1.00 1.65] 
(4.59e-02) 

rs17125924 14:52924962:G:A FERMT2 
1.10 [1.07 1.12] 

(8.30e-16) 
Bellenguez et al. 

(2022) 
9.0% 

AD+LB+ vs.  
AD–LB– 

1.27 [1.00 1.60] 
(4.95e-02) 

rs17125924 14:52924962:G:A FERMT2 
1.10 [1.07 1.12] 

(8.30e-16) 

Bellenguez et al. 

(2022) 
9.0% 

AD+LB– vs.  

AD–LB– 

1.38 [1.14 1.67] 

(8.73e-04) 
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rs11761801
7 

15:63277703:T:C APH1B 
1.11 [1.09 1.13] 

(2.20e-25) 
Bellenguez et al. 

(2022) 
13.6% 

AD+LB– vs.  
AD–LB– 

1.20 [1.03 1.40] 
(2.00e-02) 

rs1140239 16:30010081:T:C DOC2A 
0.94 [0.93 0.96] 

(2.60e-13) 

Bellenguez et al. 

(2022) 
38.0% 

AD+LB+ vs.  

AD–LB– 

0.81 [0.71 0.93] 

(3.17e-03) 

rs4784227 16:52565276:T:C TOX3 
1.09 [1.06 1.12] 

(9.75e-11) 
Chang et al. 

(2017) 
24.7% 

AD–LB+ vs. 
AD–LB– 

0.73 [0.54 0.98] 
(3.72e-02) 

rs450674 16:79574511:C:T MAF 
0.96 [0.95 0.98] 

(3.20e-08) 
Bellenguez et al. 

(2022) 
36.8% 

AD+LB– vs.  
AD–LB– 

0.87 [0.78 0.97] 
(1.01e-02) 

rs56407236 16:90103687:A:G PRDM7 
1.11 [1.08 1.14] 

(6.50e-15) 

Bellenguez et al. 

(2022) 
6.3% 

AD+LB+ vs.  

AD–LB– 

1.38 [1.06 1.79] 

(1.67e-02) 

rs616338 17:49219935:T:C ABI3 
1.32 [1.23 1.42] 

(2.80e-14) 
Bellenguez et al. 

(2022) 
1.1% 

AD+LB+ vs.  
AD–LB– 

2.35 [1.02 5.41] 
(4.47e-02) 

rs12151021 19:1050875:A:G ABCA7 
1.10 [1.09 1.12] 

(1.60e-37) 
Bellenguez et al. 

(2022) 
33.3% 

AD+LB+ vs.  
AD–LB– 

1.23 [1.07 1.42] 
(3.69e-03) 

rs12151021 19:1050875:A:G ABCA7 
1.10 [1.09 1.12] 

(1.60e-37) 

Bellenguez et al. 

(2022) 
33.3% 

AD+LB– vs.  

AD–LB– 

1.21 [1.08 1.35] 

(1.18e-03) 

rs9304690 19:49950060:T:C SIGLEC11 
1.05 [1.03 1.07] 

(4.70e-09) 
Bellenguez et al. 

(2022) 
25.0% 

AD+LB+ vs.  
AD–LB– 

1.19 [1.03 1.37] 
(1.87e-02) 
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