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Summary 

ER and PR regulate growth and differentiation in normal ovaries and fallopian tubes and in 

HGSC transformation and progression. Higher PR expression was associated with improved 

survival outcomes, while high ER expression was associated with worse survival in patients 

with HGSC. Here, we show that patients with ER+PR+ tumors have longer overall survival and 

confirm the role of PR as a prognostic marker of survival and response to chemotherapy. Gene 

expression analysis demonstrated up-regulation of the ATM signaling pathway in the ER+PR+ 

subgroup when compared to ER+PR- tumors. Up-regulation of interferon alpha, beta and 

gamma signaling, and antigen presentation pathways were identified in ER+PR- compared to 

ER-PR+. In summary, this study elucidated that the genomic and transcriptomic signatures 

related to ER/PR status in HGSC have clinical prognostic value.    
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Introduction  

Epithelial ovarian cancer (EOC) is a heterogeneous group of diseases with multiple histological 

subtypes and is broadly divided into a dualistic model based on morphological, molecular 

genetics, and clinical features1-3. There are at least five subtypes of EOC: low grade serous 

carcinoma (LGSC), high-grade serous carcinoma (HGSC) (often referred to as fallopian tube 

cancers), endometrioid, mucinous and clear cell carcinomas4. HGSC is the most common and 

aggressive histotype, accounting for approximately 75% of ovarian carcinomas and 85% of the 

cancer-related deaths and it is characterized by significant genomic instability, immune cell 

infiltration and inflammation4,5. HGSC commonly express the estrogen receptor and most 

cases originate from the fallopian tube6. Cyclic exposure to estrogen, found in the follicular 

fluid increases inflammation of the fallopian tube through reactive oxidative species (ROS) and 

subsequently induces DNA damage stress7. Conditions that increase lifetime ovulation events, 

including infertility, low parity, delayed menopause, and early menarche, are epidemiologically 

linked to increased HGSC risk8,9. Therefore, hormonal milieu and the presence of the estrogen 

and progesterone receptors in the fallopian tube epithelium (FTE) suggest and support a role 

for these hormones in disease pathogenesis.9-13 

The presence of both estrogen receptor alpha (ER) and progesterone receptor (PR) 

expression in epithelial ovarian tumors, like l LGSC tumors, has been shown to predict 

favorable response to estrogen antagonism14. PR is a classic target of ER and a biomarker of 

ER function15. LGSC tumors have a higher rate of ER/PR expression than HGSC16,17. In 

recurrent LGSC, antiestrogen therapies (aromatase inhibitors and selective estrogen receptor 

modulator) have low overall response rates (9-11%) but can yield stable disease (>70%) and 

improve progression free survival14,18. In contrast, only 10-26% of platinum resistant recurrent 
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HGSC patients will experience stable disease when treated with hormonal/antiestrogen 

therapy18-21. 

The biological basis for a role of estrogen in ovarian carcinogenesis includes stimulation of 

growth signaling pathways including ERK/MAPK, p38/MAPK, PI3K/AKT, and PLC/PKC 

through growth factors and cytokines22,23,24. A now well-established stepwise ovarian cancer 

initiation model whereby fallopian tube epithelia acquires genomic alterations that then 

promote the transition to serous tubal intraepithelial carcinoma (STIC)25-28, prompted us to 

investigate the relationship between ER/PR in HGSC development, including the role of ER 

expression in the presence and absence of PR. Further, we investigated the relationship of 

ER/PR expression on progression free survival and overall survival and explored the impact of 

ER/PR driven transcriptomics and genomics in HGSC.   

 

 
Materials and Methods 
 
Case collection 

The study protocols for collection of biological specimens and clinical information for all 

patients was approved by the University Health Network (UHN) Research Ethics Board (#02-

0882) and University of Miami (UM) Institutional Review Board (#2015-1022). Snap frozen 

(n=75) HGSC tissue samples from a previously published paper29 and formalin-fixed paraffin 

embedded tissues (FFPE) (n=523) were retrospectively selected from the UHN and UM 

biobanks. A total of 375 of the 523 cases had ER/PR immunohistochemical data and was used 

for further analysis - 148 cases were excluded because of missing clinical or 

immunohistochemical data. Clinical data was available for 193 of the 375 cases and included 

age, date of diagnosis, stage, surgical debulking, first line chemotherapy, date of recurrence, 
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date of death, date of last follow-up and vital status. Cases that were snap frozen (n=75) were 

selected for copy number alteration analysis. 

 

Immunohistochemistry 

Tissue microarrays (TMAs) were constructed using tissue from patients with HGSC and 

patients with no known mutation, otherwise considered normal, on a semiautomated 

TMArrayer (Pathology Devices, Inc., San Diego, CA, USA), as described in previous 

publications29. In short, 8 TMAs with 0.6mm tumor punches and duplicate or triplicate cores 

were used. Standard immunohistochemistry was performed on each TMA with antibodies 

listed in Supplement S1. Stained slides were scanned using the ScanScope XT slide scanner 

(Aperio Technologies, Inc., Leica, Buffalo Grove, Il, USA) to create digital images at 40x 

magnification. The percentage of cells positive for expression was determined by quantifying 

ER and PR staining using a nuclear algorithm as previously described (Spectrum Plus, Image 

Analysis Toolbox, and TMALab II (Aperio Technologies Inc, Vista, CA) 9,30,31. The optimal cutoff 

for ER and PR expression is unclear32. For this study, ER and PR nuclei positivity was 

described as ≥ 5% nuclei positivity based on commonly used thresholds of 1%-9%33,34. IHC 

was also performed with ≥ 10% nuclei positivity cutoff according to some clinical 

guidelines34,35. Intensity levels were not considered for this study. Two FTE TMAs were used 

as previously described29 and a cohort of 15 STIC cases with adnexal normal FTE and HGSC 

was also reviewed for ER and PR expression by IHC11,29,36. Protein expression for duplicated 

and triplicated TMA cores were averaged before subsequent analysis. Image analysis of Ki67, 

CD3, CD8, CD68 and FOXP3 was performed as previously reported11. All images were 

annotated to include epithelium and exclude stroma.  
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Statistical Analysis 

Wilcoxon rank-sum was used for continuous variables in nonparametric distributions. Chi-

square testing (or Fisher’s Exact, when appropriate) was used to analyze associations 

between categorical variables. Progression-free survival (PFS) was defined as the time 

elapsed between diagnosis and recurrence. Overall survival (OS) was defined as the time 

elapsed between diagnosis and death by disease or date of last follow-up. Survival analysis 

was performed using the Kaplan-Meier method on OS and PFS. Associations within groups 

broken down by ER and/or PR status were assessed by the Mantel-Haenszel log-rank test. 

Univariable and multivariable Cox proportional hazards regression analyses were performed to 

assess the effect of explanatory variables on OS. To assess the influence PR status as an 

independent predictor of OS, two clinical scenarios were modeled in the multivariable cox 

regression analysis. Results were reported as hazard ratios (HR) with 95% confidence 

intervals (95%CI). Stepwise backwards multivariable regression analyses included covariates 

with p≤�0.05 from the univariable models (model 1) or strong clinically relevant covariates 

(model 2). All tests were two-sided, with significance set at p�<�0.05. Statistical analysis was 

performed using STATA IC 17 (StataCorp, College Station, TX) and R 4.1.2 (Foundation for 

Statistical Computing, Vienna, Austria). The R packages survival37 and survminer38 were used 

to calculate and plot survival data. 

 

Transcriptomic Analysis 

Our previously published cohort of 75 HGSC tumors (GSE10971 and GSE28044)29,36 was 

used.  Data analysis was performed using PARTEK v6.0 software (St. Louis, MO, USA). Data 
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for each probe was preprocessed and normalized using the Robust Means Algorithm (RMA), 

followed by a median centered normalization for each gene across all samples. Analysis was 

performed on log base 2 transformed data.  All gene lists generated were determined based 

on a fold change of 2+ and statistical significance of (FDR) q<0.05. Supervised hierarchical 

clustering was performed to determine the molecular phenotypes associated with clinically 

distinct groups based on ER/PR protein expression. Ingenuity Pathway Analysis (IPA) was 

used to visualize the interactive networks of genes found to be significantly represented and to 

determine the biological processes and molecular functions of these genes. Gene Set 

Enrichment Analysis (GSEA) (http://www.broadinstitute.org/gsea/index.jsp) was performed 

using MSigDB (C2:CP, ver.5.1) database for each gene set collection or using gene sets 

curated based on published data. Gene set size filters (min=15, max=5000) included 980 / 

1330 gene sets in the analysis. All GSEA analyses in this study used statistically significant 

(p<0.05) enrichment scores derived from whole transcriptome data.  

 

Copy Number Alteration (CNA) analysis 

A well characterized previously published cohort29 of 75 HGSC samples were genotyped using 

Affymetrix Genome-Wide Human SNP Array 6.0 (Santa Clara, CA, USA), according to the 

manufacturer’s instructions. From these cases, we compared 70 cases at gene regions and 64 

cases at segment regions. Single Nucleotide Polymorphism (SNP) data was analyzed by 

importing CEL files into PARTEK Genomics Suite 7.0 (St. Louis, MO, USA)29,36. Using multi-

array average, quintile normalization and quality assessment via Principal Component Analysis 

(PCA), the data were corrected for background errors. CNA analysis for unpaired samples was 

performed using the reference file distributed by PARTEK to detect total copy number (CN) 

gains/losses. Specifically, genes and segment regions with CNAs were detected using the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 23, 2023. ; https://doi.org/10.1101/2023.04.21.23288934doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.21.23288934
http://creativecommons.org/licenses/by-nc-nd/4.0/


Genomic Segmentation algorithm available in PARTEK. Cutoffs were chosen for the following 

calls: >2.3 for CN gains, and >1.7 for CN losses. Using the R package ComplexHeatmap39, we 

plotted selected oncogenes, and tumor suppressor genes involved in the homologous 

recombination pathway based on the TCGA report of genes associated with epithelial ovarian 

cancer. In addition, in the segment analysis, the top 20 differentially CN gains/losses across 

groups were plotted similarly using the same package. 

 
 
Results 
 
Hormonal receptor expression confers differential survival outcomes. 

Table 1. Cohort Characteristics by ER/PR sub-groups at 5% expression cutoff (n=197) 

Variable ER-/PR- 
(n=34) 

ER-/PR+ 
(n=9) 

ER+/PR- 
(n=100) 

ER+/PR+ 
(n=54) 

p 
value 

Age in years (n=192)      
Mean (SD) 60.4 (12.8) 52.3 (10.1) 67.8 (9.8) 57.3 (13.3) 0.026 
Debulking status (n=182)     0.142 
Optimal 16 (50) 5 (62.5) 44 (46.8) 32 (66.7)  
Suboptimal 16 (50) 3 (37.5) 50 (53.2) 16 (33.3)  
Family History of Breast or 
Ovarian Cancer (n= 150) 
Yes 
No 

 
 
13 (50) 
13 (50) 

 
 
7 (77.8) 
2 (22.2) 

 
 
47 (60.3) 
31 (39.7) 

 
 
23 (62.2) 
14 (37.8) 

0.531 

Chemotherapy (n=177)     0.660 
Platinum only 5 (15.6) 0 (0) 8 (9.2) 5 (10.2)  
Platinum + Taxane 27 (84.4) 9 (100) 79 (90.8) 44 (89.8)  
Number of cycles (n=165)     0.648 
<6 3 (10.7) 0 7 (8.4) 2 (4.4)  
≥6 25 (89.3) 9 (100) 76 (91.6) 43 (95.6)  
Stage (n=193)     0.013 
I – II 5 (15.6) 1 (11.1) 4 (4) 10 (19.2)  
III - IV 28 (84.4) 8 (88.9) 95 (96) 42 (80.8)  
 

 A total of 375 FFPE tissues were selected for ER/PR expression analyses. Using TMAs 

of fallopian tube epithelium, fimbriated sections and tumor tissue, we determined the 
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proportion of HGSC tumors with expression of ER and PR. HGSC tumors were predominantly 

ER+ (76%, 285/375) and PR- (61%, 228/375) (Fig. 1A, B). Additionally, four subgroups, based 

on ER and PR expression, were identified: ER+PR- (41.9%, 157/375), ER+/PR+ (34.1%, 

128/375), ER-PR- (18.9%, 71/375) and ER-PR+ (5.1% 19/375), (Fig. 1C). A subset of 197 

cases had complete clinical data, including survival data. A summary of the clinicopathologic 

characteristics of these cases by ER/PR expression is found in Table 1. ER-PR+ patients had 

the youngest age at diagnosis 52.3 (+/- 10.1) compared to other groups (p=0.026). Fifty-three 

percent (53%) of the patients were optimally debulked and 90% received first line 

platinum/taxane chemotherapy.   

 Survival analyses showed that women with PR+ tumors had better OS (median OS 42 

months (95% confidence interval (CI), 34 - not estimable (NE))) compared to women with PR- 

tumors (median OS 35 months (95% CI, 32–38)) (p=0.0069, Fig. 1D). At 10% cutoff PR status 

maintained statistical significance (Sup. S2E). However, this trend was not observed in ER 

expression at any cutoff (Fig. 1E, Sup. S2E). OS across the combined categories resulted in a 

better OS in ER-PR+ tumors (median OS 42 months (95% CI, 27 – NE)) while the ER+PR- 

had the worse OS (median OS 34 (96% CI, 30-38)) (p=0.031, Fig. 1F). PFS analysis at 5% 

cutoff did not show statistically significant differences for ER+/- (p=0.47), PR+/- (p=0.54) nor 

the combined ER/PR subgroups (p=0.8) (Sup. S2A-C). Other non-significant OS and PFS 

analyses are included in Sup. S2. 

  A Cox regression univariable analysis showed an association of PR+ tumors with 

longer OS compared to PR- tumors (HR 1.69; 95%CI, 1.15 - 2.48) (p=0.008, Table S3); 

furthermore, pairwise comparison across 4 different ER/PR subgroups showed shorter OS in 

ER+ PR- when compared to ER+ PR+ (HR 1.76; 95%CI, 1.16 – 2.66) with no other pairwise 
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comparison being significant. Other variables associated with higher mortality included 

suboptimal debulking status (HR 2.21; 95%CI, 1.54 – 3.17); not reporting a family history of 

Breast and/or Ovarian cancer (HR 1.55; 95%CI, 1.03-2.33); receiving a first course 

chemotherapy with platinum only (HR 1.75; 95%CI 1.01 – 3.07); receiving less than 6 cycles of 

chemotherapy (HR 5.24; 95%CI 2,78 – 9.85) and being diagnosed at an advance stage (HR 

3.14; 95%CI 1.52 – 6.46).  Model 1 included statistically significant variables in the univariable 

analysis and model 2 included clinically relevant variables known to strongly influence OS: 

debulking status, type of chemotherapy and number of cycles received, in addition to PR 

status. Because the majority of HGSC cases are diagnosed at a late stage, stage was not 

included in model 2. In multivariable analysis, for model 1, receipt of chemotherapy with 

platinum only (p=0.006) and receipt of less than 6 cycles (p=0.046) were independently 

associated with OS, whereas for model 2, debulking status was added as an independently 

associated predictor (p=0.004). Progesterone receptor status was not associated with OS in 

any of the multivariable models (Sup. S3).  

 

Differential gene expression analysis of HGSC tumors indicate differences amongst 

four ER/PR subgroups. 

In normal FTE and STIC cases, we sought to determine how early changes in ER/PR 

expression occur (Fig. 2A). In this analysis, FTE samples included the fallopian tube with 

some cases having fimbria where ER and PR expression were found in both ciliated and non-

ciliated cell types40. Each STIC case was stained for TP53, Ki67, ER and PR. In 

premenopausal women without HGSC, the proportion of ER+ and PR+ cells in FTE varied by 

ovarian cycle status with more ER+ cells in the follicular phase (pre-ovulation/proliferative 
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phase, 47.5%) compared to the luteal phase (post-ovulation/secretory phase, 38.3%; p=0.01) 

(Sup. S4).The proportion of ER+ cells between FTE and HGSC (38.5% vs. 22.8%, 

respectively, p=0.04) indicated a difference in expression levels, however in comparing ER 

expression levels in STIC (n=13) to both FTE (n= 9) and HGSC (n=13), a larger difference was 

noted indicating an increased level of ER expression in the lesion. (Fig. 2B). Moreover, PR+ 

expression levels decreased from FTE (17.4%) to STIC (16.0%) to HGSC (7.2%) (p= 0.005) 

(Fig. 2B).  

 To evaluate the effect of ER and PR on gene expression levels of FTE, we used a 

subset of 45 randomly selected HGSC tumors from the 375 cases and performed gene 

expression analysis for tumors classified into four subgroups, based on a 5% cutoff for ER and 

PR: ER-PR- (n=8), ER-PR+ (n=3), ER+PR- (n=18), ER+PR+ (n=13). 354 genes were 

differentially expressed (DEGs) between the four subgroups (p<0.005) (Sup. S5). 

Unsupervised hierarchical clustering showed distinct gene expression profiles of ER-PR+ 

compared to the three other subgroups (Sup. S6). Pairwise comparison showed that 152 

genes were differentially expressed between ER+PR- and ER-PR+; 130 genes were 

differentially expressed between ER-PR+ and ER-PR- and 6 genes were differentially 

expressed between ER+PR- and ER+PR+.  

The top DEGs between ER+PR- vs ER-PR+ included: SMOC1 (downregulated in 

ER+PR-, FC=-10.2, p=1.50 x 10-22), SLC4A4 (downregulated in ER+PR-, FC=-6.62, p=-2.06 x 

10-11) and KLK8 (upregulated in ER+PR-, FC=21.9, p=9.37 x 10-11). The top DEGs between 

ER-PR+ and ER-PR- included also SMOC1 (upregulated in ER-PR+, FC=9.31, p=1.33 x 10-

18), SLC4A4 (upregulated in ER-PR+, FC=7.99, p=2.56 x 10-10) and ZNF117 (upregulated in 

ER-PR+, FC=5.84, p=2.51 x 10-9). The top DEGs between ER+PR+ and ER+PR- included: 
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SNUPN (downregulated in ER+PR+, FC=-2.13, p=2.33 x 10-5), OR2A20P/OR2A9P 

(downregulated in ER+PR+, FC=-2.42, p=1.59 x 10-4) and ASB9 (upregulated in ER+PR+, 

FC=3.25, p=1.04 x 10-3). These comparisons suggest a role for PR in driving specific 

transcriptional programming in HGSC. Other pairwise comparisons are reported in Sup. S5. 

 

Pathway analysis of PR driven transcriptional programs show differences with varying 

ER expression. 

We performed pathway analysis on differentially expressed genes between ER/PR 

subgroups to identify PR-driven gene transcriptional pathways and cellular programs in HGSC. 

A comparison between ER+PR- and ER-PR+ groups showed an upregulation of 85% of genes 

belonging to the antigen presenting pathway in the ER+PR- subgroup (p=0.00002) (Sup. S7A, 

B). Top differentially regulated pathways included phagosome maturation (TUBB3, LAMP2, 

NCF2), crosstalk between dendritic cells and natural killer cells (CD40, FAS, IL18) and 

dendritic cell maturation (CREB1, JAK2, STAT1) (Sup. S7A-B, Sup. S8). A comparison of ER-

PR- and ER-PR+ showed the pathways regulated solely by PR, which included adaptive 

immune pathways such as allograft rejection signaling (TNF, CD40, B2M) (p=1.14 x 10-5) and 

the innate immune system which included the crosstalk between dendritic cells and natural 

killer cells (CD40, CD86, FSCN3) (p=3.30x10-5) (Sup. S7D-E, Sup. S9). Additionally, a 

comparison of ER+PR- and ER+PR+ subgroups, from which the OS survival difference was 

significant, showed PR driven gene transcriptional programs in the presence of ER, which 

included the ATM signaling pathway (ATF2, ATM, H2AX) (z-score=0.277, p = 7.18 x 10-3) as 

the most differentially regulated pathway, with >60% of the genes upregulated in the ER+PR+ 

subgroup (Fig. 3A-B, Sup. S10).   
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Gene set enrichment analyses (GSEA) performed on two subgroup comparisons, 

indicative of PR signaling (ER-PR- vs ER-PR+; ER+PR- vs ER+PR+), showed enriched gene 

sets belonging to the DNA repair pathway and the p53 dependent G1/S DNA damage 

response when comparing ER+PR- vs ER+PR+ (Fig. S7F, 3C). Core enriched genes included 

BRCA1, BRIP1, MDC1 and LIG4, RAD51 and RAD52. GSEA performed on ER-PR+ vs 

ER+PR- showed an upregulation of adaptive and innate immune pathways in ER+PR- tumors. 

Specific genes upregulated in ER+PR- tumors included interferon alpha/beta (PTPN1, 

RNASEL, IFNA6; FDR<10-5, NES=-2.55), interferon gamma signaling (NCAM1, CAMK2D, 

PTPN1; FDR<10-5, NES=-2.46), cytokine signaling (NCAM1, SOCS2, PLCG1;FDR<10-5, 

NES=-2.33), antigen processing and presentation (HSPA1 and 6 family, NFYZ, CREB1; 

FDR=3.77 x 10-5, NES=-2.15), and IL12 pathways (PP3CA, PP3R1, MAPK14; FDR=2.71 x 10-

5, NES=-2.17)  (Fig. S7C). 

 Due to an enrichment of immune related pathways and gene signatures observed in 

ER-PR+ vs ER+PR-, we evaluated tumor infiltrating lymphocytes (TILs) and macrophages 

within the ER/PR subgroups (Fig. 4A). TMAs were stained for CD3, CD8, CD68 and FOXP3 

immune markers and assessed using automated image analysis (Fig. 4B). There were no 

significant differences in CD3+, CD8+ and FOXP3+ cells across the different categories of 

ER/PR status (Fig. 4C). A significantly higher proportion of CD68+ immune cells were found in 

the ER+ group relative to the ER- group (p=0.03) (Fig. 4D). 

 
 
Copy Number Alterations (CNA) Analysis and chromosomal segment analysis of ER/PR 

subgroups shows loss of MYC and genomic alteration of chromosomal region 22q11.22 

in ER-PR+ 
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The data of 75 snap frozen HGSC from our cohort was used to generate an Oncoplot 

showing CNAs in MYC, PIK3CA, CCNE1, PALB2, BRCA1, and BRCA2 genes which have 

been shown to be amplified or deleted in HGSC and linked to disease pathogenesis41-44(Fig. 

5A). The MYC gene was lost (1 copy or less) in 86% (6/7) of cases in the ER-PR+ group 

compared to 59% (17/29) in the ER+PR- group (p=0.38). The tumor suppressor PALB2 was 

amplified in 34% (10/29) of cases in the ER+PR- group compared to 0% of cases in the ER-

PR+ (p=0.15). BRCA1 showed a similar pattern with amplification in 57% (4/7) of cases in the 

ER-PR+ vs amplification of 34% (10/29) of cases in the ER+PR- (p=0.39). ESR1 was amplified 

in 8.3% (4/48) of ER+ cases compared to 9% (2/22) of ER- cases (p=1); PGR was deleted in 

4.6% (2/44) of PR- cases compared to 0% of cases in the PR+ (p=0.34). It is unlikely that high 

ER protein expression in HGSC is due to amplification of the ESR1 gene, and low PR 

expression due to deletion of the PGR gene. Top copy number variations of oncogenes 

specific to HGSC that were amplified included MECOM (86%, 60/70) and MYC (74%, 52/70) 

across the entire cohort (Sup. S11A). Top copy number deletions were found in tumor 

suppressor genes TP53 (70%, 49/70), BRCA1 (60%, 42/70) and WWOX (54%,38/70) across 

all samples. (Sup. S11B). 

 

To identify chromosomal regions that may correlate with improved OS by ER/PR 

categories and hence chemosensitivity, we conducted chromosomal segment analysis. There 

were 1398 differentially altered genomic segments across all groups.  After removing 

overlapping regions, 191 unique segments remained (Sup. S12). The top 20 differentially 

altered segments were plotted based on the p-value (p<0.05) (Fig. 5B). The most significant 

differentially genomic alteration included 22q11.22 which showed copy loss in 67% (4/6) of 
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ER-/PR+ cases (p=0.000023). Segment 22q11.22 includes the genes IGL, IGLV3-1, MIR5571, 

IGLL5, IGLJ1. Other differences across four subgroups occurred in segment 5q.21.1 which 

includes the following genes: SLCO4C1, RN7SKP68, SLCO6A1. We found 33% (2/6) of ER-

PR+ cases that presented copy number gains in 5q.21.1 compared to copy number losses 

found in all other groups (CN losses: 40% (4/10) ER+PR+, 61% (19/31) ER+PR- and 71% 

(12/17) ER-PR-, p=0.00021). In segment 7q22.3, ER-PR- group presented 29% (5/17) copy 

losses compared to copy gains in all other groups (CN gains: 10% (1/10) ER+PR+, 39% 

(12/31) ER+PR- and 50% (3/6) ER-PR+, p=0.0004). In segment 8q24.21 the ER- PR+ group 

presented 33% (2/6) copy losses compared to copy gains seen in other groups (CN gains: 

90% (9/10) ER+PR+, 81% (25/31) ER+PR-, 94% (16/17) ER-PR-, p=0.00119) (Fig. 5B). 

Genes included in other differentially altered segments are reported in supplementary file 1 

(Sup. SF1). 

 
Discussion  

Previously published data showed the ER-PR+ phenotype predicts favorable tumor biology 

and long-term survival compared to ER+PR- tumors 6,9,45,46. In this study, we show evidence 

that hormone receptor status impacts the transcriptional programs of HGSC, specifically, 

univariate analysis of PR+ tumors confer an overall survival benefit with gene set enrichments 

found in stem cell, immune cell processes and growth and cellular proliferation pathways. 

These observations suggest hormonal receptor status should be explored further to 

understand its clinical implications. 

 

The observed decrease in PR+ cells from FTE to STIC to HGSC, along with the majority of our 

HGSC cohort having negative PR expression, demonstrate a progressive loss of PR 
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expression in HGSC development. A similar pattern of PR expression and loss was seen in 

double knock out-BRCA1 mice with HGSC47. Ongoing research suggests that progesterone 

signaling may be primarily involved in tumor initiation and not necessarily in tumor 

progression47,48, especially in high-risk women49. Our data is also consistent with literature 

showing an absence of PR expression in majority of human HGSC tissue6. 

 

Our gene expression data showed that ER-PR+ tumors upregulated SMOC1 compared to 

ER+PR- tumors and ER-PR-. Secreted modular calcium-binding protein-1 (SMOC1) is a gene 

that is involved in the development of the reproductive tract and mesonephros differentiation 

and ectopic SMOC1 expression decreases colony formation, proliferation, and in vivo tumor 

formation as demonstrated by studies in colorectal cancer cells. 50,51. Furthermore, the group 

of patients with ER-PR+ had tumors that upregulated SLC4A4, a gene that is involved in 

decreasing proliferation and metastasis in addition to suppressing KRAS expression in renal 

cancer cells52. In colorectal cancer, downregulation of SLC4A4 is associated with significantly 

worse overall survival53. However, in prostate cancer, high expression of SLC4A4 in tumor 

specimens was significantly correlated with disease progression54.  These data suggest that 

ER+PR- cases downregulate tumor suppressor-like genes. HGSC is characterized by 

significant genomic rearrangements and gene specific copy number gains and losses55 .  

 

We identified a homologous recombination deficiency (HRD)-like phenotype in ER-PR+ 

tumors which was enriched for DNA damage related genes. Based on copy number alterations 

analysis, performed on ER/PR subtypes, a strong emphasis is placed on the early genomic 

alterations of oncogenes and tumor suppressors that occur in ovarian cancer, with BRCA1 
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copy number amplifications found in 57% of ER-PR+ subgroup. Using pathway analysis, we 

identified that PR positive tumors upregulated the homologous recombination and DNA repair 

pathway. Several studies have demonstrated that patients with HR-deficient cancers, 

especially those with germline BRCA1/2 mutations, exhibit significantly improved overall 

survival compared to patients with non-BRCA mutated tumors56. This effect is more 

pronounced in BRCA2 mutation carriers who exhibit even longer survival compared to BRCA1 

carriers57. Cyclical use of hormone replacement therapy confers a higher risk of ovarian 

cancer58 compared to the continuous use of estrogen or progestin after menopause in both 

non-carriers and BRCA mutation carriers59. These data suggest an improvement in overall 

survival and PR positivity in ovarian cancer tumors could be mediated through homologous 

recombination pathways. 

 

Gene set enrichment analysis showed that ER-PR+ tumor subtype was associated with 

the downregulation of immune pathways involved in both innate and adaptive immunity. This 

feature is consistent with PR’s anti-inflammatory role. Various models, including the incessant 

ovulation hypothesis propose that chronic exposure to cytokines, chemokines and reactive 

oxygen species cause DNA damage to the fallopian tube epithelium 60,61. The risk of malignant 

transformation of distal (secretory) FTE is increased by an altered balance of pro-versus anti-

inflammatory signaling molecules during the postovulatory luteal phase 62. When progesterone 

binds to its receptor, it acts as a transcription factor to induce the expression of proteins that 

dampen inflammation, inhibit cell proliferation, and stimulate repair 9,63.  Quantification of a 

subset of immune cell populations in HGSC across the ER/PR subtypes showed that hormonal 
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status and tumor infiltrating lymphocyte and macrophage presence were not significantly 

correlated. 

 

Cells exposed to progesterone inhibit inflammatory processes and can decrease the 

level of macrophage and dendritic cell activation63-65. Our results suggest that ER-PR+ tumor 

cells may confer a better overall survival compared to the other ER/PR subtype patients since 

an increase in progesterone and its receptors is shown to exert protective effects by 

decreasing the growth-promoting effects of estrogen, and inducing cell differentiation and 

apoptosis66 67. A corollary response to increased progesterone is to promote survivability of the 

patient by decreasing the functional activity of the tumor.  

 

While the immune system confers a survival advantage to patients with ovarian cancer, 

it can also influence the pathogenesis of the disease through the release of cytokines and 

chemokines68. Our transcriptional data of the PR+ tumors showed immune system pathways 

are downregulated with no significant difference in selected immune infiltration by IHC across 

ER/PR subtypes. In this study we showed that ER+ tumors have higher levels of macrophages 

compared to ER- tumors, and ER expression is associated with unfavorable prognosis. This is 

consistent with data showing that the ER-alpha receptor is expressed in human macrophages 

and receptor expression can be induced by estradiol (E2)69. It is well documented however, 

that within the tumors, macrophages upregulate ER-alpha expression70. In ovarian cancer, 

macrophages have been shown to display an immunosuppressive and pro-tumoral phenotype, 

which facilitate chemoresistance and metastasis71,72.    
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The results of this study may have important implications for the clinical management of 

patients with HGSC, including the immediate use in patient counseling regarding survival. Our 

findings emphasize the critical role of PR status relative to ER status based on transcriptional 

and survival data for high grade serous tumors. The largest retrospective analysis on this 

subject to date included more than 2000 patients from the Ovarian Tumor Tissue Analysis 

Consortium. In agreement with our findings, Sieh et al. reported that progesterone receptor 

status but not estrogen receptor status is associated with improved survival in high grade 

serous carcinoma6. This study further adds to existing literature by exploring transcriptional 

and genomic phenotypes associated with ER/PR status in human HGSC tumors. A limitation in 

our study is that our cohort had a relatively low optimal debulking rate (53%) which may 

suggest bias in the survival analyses.  However, the debulking rates were distributed evenly 

across groups and neoadjuvant chemotherapy use in disease treatment has risen overtime. It 

will be interesting to see if ER and/or PR expression changes from the chemonaïve to the 

interval debulked tumor; and if so, to which ER/PR sub-group, and what are the biologic 

implications of tumor responsiveness to platinum/taxane. Given the important prognostic 

information provided by hormonal receptor status from this study, patients could be stratified 

based on their ER/PR status for which precision and targeted therapy will be useful. Multiple 

phase II trials have shown that ER expression is associated with sensitivity to hormonal 

therapy73-75. However, there are limited available data on treatment response of PR+ tumors to 

hormonal and other therapies76. The distinct phenotypes of high-grade serous carcinoma 

tumors with observed variable ER/PR expression in the present study warrants further 

investigation using larger clinical cohorts to identify subpopulations with improved treatment 

response. 
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Figure 1: Top: Clinical characteristics of ER/PR subgroups. A. Quantification of 375 
representative sections of HGSC stained with PR. PR expression is determined using a cut-off 
of 5%. Cases with greater than 5% positive cell staining are PR+. Total number of cases 
positive for PR is represented as a percentage. B. Representation of the number of cases with 
ER expression. C. Four subgroups (ER-PR- (n=71), ER-PR+(n=19), ER+PR- (n=157) and 
ER+PR+(n=128)) are analyzed for both ER and PR expression. A representation of the 
number of cases belonging to each subgroup using a 5% expression cut-off.  
Bottom: Overall Survival analysis by ER/PR protein expression. D. PR+ cases are associated 
with increased overall survival compared to samples that are PR- (p=0.0069). E. Overall 
survival analysis of ER+ vs ER- cases. ER+ cases do not show significant difference in 
survival outcome compared to ER- cases (p=0.39) F. Overall survival months for ER/PR 
subgroups. ER-PR+ cases confer increased overall survival compared to other subgroups 
(p=0.031), pairwise comparison showed differences in OS between ER+PR+ and ER+PR- 
groups only (p=0.008). 
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Figure 2: PR expression decreases in HGSC compared to normal fallopian tube tissue. A. 
Visual representation of ER, PR, Ki67 and p53 protein expression by immunohistochemistry. 
Sections of normal FTE tissue, serous tubal intraepithelial lesions (STIC) and HGSC tissue 
sections. Tissue morphology is determined by p53 and Ki67 (marker of proliferation). Positive 
protein expression, highlighted by darker stained cells is quantified using a custom nuclear 
algorithm (x10). B. Quantification of ER and PR protein expression in normal FTE (n=13), 
STIC (n=9) and HGSC (n=13). In ER positive cells, there was significant expression between 
FTE and HGSC in (p=0.04) and no other significant differences were found between STICS 
and other morphologies. In PR positive cells, significant differences were found 
between FTE and HGSC (p=0.007) and between STIC and HGSC (p=0.01). 
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Figure 3. Comparison of ER signaling in the presence and absence of PR. A. A comparison 
between ER+PR- vs ER+PR+ shows percentage of genes upregulated and downregulated in 
the presence of ER. In the absence of PR, ER downregulates more than 50% of genes 
involves in the ATM signaling pathway. B. Top pathways identified in a comparison between 
ER+PR- and ER+PR+ C. Enrichment plot for a comparison of ER+PR- and ER+PR+ shows 
DNA damage checkpoint genes enriched (NES = -1.72, q =0.12).  
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Figure 4. CD68 is enriched in PR+ cases. A. Sections of HGSC stained for ER and PR across 
ER+PR- and ER-PR+ subgroups. Positive cells are identified by brown nuclear staining (x20). 
B. CD3, CD68, CD8, FOXP3 staining of ER+PR- and ER-PR+ cases. Positive cells are 
identified by brown nuclear staining (x20). C. Quantification of CD3 positive cells using a 
custom nuclear algorithm for identification of positive CD3 cells. D. Quantification of CD68 
positive cells shows more positivity in the ER+PR- subgroup. Higher percentage of CD68+ 
cells are found in the ER+ group compared to ER- group (p<0.05).  
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Figure 5. A. Copy number variation gene analysis. Selected genes involved in the 
homologous recombination pathway were selected across four groups (n=70). Selected 
oncogenes associated with ovarian cancer based on the TCGA (MYC, PICK3CA and CCNE1) 
presented copy gains uniformly in the cohort. Similarly, selected tumor suppressor genes 
involved in the ovarian cancer based on TCGA (PALB2, BRCA1, BRCA2, TP53). B. Copy 
number variation segment analysis. Top 20 segments differential CNV gains and losses across 
groups (p<0.01). Copy number gains and losses were identified in chromosomes 22q, 5q, 7q, 
1q, 8q, 20q, 8q, 3p. Note that ER-PR+ differs from other groups in the distribution of copy 
number gains and losses.  
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