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Abstract 
Recent advances in genome-wide association study (GWAS) and sequencing studies have 

shown that the genetic architecture of complex diseases and traits involves a combination of 

rare and common genetic variants, distributed throughout the genome. One way to better 

understand this architecture is to visualize genetic associations across a wide range of allele 

frequencies. However, there is currently no standardized or consistent graphical representation 

for effectively illustrating these results. 

 

Here we propose a standardized approach for visualizing the effect size of risk variants across 

the allele frequency spectrum. The proposed plots have a distinctive trumpet shape, with the 

majority of variants having low frequency and small effects, while a small number of variants 

have higher frequency and larger effects. These plots, which we call 'trumpet plots’, can help to 

provide new and valuable insights into the genetic basis of traits and diseases, and can help 

prioritize efforts to discover new risk variants. To demonstrate the utility of trumpet plots in 

illustrating the relationship between the number of variants, their frequency, and the magnitude 

of their effects in shaping the genetic architecture of complex diseases and traits, we generated 

trumpet plots for more than one hundred traits in the UK Biobank. To facilitate their broader use, 

we have developed an R package ‘TrumpetPlots’ and R Shiny application, available at 

https://juditgg.shinyapps.io/shinytrumpets/, that allows users to explore these results and submit 

their own data.  
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STATEMENT OF NEED 
 
Visualizations are powerful tools that have helped the field of genetics to better understand and 

communicate complex findings. By using visual aids like Manhattan and Volcano plots, genetic 

variants identified through genome-wide association studies can be more easily pinpointed. 

With the advancement of genome-wide association and sequencing studies, a mounting 

number of significant genetic variants, both common and rare, are being discovered. To better 

understand the relationship between these variants, combining these findings into single 

visualizations help to observe the relationship between effect size and allele frequency, 

providing a clearer picture of the genetic architecture of different traits and diseases. However, 

there is currently no consistent method for illustrating these results. In this paper, we propose a 

standardized approach for visualizing the effect size of risk variants across the allele frequency 

spectrum, generate plots for over a hundred traits in the UK Biobank, and provide to the field a 

R package and R Shiny application to explore their own results.  

 
Availability of supporting source code and requirements 
 

• Project name:  

o R package available in project ‘TrumpetPlots’ 

https://gitlab.com/JuditGG/trumpetplots  

o R shiny app and analyses in the UK Biobank available in project ‘freq_or_plots’ 

https://gitlab.com/JuditGG/freq_or_plots 

• Project home page: https://juditgg.shinyapps.io/shinytrumpets/ 

• Operating system(s): Platform independent. 

• Programming language: R 

• RRID: Not applicable 

• License: MIT 

 
Data Availability and implementation 
 
All data used in this manuscript is publicly available. Rare variant associations are available in 

supplementary data table 2 of the original publication (DOI: https://doi.org/10.1038/s41586-021-

04103-z ), GWAS summary statistics are available in the website https://www.nealelab.is/uk-

biobank/. 
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The code is freely available at https://gitlab.com/JuditGG/freq_or_plots (UK Biobank analyses), 

https://gitlab.com/JuditGG/trumpetplots (R package with test data) and 

https://juditgg.shinyapps.io/shinytrumpets/ (R Shiny application).  
 
List of abbreviations 
 
GWAS: genome-wide association study 
LD: linkage disequilibrium 
Log: logarithm or logarithmic 
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Background 1 

Results visualization is an essential tool for interpreting complex data. By using visual 2 
representations such as graphs, charts, and plots, researchers can quickly identify patterns, 3 

trends, and outliers that may not be detected in tables of raw data. Visualizations help to gain a 4 
more intuitive and comprehensive understanding of the data, especially when dealing with large 5 

and complex datasets. Furthermore, visualizing results can facilitate communication of research 6 

findings to a broader audience, including non-experts [1]. Visual representations are often more 7 
accessible and engaging, making it easier for others to understand and appreciate the 8 

significance of the research conducted. 9 

In the field of genetics, the use of visualizations has revolutionized the interpretation and 10 
communication of research findings. Over the past two decades, visualizations such as 11 

Manhattan plots [2], which display the results of genome-wide association studies (GWAS), 12 
software packages like haploview [3] that analyze and visualize linkage disequilibrium (LD) 13 
patterns of GWAS associated loci, and Volcano plots that assess patterns of differential gene 14 

expression [4], have all played crucial roles in illustrating and sharing the key summaries of data 15 
that have advanced the field. These and other visualizations [5] have allowed the genetics field 16 
to more easily identify candidate causal variants, relevant genes, and potential outliers that may 17 
not be apparent in tables of GWAS summary statistics or differential expression results.  18 

More recent advances in GWAS and sequencing studies [6]–[8] have resulted in the 19 
identification of an increasing number of significant genetic variants, including both common [8] 20 
and rare variants [5,6]. Researchers are now starting to combine these findings into single 21 
visualizations to observe the relationship between effect size and allele frequency across the full 22 

range of significantly associated variants. Given that the number of risk-conferring variants, their 23 
frequency in a population, and their effect size can vary across different diseases and traits, 24 

using these plots can provide a better and instantaneous understanding of their relative genetic 25 

architecture. Recent studies on height [9], schizophrenia [10] and coronary artery disease [11], 26 
[12] have already included this full range as the main figure, highlighting the utility of this type of 27 

visualization. However, a formal and consistent method for illustrating these results has not yet 28 

emerged. 29 

The aim of this work is to introduce an R package and R shiny application to illustrate the 30 
distribution of risk variants across a wide range of allele frequencies. We term the resulting plots 31 

‘trumplet plots’, due to their trumpet-like shape. To demonstrate their utility, we generated 32 
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trumpet plots for over one hundred continuous traits available in the UK Biobank [13], illustrating 33 

the distribution of risk variants across an effect allele frequency range between 0.00001 and 1. 34 
These plots are available at https://juditgg.shinyapps.io/shinytrumpets/ and we illustrate a single 35 

trumpet plot combining the results of all of these in Figure 1.  36 

We propose that trumpet plots are valuable representations of genetic associations across the 37 

full allele frequency spectrum that can help researchers to better understand the genetic 38 
architecture of traits and diseases and potentially aid in study design and the prioritisation of 39 

investments to discover new variants that contribute to disease. 40 
 41 

Methods 42 
In the following sections, we will explain the various decisions we made when creating trumpet 43 

plots. These decisions include selecting the appropriate scale to represent allele frequencies, 44 
deciding whether to use the full GWAS summary statistics or independent GWAS variants, 45 
addressing issues related to the reporting of rare variant association tests, determining whether 46 

to include power curves, and considering the effect size sign of the variants included. By 47 
carefully considering each of these factors, we aimed to create informative and visually 48 
appealing trumpet plots that illustrate the effect size of genetic associations across a wide range 49 
of allele frequencies.  50 

 51 
Using the logarithmic vs linear scale to represent allele frequencies 52 
In the representation of allele frequencies, the range of values can vary greatly between the 53 

smallest and largest frequency. When these associations are plotted on a linear scale, the rare 54 
variants can be obscured or difficult to distinguish. To address this issue, we recommend using 55 

a logarithmic (log) scale (we use log base 10) for allele frequencies in trumpet plots. Compared 56 

to a linear scale, the log scale uses increments that represent a relative increase or decrease, 57 
rather than a fixed value increase or decrease. The log scale compresses the allele frequencies 58 

that are most common, which results in a more even distribution of values across the scale. This 59 

scale of visualization facilitates the identification of important patterns and trends.  60 
 61 

Identification of independent significant variants to enhance the interpretation of trumpet plots 62 

Genetic association studies involve testing up to millions of genetic variants for their association 63 
with a particular trait or disease. However, many of these variants are correlated with each other 64 

due to their physical proximity on the genome, which is known as linkage disequilibrium (LD). 65 
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This means that many variants nearby to causal variants often show significant associations 66 

with the trait under study, due only to their correlation rather than any biological involvement 67 
with the trait. 68 

 69 
Two methods that can be used to identify independent significant variants in a GWAS are 70 

clumping and conditional analysis [14], [15]. Clumping involves selecting a subset of 71 

independent significant variants by choosing a lead variant for each LD cluster and then 72 
discarding all other variants in that cluster. The lead variant is typically the one with the 73 

strongest association with the trait of interest. Conditional analysis, on the other hand, involves 74 

identifying independent significant variants after performing a joint analysis of multiple variants 75 
together. In this approach, the effect of one variant is conditioned on the effect of other variants, 76 

meaning that the association between the trait of interest and one variant is evaluated after 77 
accounting for the effect of other variants. This can either be performed as a joint analysis (e.g. 78 

a regression) with multiple variants in one model or else as an iterative process, where the lead 79 
variant and each other variant in the region are tested jointly one-by-one. By considering the 80 
effects of multiple variants jointly in single models, conditional analysis helps to identify 81 

independent signals more accurately than clumping, which relies only on correlations between 82 
variants to indirectly infer independent signals. 83 
 84 
Since the correlation between variants can make it challenging to interpret trumpet plots, we 85 

recommend plotting only independent significant variants. These are variants that represent 86 
distinct genetic associations with the trait of interest.  87 
 88 

Variant-level associations for low allele frequencies 89 
While GWAS are a valuable tool for detecting common genetic variants associated with 90 

complex traits or diseases, they have limited power to identify associations with rare variants. 91 

To address this limitation, sequencing studies [16]–[18], such as whole exome sequencing and 92 

whole genome sequencing, have been used to detect variant-level associations with low allele 93 

frequencies.  94 

 95 
To further enhance the statistical power of rare-variant associations, a commonly used strategy 96 

is to aggregate the rare variants detected into functional genetic units, such as genes, and 97 

perform collective variation analysis (e.g. gene burden tests [19]–[21]). However, we found that 98 
the reporting of rare variant association analyses varies across studies. Some studies report 99 
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results at the variant level, while others only report results of the functional unit in which rare 100 

variants were aggregated. This makes comparing results across independent studies, and 101 
determining the functional significance of specific variants, challenging.  102 

 103 
We therefore encourage the reporting of results at the variant level, so that they can be included 104 

in visualizations of allele frequency in relation to effect size, such as trumpet plots, aiding study 105 

comparisons and variant interpretation. Although the analysis of genetic variants at low 106 
frequency is expected to improve with the availability of biobank-scale samples and the 107 

development of new methods to reduce biases in association tests, caution should still be 108 

exercised when inspecting associations with rare variants, as these can suffer from instability 109 
and low power, particularly in the relation to binary traits. 110 

 111 
Statistical power considerations 112 

GWAS require careful consideration of statistical power [22], which depends on various factors, 113 
including the allele frequency and effect size of variants, represented by the x- and y-axis of 114 
trumpet plots, respectively. Common variants, usually defined as having allele frequency greater 115 

than 1%, tend to have higher power in association studies because common causal variants are 116 
more likely to be present in the sample (either genotyped or imputed), and because their 117 
relatively balanced number of alleles is akin to having a larger sample size. Variants with larger 118 
effect sizes have higher power because their effects are further from the null hypothesis of zero 119 

effect. 120 
 121 
We therefore recommend incorporating power curves into trumpet plots, since they visually 122 

represent the statistical power across the allele frequency spectrum for a given sample size and 123 
effect size [23]. Moreover, power curves can aid in identifying parts of the association testing 124 

space in which the power to detect significant associations is low.  125 

 126 

Two alternative approaches to illustrate the joint distribution of allele frequency and effect size 127 

One approach to illustrate the relationship between allele frequency and effect size is to plot 128 

only positive effects i.e the allele effect for each variant that increases the value of the 129 
phenotype. In this case, the effect sizes are always positive, and both the allele and sign of the 130 

association regression coefficients (betas or Odds Ratios, ORs) need to be flipped (to the other 131 

allele) if they are reported as negative to ensure that the effect size is greater than zero. If this 132 
‘flipping’ is required, then the allele frequency of the other allele should be reported, which will 133 
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be 1 minus the original allele frequency. In this case, the allele frequencies of the plot range 134 

from 0 to 1. 135 
 136 

The other approach, which we recommend, allows for both positive (risk allele in the context of 137 
disease phenotypes) and negative (protective allele in the context of disease phenotypes) effect 138 

sizes and always corresponds to the minor allele. In this case, the effect size of the allele can 139 

have either a positive or negative value, and the allele frequencies of the plot range from 0 to 140 
0.5. 141 

 142 

Practical example: Generating trumpet plots for 129 traits in the UK Biobank 143 
We examined all continuous UK Biobank traits with available GWAS analyses performed by 144 

Benjamin Neale’s group (https://www.nealelab.is/uk-biobank/ ) and searched whether rare 145 
variant associations were available for the same trait (by UK Biobank Field ID) in the exome 146 

sequencing analysis performed by the Regeneron team [13]. 147 
 148 
Common variant associations were extracted from the Neale‘s group GWAS summary statistics. 149 

For each GWAS, we extracted the independent variants using COJO GCTA (--cojo-slct 150 
command), and a random subset of 4,000 unrelated individuals with European ancestry from 151 
the UK Biobank as LD reference panel. We selected independent variants with minor allele 152 
frequency >0.01 and association P-value < 5x10-8 within a 100Kb window. 153 

 154 
Rare variants association results were extracted from the supplementary data table (SD2) of the 155 
Regeneron study [13]. This study reports results for both burden tests (which typically 156 

aggregated variants and indels) and individual rare variant level tests. To ensure that effect 157 
sizes reported in our analyses corresponded to individual rare variants, we extracted only 158 

results for ‘singleton variants’ with predicted loss of function - including stop-gain, frameshift, 159 

stop-lost, start-lost and essential splice variants - and deleterious missense variants. Interactive 160 

plots illustrating the relationship between allele frequency (x-axis) and odds ratio (y-axis) were 161 

plotted using our R package TrumpetPlots (https://gitlab.com/JuditGG/trumpetplots ), which 162 

uses the R packages data.table, ggplot and ggplotly (Figure 1).  163 
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 164 
Figure 1. Distribution of allele frequencies and effect sizes for genetic associations across 129 165 

continuous traits from the UK Biobank. Power curves for statistical power of 0.5 (blue), 0.7 (purple) 166 

and 0.9 (pink) were constructed for the median GWAS sample size (N=351,550). 167 

 168 
R Shiny application 169 
We developed a user-friendly web application called shinytrumpets to visualize trumpet plots for 170 

our UK Biobank results, as well as any other genetic association results that can be uploaded 171 
by the user. With shinytrumpets, researchers with no knowledge of R programming can easily 172 

upload and visualize their own datasets. 173 

 174 
If a user uploads their own results, shinytrumpets prompts them to upload the input data files 175 

and specify the sample size used for the study, such as the GWAS sample size. This 176 
information is used to perform power calculations for the visualization. Shinytrumpets offers an 177 

intuitive interface for users to explore and download trumpet plots. 178 

 179 
Discussion 180 

Visual representations of genetics and genomics results, such Manhattan [2], Q-Q plots [2], 181 
haploview [3] or Volcano plots [4], have been helpful in interpreting research findings and 182 
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identifying patterns, trends, and outliers that may not be easily apparent in tables of raw data. 183 

These visualizations have revolutionized the interpretation and communication of research 184 
findings relating to the identification of GWAS associated loci, putatively causal genes, and 185 

potential outliers. 186 
 187 

In this manuscript, we introduce a new R package and shiny application to illustrate the 188 

distribution of risk variants across a wide range of allele frequencies, which we coin 'trumpet 189 
plots'. We illustrate the distribution of variant effect sizes across the allele frequency range (from 190 

0.00001 to 1) for over 100 continuous traits available in the UK Biobank, and propose that these 191 

plots are valuable representations of genetic associations that can help researchers better 192 
understand the genetic architecture of traits and diseases and prioritize certain study designs 193 

(e.g. sequencing or GWAS) to discover new variants that contribute to disease. 194 
 195 

One important consideration when interpreting the trumpet plots we constructed for the UK 196 
Biobank is that they only represent individuals of European ancestry. The relationship between 197 
effect size and allele frequency can be affected by population genetic differences [24], [25] and 198 

as such, one interesting application of trumpet plots could be to compare the joint distribution of 199 
allele frequencies and effect sizes across different ancestries to identify similarities and 200 
differences for further investigation. Insights about the similarities and differences across 201 
populations in the relationship between effect size and allele frequency could have important 202 

implications for disease risk prediction and prevention strategies. 203 
 204 
In conclusion, we emphasize the significance of data visualization in the genetics field and 205 

present a novel R package and shiny application for visualizing the relationship between allele 206 
frequency and effect size in association studies. We hope that the proposed ‘trumplet plots’ will 207 

provide a valuable representation of genetic associations and will enhance the interpretation of 208 

the association results across the allele frequency spectrum. 209 

 210 
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