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Abstract  

Purpose: To develop a pipeline that automatically classifies patients for pulmonary embolism (PE) in 

CT pulmonary angiography (CTPA) examinations with high sensitivity and specificity. 

 

Materials and Methods:  Seven hundred non-ECG-gated CTPA examinations from 652 patients 

(median age 72 years, range 16-100 years; interquartile range 18 years; 353 women) performed at a 

single institution between 2014 and 2018, of which 149 examinations contained PE, were used for 

model development. The nnU-Net deep learning-based segmentation framework was trained and 

validated in 5-fold cross-validation. To enhance classification, we applied logical rules based on PE 

volume and probability thresholds. External model testing was then performed in 770 and 34 CTPAs 

from two independent datasets. 

 

Results: For patient-level classification, a threshold PE volume of 20 mm³ resulted in the best balance 

between sensitivity and specificity. In internal cross-validation and test set, the trained model correctly 

classified 123 of 128 examinations as positive for PE (sensitivity 96%; 95% C.I. 91-98%) and 521 of 

551 as negative (specificity 95%; 95% C.I. 92-96%). In the first external test dataset, the trained model 

correctly classified 31 of 32 examinations as positive (sensitivity 97%; 95% C.I. 84-99%) and 2 of 2 as 

negative (specificity 100%; 95% C.I. 34-100%). In the second external test dataset, the trained model 

correctly classified 379 of 385 examinations as positive (sensitivity 98%; 95% C.I. 97-99%) and 346 

of 385 as negative (specificity 90%; 95% C.I. 86-93%). 

 

Conclusion: Beyond state-of-art classification for PE in CTPA was achieved using nnU-Net for deep 

learning-based segmentation in combination with volume- and probability-based classification.   
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Introduction 

Pulmonary embolism (PE) is a potentially life threatening blockage of pulmonary arteries caused by 

blood clotting and is associated with significant morbidity and mortality (1). PE affects >400,000 

patients in Europe (2) and between 300,000 and 600,000 patients in the US (3) causing an estimated 

>100,000 deaths annually (4). PE is the leading cause of preventable hospital deaths in the world (5), 

demanding rapid clinical management (6). The computed tomography pulmonary angiography (CTPA) 

imaging method is the current gold standard for PE diagnosis (7). The CTPA is a CT scan performed 

after intravenous injection of iodinated contrast medium. As the emboli do not absorb contrast medium 

they can be recognized as dark filling defects in the pulmonary arteries (8). Identification of PE in CTPA 

is time-consuming for the radiologist and requires considerable training and attentiveness, and the inter-

observer variability is high for small, sub-segmental emboli (9). An automated solution for detection of 

PE in CTPA has potential to assist the radiologist by reducing reading times and the risk of emboli 

being overlooked.  

 

Developing a general solution for automatic detection of PE has proven challenging because of 

anatomical variation, motion and breathing artifacts, inter-patient variability in contrast medium 

concentration, and concurrent pathologies. Over the past two decades,  automated PE detection has been 

attempted using deterministic models, such as image processing and analysis techniques (11,12), or 

probabilistic/statistical models such as machine learning (13–15) and deep convolutional neural 

networks (16,17). Yet, the accuracies of these solutions have been insufficient for clinical use due to 

low sensitivity (11,14,16) and high false positive rate (11,12,14,15), potentially caused by training on 

small datasets (11,12,14–16). The state-of-art is a residual neural network (ResNet) classification 

architecture on 1465 CTPA examinations with sensitivity of 92.7% and specificity of 95.5% (18). To 

mitigate dataset size obstacles of the classification problem, a fine-tuned U-Net-like architecture could 

be used as a semantic segmentation model which improved its performance in several medical image 

segmentation tasks (19). The no-new U-Net framework (nnU-Net) successfully addresses challenges of 

finding the best U-net model and fine-tuning its hyperparameters (20). Here, we sought to take 

advantage of the segmentation performance of the nnU-Net framework in a pipeline that automatically 

classifies routine patient CTPA examinations as having PE or not with higher sensitivity and specificity 

than the state-of- art.  
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Materials and Methods 

Internal dataset 

The single-institution (Nyköping Hospital, Sweden) retrospective dataset consisted of 700 non-ECG-

gated CTPA examinations performed between 2014 and 2018 (n=149 positive for PE); 383 CTPA 

examinations from 353 women (age range 16-97 years; median age 73 years; interquartile range 20 

years) and 317 from 299 men (age range 19-100 years; median age 71 years; interquartile range 15 

years) (21). The CTPAs were clinical routine examinations exported from a list in chronological order, 

with time gaps to include a larger number of CT scanners. The CTPAs were acquired on 5 different CT 

scanners (Somatom Definition Flash, Siemens Healthcare, Erlangen, Germany; LightSpeed VCT, 

General Electric (GE) Healthcare Systems, Waukesha, WI, USA; Brilliance 64, Ingenuity Core and 

Ingenuity CT, Philips Medical Systems, Eindhoven, the Netherlands). As contrast medium, Omnipaque 

350 mg I/ml (GE Healthcare Systems, Waukesha, WI, USA) was used. The most frequently used CT 

image acquisition parameters were slice thickness 0.625 mm (range 0.625 mm - 2.0 mm), pixel spacing 

0.7 mm (range 0.59 mm - 0.98 mm), and tube voltage 100 kV (range 80 kV - 120 kV). Collection and 

analysis of CTPA examinations was approved by the Swedish Ethical Review Authority (EPN Uppsala 

Dnr 2015/023 and 2015/023/1). The CTPA data was anonymized and exported in Digital Imaging and 

Communications in Medicine (DICOM) format, using a hardware solution (Dicom2USB). The CTPAs 

were reviewed and annotated using the open-source software Medical Imaging Interaction Toolkit 

(MITK) (22) by two radiologists (DT and TF) with 6 and 16 years of experience. Each CTPA was 

annotated by either DT or TF. All blood clots in 149 CTPA examinations positive for PE were manually 

segmented in axial view, image by image, resulting in 36,471 segmentations.  

 

External datasets 

Two publicly available datasets were used for external testing; the Ferdowsi University of Mashhad's 

PE dataset (FUMPE) (23) and the RSNA-STR Pulmonary Embolism CT (RSPECT) Dataset (24). The 

FUMPE dataset contains 35 CTPAs with voxel-level PE annotation by radiologists. Of the 35 CTPAs, 

2 were negative for PE, 32 were positive and one was excluded for lack of ground truth annotation. The 

RSPECT dataset consisted of a training (n=7279) and a test (n=2167) set and image-level annotations 

were provided for the training set by several subspecialist thoracic radiologists. From the RSPECT 

training dataset were selected 385 CTPAs of the total 398 with central PE, and 13 examinations were 

excluded because of DICOM to nifti file conversion error. Of the 4877 CTPAs without PE or other true 

filling defect, 385 examinations were randomly selected. An overview of our internal and external 

datasets is shown in Figure 1. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 25, 2023. ; https://doi.org/10.1101/2023.04.21.23288861doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.21.23288861


4 

 

 

Internal dataset
n = 700 

Positive examinations
n = 149

Negative examinations
n = 551

Used for model 
training and validation

Used for 
model testing

External dataset
n = 7314

Study cohort
n = 8014 CTPA

examinations

FUMPE dataset
n = 35

RSPECT PE training 
dataset

n = 7279

Lack of ground truth
n = 1

Positive examinations
n = 32

Negative examinations
n = 2

Used for model testing

Positive examinations
n = 2211

Negative examinations
n = 4911

All examinations 
annotetad as having 

central PE
n = 401

Negative 
examinations

n = 4877

Examinations with 
central PE

n = 385

Annotated as having 
true filling defects

n = 3

DICOM to nifti 
conversion problem

n = 13

Annotated as having 
true filling defects

n = 34

Randomly selected 
negative examinations

n = 385

Used for model testing

Indeterminate
examinations

n = 157

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 25, 2023. ; https://doi.org/10.1101/2023.04.21.23288861doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.21.23288861


5 

 

Figure 1. Internal and external datasets for training and testing of a segmentation-based 

classification model for pulmonary embolism detection. Positive examinations refer to the patient 

having pulmonary embolism (PE) and negative examinations are patients without PE. True filling defect 

refers to tumor invasion, stump thrombus, catheter, embolized wire, or other obvious non-PE condition 

as defined in the RSPECT dataset. 

 

nnU-Net Model training and validation 

For model training, the nnU-net DL open-source framework implemented in a Docker container 

(Docker Inc., Palo Alto, California, USA) was used (20). Given a training dataset, nnU-Net 

automatically configures an end-to-end experimental pipeline. The PE positive examinations from the 

internal dataset (n=149) were randomly assigned to training (80%, n=119) and validation sets (20%, 

n=30) in 5-fold cross-validation during model training.  

 

Automated Classification Pipeline  

After model training and validation, the validated model was embedded in a classification pipeline 

consisting of three steps, pre-processing, segmentation inference, and post-processing (Figure 2). As 

nnU-Net requires the Nifti file format for model inference, all DICOM data were converted to Nifti 

format in the pre-processing step. Next, the nnU-Net model inference was performed. Since the nnU-

Net model is a volumetric segmentation model, the inference results in a segmentation mask of 

predicted pulmonary emboli. By thresholding these predicted segmentations based on total predicted 

emboli volume, a patient-level PE and non-PE classification was obtained. Multiple PE cutoff values 

from 0 to 200 mm³ were explored to convert the PE segmentation output of the trained nnU-Net model 

to accurate classification at the patient level. Fine-tuning between PE and non-PE voxel classes was 

implemented to improve our PE/non-PE class separation. The softmax activation function of the final 

layer of the U-Net like architecture can be used to scale network output into probabilities. Hence, the 

segmentation mask can be converted into probabilities via the softmax function. Finally, we applied 

rules based on different softmax probability thresholds (0.75 - 0.95) and volumetric thresholding 

(experimenting with cutoff values from 0 mm³ to 200 mm³ in 10 mm³ intervals) to transform the model 

segmentation output into a classifier (Supp. materials). Considering these rules, two strategies were 

developed, where the best balance between sensitivity and specificity is referred to as Strategy 1, and 

the highest specificity is referred to as Strategy 2 (Supp. materials). 
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Figure 2. Training and testing of a segmentation-based classification model for pulmonary 

embolism detection. A. 700 CTPA examinations were collected and annotated by two radiologists. Of 

these, all 149 PE positive examinations were used for training and the PE negative were kept for later 

evaluation. B. The 3D U-Net deep learning model, which is generated by the nnU-Net framework, was 

trained with the 149 PE-positive CTPAs using 5-fold cross-validation. The convolution layer used a 

3×3×3 filter size by default, followed by an instance normalization (IN) layer and a leaky rectified 

Linear Unit (lRELU) layer. C. The softmax probabilities were obtained from the model inference for 

fine-tuning classification into PE or non-PE voxel classes and for calculating the predicted PE volume.  
By thresholding the predicted volumes and applying a set of logical rules, accurate patient-level 

classification for PE was achieved. D. The final model was tested on 804 external CTPA examinations 

from two publicly available datasets. 

 

Statistical Analysis 

Sensitivity and specificity of our trained model for binary classification for PE/non-PE were assessed 

on a per-patient basis. Matthew’s correlation coefficient (MCC) was used to find the optimal balance 

between sensitivity and specificity. The area under the receiver operating characteristic (AUROC) curve 

for model training, validation, and testing was used to determine classification performance. Statistical 

analysis was performed with Microsoft Office Excel (Microsoft Corporation, Washington, USA, Office 

Professional Plus 2016) and statsmodels package (version 0.13.5) in Python (version 3.8.10; Python 

Software Foundation). A p-value less than .05 was defined as statistically significant and for C.I., the 

Wilson score interval was used.   
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Results 

Model training and performance evaluation on the internal dataset 

For model training, 2,439,000 voxels of 1497 PE were annotated by two radiologists in all 149 PE 

positive CTPAs of the internal dataset (Table 1). An nnU-net model was trained with 5-fold cross-

validation with 119 training and 30 validation CTPAs per set in 4 sets and 120 training and 29 validation 

CTPAs in the fifth set without overlap between the validation sets.  To assess model performance, 21 

PE positive exams with small PEs with a total volume of less than 50 mm³ were excluded. The 

remaining 128 PE positive CTPAs and 551 PE negative CTPAs constituted the internal cross-validation 

and test set. Training and validation were performed on a single Nvidia RTX 2080 TI GPU card which 

took ~1 week for all cross-validation folds. The classification performance of the trained nnU-Net 

model on internal and external test datasets was explored over different threshold volumes and with and 

without post-processing strategies. With a threshold volume of 20 mm³ and no post-processing, a 

Matthew’s correlation coefficient score (MCC) of 0.64 was obtained with 128 of 128 positive 

examinations correctly classified as having PE, and 434 of 551 negative examinations correctly 

classified as non-PE. With the post-processing strategy 1 (Supp. materials) and threshold volume of 20 

mm³, the best MCC (0.85) was obtained with 123 of 128 positive examinations correctly classified as 

PE, and 521 of 551 negative examinations correctly classified as non-PE. Further, the model achieved 

an AUROC of 0.97 and 0.95 with and without post-processing respectively (Figure 3). The trained nnU-

Net model thus achieved a sensitivity of 0.96 (95% C.I. 91-98%, P < .05) and 1.0 (95% C.I. 97-100%, 

P < .05), and a specificity of 0.95 (95% C.I. 92-96%, P < .05) and 0.79 (95% C.I. 75-82%, P < .05) in 

the internal dataset with and without the post-processing strategies, respectively (Table 2).  

 

Table 1. Ground truth annotation of 149 internal CTPAs with PE.  

Component 
Blood 

Clots 

Average Volume Min Volume Max Volume 

(mm3) (mm3) (mm3) 

3D 

(Volume) 
1497 682 0.21 36510 

2D (Area) 36471   16 0.21 830 

1D (Voxel) 2439400       

Note. — The total PE volume in all examinations was 744783 mm3. PE = Pulmonary embolism, 3D = 3-

dimensional, 2D = 2-dimensional, 1D = 1-dimensional. Min = minimum, Max = maximum. 3D components 

comprise 2D components, and 2D components comprise 1D components where a 1D component is equal to 1 

voxel. 
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Figure 3 Classification performance of the trained nnU-Net model. Receiver operating 

characteristic (ROC) curves without (A) and with (B) post-processing.  Black, internal dataset (n = 679, 

128 PE and 551 non-PE); Blue, the FUMPE datasets (n = 34, 32 PE and 2 non-PE); Red, the RSNA PE 

dataset (n = 770, 385 PE and 385 non-PE). TPR, true positive rate; FPR, false positive rate 

 

Model performance on external datasets 

For external testing, the trained model was applied to a total of 804 CTPAs from two publicly available 

datasets. First, 34 PE positive CTPAs and 2 PE negative CTPAs from the FUMPE dataset were 

analyzed. With post-processing strategy 1, an MCC score of 0.80 was obtained with 31 of 32 positive 

examinations correctly classified as PE, and 2 of 2 negative examinations correctly classified as non-

PE. The trained model achieved AUROC 0.99 (Figure 3) with sensitivity 0.97 (95% C.I. 84-99%, P < 

.05) and specificity 1.0 (95% C.I. 34-100%, P < .05) (Table 2, Supp. Table 5). Focusing on central PE, 

where the annotations can be assumed to be more consistent, we used 385 CTPAs annotated as having 

at least one central PE and 385 PE negative CTPAs from the RSPECT pulmonary embolism CT dataset 

were used for testing. With the post-processing strategy 1 (Supp. Materials), an MCC of 0.89 was 

obtained with 379 of 385 positive examinations correctly classified as PE, and 346 of 385 negative 

examinations correctly classified as non-PE. The trained model achieved an AUROC of 0.99 (Figure 

3) with sensitivity of 0.98 (95% C.I. 97-99%, P < .05) and a specificity of 0.9 (95% C.I. 86-93%, P < 

.05) (Table 2, Supp. Table 6). Without the post-processing strategy and by setting the threshold volume 

to 20 mm³, MCC of 1.0 and 0.73 were obtained with 32 (n=32) and 385 (n=385) positive examinations 

correctly classified as PE, and 2 (n=2) and 269 (n= 385) negative examinations correctly classified as 

non-PE in the first and second external datasets, respectively (Table 2, Supp. Table 2 and 3). Moreover, 

the model achieved an AUROC of 1.0 and 0.94 (Figure 3) with a sensitivity of 1.0 (95% C.I. 89-100%, 

P < .05) and 1.0 (95% C.I. 99-100%, P < .05), and a specificity of 1.0 (95% C.I. 34-100%, P < .05) and 

0.70 (95% C.I. 65-74%, P < .05) in the first and second datasets, respectively (Table 2, Supp. Table 2 

and 3). 
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Table 2. Diagnostic performance of the trained model 

  Without the Post-Processing   With the Post-Processing Strategy 1 

Parameter 

Internal 

Dataset 

FUMPE External 

Dataset 

RSPECT External 

Dataset 
 Internal 

Dataset 

FUMPE External 

Dataset 

RSPECT External 

Dataset 

No. of CTPAs 679 34 770  679 34 770 

No. of TN 434 2 269  521 2 346 

No. of FP 117 0 116  30 0 39 

No. of TP 128 32 385  123 31 379 

No. of FN 0 0 0  5 1 6 

MCC 0.64 1.00 0.73  0.85 0.80 0.89 

Sensitivity 1.0 (97-100) 1.0 (89-100) 1.0 (99-100)  0.96 (91-98) 0.97 (84-99) 0.98 (97-99) 

Specificity 0.79 (75-82) 1.0 (34-100) 0.70 (65-74)  0.95 (92-96) 1.0 (34-100) 0.90 (86-93) 

Accuracy 0.83 1.0 0.85  0.95 0.97 0.94 

Balanced Accuracy 0.89 1.0 0.85  0.95 0.98 0.94 

AUC 0.95 1.0 0.94   0.97 0.99 0.99 

Note. — The threshold volume is set to 20 mm³. Data in parentheses are 95% CIs in percentages. CTPAs = computed tomography (CT) pulmonary angiography (CTPA) 

examinations, TN = true-negative CTPAs, FP = false-positive CTPAs, TP = true-positive CTPAs, FN = false-negative CTPAs, MCC = Matthew’s correlation coefficient, 

AUC = area under the receiver operating characteristic curve. 
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The output of the automated classification pipeline is shown (Figure 4). Running model inference within 

the nnU-net framework for a single CTPA volume examination took 25-45 minutes on a single Nvidia 

RTX 2080 TI GPU card. 

 

 

Figure 4. Representative segmentation results of the trained model. Axial, coronal, and sagittal 

planes from the same CTPA examinations from the external FUMPE dataset with the same window 

setting (width = 800 HU, level = 100 HU) are shown. Red, pulmonary embolism annotation; blue, 

model segmentation; purple, overlay of annotation and model segmentation 

 

Benchmarking of model performance 

As mentioned above, post-processing strategy 1 was used to find out the best balance between 

sensitivity and specificity and 20 mm³ was determined as the optimal threshold volume. Aiming for the 

highest specificity and the lowest patient level false positive rate, we used post-processing strategy 2 

where 50 mm³ was determined as optimal threshold volume. For size comparison, 20 mm³, 50 mm³, 

and other threshold volumes (Figure 5A) are compared to a segmented reference pulmonary artery 

(Figure 5B). In the internal test dataset, the highest specificity (0.97; 95% C.I. 95-98%, P < .05) was 

obtained with a sensitivity of 0.88 (95% C.I. 81-92%, P < .05) with post-processing strategy 2 (Supp. 

materials, Supp. Table 7) and threshold volume of 50 mm³. Without post-processing, the highest 

specificity (0.91; 95% C.I. 88-93%, P < .05) was obtained with a sensitivity of 0.92 (95% C.I. 86-96%, 

P < .05) at a threshold volume of 130 mm³ (Supp. Table 1). For the external datasets, the highest 

specificity (1.0; 95% C.I. 34-100%, P < .05 and 0.97; 95% C.I. 95-98%, P < .05) was obtained with a 
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sensitivity of 0.91 (95% C.I. 76-97%, P < .05) and 0.97 (95% C.I. 94-98%, P < .05) in the FUMPE and 

RSPECT datasets, respectively (Supp. Table 8 and 9). For reference, the voxel-wise ground truth PE 

from the internal training set and the FUMPE external test set are shown (Figures 5C and D). Moreover, 

Moreover, we examined the source of FPs by setting the post-processing strategy 2 which resulted in a 

minimum number of FPs per dataset. The most frequent false positives were due to low contrast medium 

in pulmonary arteries (Table 3, Figures 5E and F). Whereas 18% of FPs occurred on the outside of the 

thoracic cavity, the upper abdomen, or the superior vena cava. and the remaining FPs occurred within 

or close to the pulmonary vessel network.  

 

Table 3. Sources of false positives in PE negative CTPA examinations from internal and external 

datasets 

Source  
Internal Dataset 

(n=18) 

RSPECT External Dataset  

(n=12) 

Flow artifact 1 1 

Upper abdomen (in left colon)  1 0 

Outside the thoracic cavity 3 0 

Low contrast medium in PT 6 2 

Pulmonary vein 1 2 

Superior vena cava  1 0 

Intrafissural fluid / atelectasis 0 1 

Multiple metastasis 1 1 

Tumor 4 2 

True pulmonary emboli 0 3 

Note. —    CTPAs = computed tomography (CT) pulmonary angiography (CTPA) examinations, PE = pulmonary embolism, PT 

= pulmonary trunk, RSPECT = RSNA Pulmonary Embolism CT Dataset. The cause of false positives in a total of 30 CTPAs is 

shown, 18 in internal and 12 in external datasets.  

 

 

We next compared model performance to those of previous studies (Table 4). With post-processing 

strategy 2, the proposed pipeline achieved a sensitivity of 0.96 (95% C.I. 94-98%, P < .05) and a 

specificity of 0.97 (95% C.I. 95-98%, P < .05) on the combined (internal and external) testing set (Supp. 

Table 10 and 11). While investigating the causes of false positives, we observed that 3 CTPAs from the 

RSPECT dataset that were annotated as PE negative were actually PE positive. Considering this 

correction, the proposed pipeline achieved a specificity of 97.1%. 
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Table 4. Model performance comparison for patient-level classification for PE in CTPA examinations. 

                Testing size 

Author Year Method 
Classification 

level 

PE 

location 

AUC 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

PE positive 

CTPAs 

PE negative 

CTPAs 

PIOPED II (27) 2006 Radiologists patient-level M, L, S, s N/A 83 96 181 592 

Maizlin et al (28) 2007 IPAT patient-level M, L, S, s N/A 53.3 77.5 15 89 

Wittenberg et al (9) 2010 IPAT patient-level M, L, S, s N/A 94 21 68 210 

Wittenberg et al (10) 2012 IPAT patient-level M, L, S, s N/A 96 22 51 158 

Lahiji et al (29) 2014 IPAT patient-level L, S, s N/A 97.5 26.9 40 26 

Rajan et al (17) 2020 2D U-Net + LSTM patient-level M, L 85 N/A N/A 385 127 

Rajan et al (17) 2020 2D U-Net + LSTM patient-level S, s 70 N/A N/A 385 127 

Weikert et al (18) 2020 DCNN patient-level M, L, S, s N/A 92.7 95.5 232 1233 

Weikert et al (18) 2020 DCNN patient-level M, L, (S, s) * N/A 95.7 95.5 232 1233 

Weikert et al (18) 2020 DCNN patient-level S, (s)* N/A 93.3 95.5 232 1233 

Weikert et al (18) 2020 DCNN patient-level s N/A 85.7 95.5 232 1233 

Huang et al (26) 2020 3D CNN patient-level M, L, S 85 75 81 94 106 

Huhtanen et al (30) 2022 CNN patient-level M, L, S, s N/A 86.6 93.5 97 107 

Proposed pipeline  2023 nnU-Net + DPPS1 patient-level M, L, S, s 98.2 98.3 92.6 417 938 

Proposed pipeline  2023 nnU-Net + DPPS2 patient-level M, L, S, s 98.2 96.2 96.8 417 938 

Note. —  * can possibly have pulmonary emboli in these segments , PE = pulmonary embolism, CTPAs = computed tomography (CT) pulmonary angiography (CTPA) examinations, IPAT = image 

processing and analysis techniques, N/A =  not available,  M = left, right and main pulmonary arteries-level PE, L = lobar level PE, S = segmental level PE, s = sub-segmental level PE, LSTM = long 

short-term memory, CNN = convolutional neural network, DCNN = deep CNN, PIOPED = Prospective Investigation of Pulmonary Embolism Diagnosis II, DPPS= deterministic  post-processing strategy. 
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Figure 5. Ground truth and false positive pulmonary emboli. The PEs from ground truth or false 

positive AI annotations of the indicated cohort were projected in a single volume. A. Patient orientation 

of 3D volumes with reference threshold volumes (20, 50, 200, 1000, and 10000 mm³). B. Manually 

segmented reference pulmonary artery (volume of 113 cm³) from a male patient without PE. C. Ground 

truth PE from the 149 positive examinations of the internal training set shown in a single volume (total 

PE volume = 745 cm³). D. Ground truth PE from 32 positive exams of the FUMPE external test set 

shown in a single volume (total PE volume = 466 cm³). E. False positive PE from the internal test set 

(18 PE negative examinations with total FP volume = 59 cm³). F. False positive PE from the RSNA 

external test set (12 PE negative examinations with total FP volume of 28 cm³). False positives were 

obtained from PE negative examinations by aiming for the highest specificity using post-processing 

strategy 2. All volumetric images are isotropic (1 mm × 1 mm × 1 mm). 
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Discussion 

 

Automatic detection of PE has potential to assist the radiologist in the time-consuming reading of CTPA 

examinations. Preferentially, such a system could highlight PE positive examinations in the work list, 

helping radiologists identify high-priority cases for rapid review (10). Detection of PE in CTPA using 

DCNN was first demonstrated by Tajbakhsh et al. with a sensitivity of 83% and 34.6% at 2 

FPs/examinations on 121 internal and 20 external test examinations, respectively (25). Rajan et al. 

proposed a two-stage solution where a 2D U-Net model was used for PE candidate generation, followed 

by a convolutional long short-term memory (LSTM) network coupled with multiple instance learning 

to detect PE lesions, with AUROC of 0.70 for subsegmental and segmental PE and 0.85 for saddle and 

main pulmonary artery PE on a test dataset of 512 CTPA examinations (17). In a study by Huang et al. 

(26), a 3D CNN model termed PENet was developed which achieved a sensitivity of 75% and 

specificity of 81% on an external test dataset of 200 CTPA examinations. However, all these studies 

have major limitations such as small testing dataset sizes or low specificity rates. The current state-of-

art results were recently achieved using the Resnet architecture on 1465 CTPA examinations with a 

sensitivity of 92.7% and specificity of 95.5% at the patient level (18). Taken together, the performance 

of AI systems for PE detection is now at a point where clinical utility can be expected, but further gains 

in sensitivity and specificity are still warranted.  

 

Here, we developed a pipeline that classifies CTPA examinations for PE consisting of two main stages, 

PE candidate selection and post-processing. For PE candidate selection, we trained and validated a 

semantic segmentation model, nnU-Net, on our internal dataset. The nnU-Net is a medical image 

segmentation framework based on the U-Net architecture and has outperformed state-of-the-art models 

by competing in 53 segmentation tasks from 11 international biomedical image segmentation challenges 

and taking first place in 33 of them (20). To our knowledge, this is the first use of nnU-Net for 

classification for PE. To transform the segmentation model into a classification model, we developed 

rules based on probability and minimum volume thresholds as a post-processing stage. We defined two 

post-processing strategies, one for the best trade-off between sensitivity and specificity and one for 

achieving the highest specificity. At the best trade-off between sensitivity and specificity, the patient-

level classification performance of the trained model achieved a sensitivity of 98.3% and specificity of 

92.6% on the combined testing dataset using a threshold volume of 20 mm³, compared to specificity of 

75.2% with sensitivity of 100% without post-processing. Thus, by sacrificing 1.7% of sensitivity, the 

model gained 17.4% in specificity using post-processing. The model outperformed the current state-of-

art using the strategy of highest specificity, achieving 96.2% sensitivity and a specificity of 96.8% on 

the combined testing dataset of 1355 CTPA examinations with a threshold total emboli volume of 50 

mm³.  
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Although the nnU-Net based model presented here is superior to the state-of-art, there are some 

limitations and opportunities for future enhancement. First, the model was trained on data from a single 

institution, although derived from five different CT scanners. Second, the RSPECT validation dataset 

lacks voxel level annotation of PE by radiologists, which precludes final determination of sensitivity 

and specificity until a review has been completed.  Finally, by disabling the test data augmentation the 

model inference can take 3 to 5 minutes in a CTPA examination. However, disabling the test data 

augmentation induces an accuracy loss of close to %5. To avoid loss of accuracy, the model inference 

should run with the test data augmentation which took between 30-45 minutes in a CTPA examination. 

Therefore, the model inference time needs to be accelerated for future clinical applications. Taken 

together, we have obtained promising results with the nnU-Net deep learning architecture for binary 

classification for PE/non-PE.  
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Supplementary Materials 

 

Post-processing step 

The nn-Unet softmax activation function of the final layer of the U-Net architecture can be used to scale 

network output into probabilities. Hence, the probabilities could be gathered, and not only final pixel 

class values. We developed a set of logical rules based on different softmax probability thresholds (0.75 

- 0.95) and threshold volumes (0 mm³ to 200 mm³ in 10 mm³ intervals) to reduce false positives (FPs) 

and convert nnU-Net inference segmentation output into a patient-level classification output. By setting 

different softmax probability thresholds, we obtained different predicted PE volumes. If the model is 

well-trained to distinguish between PE and non-PE classes, the number of predicted voxels (false 

positive voxels) that do not belong to the PE class will decrease when the softmax probabilities are set 

to higher thresholds. Therefore, we developed the formulas below to decide whether the total predicted 

PE volume is sufficient to designate the patient as PE positive/negative.   

 

Proposition 1: 

 

𝑅 =  

{
 

 

 

  𝑖𝑓  
(𝑃0.75 − 𝑃0.90)

 𝑃0.90
>  𝑟   ,       𝑁𝑜𝑛 − 𝑃𝐸

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               ,        𝑃𝐸
 

 

 

where 𝑃0.75 is the volume of total PE predicted by the trained model at a softmax probability of 0.75, 

𝑃0.90 is the volume of total PE predicted by the trained model at a softmax probability of 0.90, and 𝑟 is 

the ratio factor, which was fixed at 15. The softmax probability value range and the ratio factor were 

optimized by systematic exploration. 

 

Proposition 2: 

𝑄 = 

{
 
 

 
 

 

( ∑ (
1, 𝑖𝑓 (𝑃𝑖 < 𝑣)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
)

0.95

𝑖=0.75

)  ≥ 𝑘 ,         𝑁𝑜𝑛 − 𝑃𝐸

                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  ,     𝑃𝐸                                        
 

 

 

where 𝑃𝑖 is the volume of total PE predicted by the trained model at a softmax probability of i between 

0.75 to 0.95 with 0.05 intervals, v is the threshold volume between 0 and 200 mm³ at 10 mm³ intervals 

and  𝑘 is the condition factor (min value is 0, max value is 4) that refers to the total number of true 

conditions satisfying 𝑃𝑖 < 𝑣 equation. 
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Then, the final decision is made as follows: 

 

 𝑅 ∨ 𝑄 =  {

 
𝑃𝑎𝑡𝑖𝑒𝑛𝑡 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑃𝐸, 𝑇𝑟𝑢𝑒 
𝑃𝑎𝑡𝑖𝑒𝑛𝑡 𝑤𝑖𝑡ℎ 𝑃𝐸,               𝐹𝑎𝑙𝑠𝑒

 

 

 

 

According to the propositions above, we defined two post-processing strategies. Strategy 1 (Rule-in 

classification for PE) aimed to find the exact threshold volume value and 𝑘 value for the best trade-off 

between sensitivity and specificity by checking the Matthew’s correlation coefficient (MCC) value. 

And strategy 2 (Rule-out classification for PE) aimed to find the exact threshold volume and 𝑘 values 

for the highest specificity alongside the highest MCC value. 

 

Strategy 1: 

By systematic exploration, setting the threshold volume value to 20 mm³ and the k value to 1 gives the 

highest MCC value (0.85, Supplementary Table 4). 

 

Strategy 2 

By systematic exploration, setting the threshold volume value to 50 mm³ and the k value to 0 gives the 

highest specificity alongside the highest MCC value (0.84, Supplementary Table 7). 
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Supplementary Table 1. Diagnostic performance of the trained model without post-processing in the internal dataset 

  Internal Dataset (CTPAs = 679) 

  Without Post-Processing 

Metric \ Threshold 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 

No. of TN 213 389 434 459 465 476 486 488 490 492 493 496 497 499 501 501 502 502 502 503 503 

No. of FP 338 162 117 92 86 75 65 63 61 59 58 55 54 52 50 50 49 49 49 48 48 

No. of TP 128 128 128 127 126 126 124 123 123 121 120 119 118 118 118 117 117 116 116 115 115 

No. of FN 0 0 0 1 2 2 4 5 5 7 8 9 10 10 10 11 11 12 12 13 13 

MCC 0.33 0.56 0.64 0.69 0.70 0.73 0.74 0.74 0.75 0.74 0.74 0.74 0.74 0.75 0.75 0.75 0.75 0.75 0.75 0.74 0.74 

Sensitivity 1.00 1.00 1.00 0.99 0.98 0.98 0.97 0.96 0.96 0.95 0.94 0.93 0.92 0.92 0.92 0.91 0.91 0.91 0.91 0.90 0.90 

Specificity 0.39 0.71 0.79 0.83 0.84 0.86 0.88 0.89 0.89 0.89 0.89 0.90 0.90 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 

Accuracy 0.50 0.76 0.83 0.86 0.87 0.89 0.90 0.90 0.90 0.90 0.90 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 

Balanced Accuracy 0.69 0.85 0.89 0.91 0.91 0.92 0.93 0.92 0.93 0.92 0.92 0.91 0.91 0.91 0.92 0.91 0.91 0.91 0.91 0.91 0.91 

Note. — The thresholds are in mm³. CTPAs = computed tomography (CT) pulmonary angiography (CTPA) examinations, TN = true-negative CTPAs, FP = false-positive 

CTPAs, TP = true-positive CTPAs, FN = false-negative CTPAs, MCC = Matthew’s correlation coefficient. 
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Supplementary Table 2. Diagnostic performance of the trained model without post-processing in the external FUMPE dataset 

  FUMPE External Dataset (CTPAs = 34) 

  Without Post-Processing 

Metric \ Threshold 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 

No. of TN 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

No. of FP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

No. of TP 32 32 32 32 32 32 32 32 32 32 31 31 30 30 29 29 29 29 29 29 29 

No. of FN 0 0 0 0 0 0 0 0 0 0 1 1 2 2 3 3 3 3 3 3 3 

MCC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.80 0.80 0.68 0.68 0.60 0.60 0.60 0.60 0.60 0.60 0.60 

Sensitivity 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.97 0.94 0.94 0.91 0.91 0.91 0.91 0.91 0.91 0.91 

Specificity 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Accuracy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.97 0.94 0.94 0.91 0.91 0.91 0.91 0.91 0.91 0.91 

Balanced Accuracy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.98 0.97 0.97 0.95 0.95 0.95 0.95 0.95 0.95 0.95 

Note. — The thresholds are in mm³. CTPAs = computed tomography (CT) pulmonary angiography (CTPA) examinations, TN = true-negative CTPAs, FP = false-positive 

CTPAs, TP = true-positive CTPAs, FN = false-negative CTPAs, MCC = Matthew’s correlation coefficient. FUMPE = Ferdowsi University of Mashhad's PE dataset. 
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Supplementary Table 3. Diagnostic performance of the trained model without post-processing in the external RSPECT Dataset 

  RSPECT External Dataset (CTPAs = 770) 

  Without Post-Processing 

Metric \ Threshold 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 

No. of TN 131 249 269 287 297 303 308 312 314 318 321 326 328 330 333 333 335 337 338 341 343 

No. of FP 254 136 116 98 88 82 77 73 71 67 64 59 57 55 52 52 50 48 47 44 42 

No. of TP 385 385 385 385 385 385 384 383 382 382 382 382 382 380 376 376 376 375 374 374 374 

No. of FN 0 0 0 0 0 0 1 2 3 3 3 3 3 5 9 9 9 10 11 11 11 

MCC 0.45 0.69 0.73 0.77 0.79 0.81 0.81 0.82 0.82 0.83 0.84 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.86 0.87 

Sensitivity 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.97 0.97 0.97 0.97 

Specificity 0.34 0.65 0.70 0.75 0.77 0.79 0.80 0.81 0.82 0.83 0.83 0.85 0.85 0.86 0.86 0.86 0.87 0.88 0.88 0.89 0.89 

Accuracy 0.67 0.82 0.85 0.87 0.89 0.89 0.90 0.90 0.90 0.91 0.91 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.93 0.93 

Balanced Accuracy 0.67 0.82 0.85 0.87 0.89 0.89 0.90 0.90 0.90 0.91 0.91 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.93 0.93 

Note. — The thresholds are in mm³. CTPAs = computed tomography (CT) pulmonary angiography (CTPA) examinations, TN = true-negative CTPAs, FP = false-positive 

CTPAs, TP = true-positive CTPAs, FN = false-negative CTPAs, MCC = Matthew’s correlation coefficient. RSPECT = RSNA Pulmonary Embolism CT Dataset  
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 25, 2023. ; https://doi.org/10.1101/2023.04.21.23288861doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.21.23288861


26 

 

Supplementary Table 4. Diagnostic performance of the trained model with post-processing strategy 1 in the internal dataset 

  Internal Dataset (CTPAs = 679) 

  With Post-Processing Strategy 1 

Metric \ Threshold 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 

No. of TN 439 511 521 523 526 529 529 530 530 530 531 533 534 535 536 536 537 538 538 538 538 

No. of FP 112 40 30 28 25 22 22 21 21 21 20 18 17 16 15 15 14 13 13 13 13 

No. of TP 124 124 123 120 114 113 113 111 109 108 108 108 106 106 106 105 105 102 102 102 101 

No. of FN 4 4 5 8 14 15 15 17 19 20 20 20 22 22 22 23 23 26 26 26 27 

MCC 0.63 0.82 0.85 0.84 0.82 0.83 0.83 0.82 0.81 0.80 0.81 0.82 0.81 0.81 0.82 0.81 0.82 0.81 0.81 0.81 0.80 

Sensitivity 0.97 0.97 0.96 0.94 0.89 0.88 0.88 0.87 0.85 0.84 0.84 0.84 0.83 0.83 0.83 0.82 0.82 0.80 0.80 0.80 0.79 

Specificity 0.80 0.93 0.95 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98 

Accuracy 0.83 0.94 0.95 0.95 0.94 0.95 0.95 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.95 0.94 0.95 0.94 0.94 0.94 0.94 

Balanced Accuracy 0.88 0.95 0.95 0.94 0.92 0.92 0.92 0.91 0.91 0.90 0.90 0.91 0.90 0.90 0.90 0.90 0.90 0.89 0.89 0.89 0.88 

Note. —  The thresholds are in mm³. CTPAs = computed tomography (CT) pulmonary angiography (CTPA) examinations, TN = true-negative CTPAs, FP = false-positive 

CTPAs, TP = true-positive CTPAs, FN = false-negative CTPAs, MCC = Matthew’s correlation coefficient. 
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Supplementary Table 5. Diagnostic performance of the trained model with post-processing strategy 1 in the external FUMPE Dataset 

  FUMPE External Dataset (CTPAs = 34) 

  With Post-Processing Strategy 1 

Metric \ Threshold 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 

No. of TN 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

No. of FP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

No. of TP 31 31 31 31 30 29 29 29 29 28 28 28 28 28 28 28 28 28 28 27 27 

No. of FN 1 1 1 1 2 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 

MCC 0.80 0.80 0.80 0.80 0.68 0.60 0.60 0.60 0.60 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.49 0.49 

Sensitivity 0.97 0.97 0.97 0.97 0.94 0.91 0.91 0.91 0.91 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.84 0.84 

Specificity 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Accuracy 0.97 0.97 0.97 0.97 0.94 0.91 0.91 0.91 0.91 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.85 0.85 

Balanced Accuracy 0.98 0.98 0.98 0.98 0.97 0.95 0.95 0.95 0.95 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.92 0.92 

Note. —  The thresholds are in mm³. CTPAs = computed tomography (CT) pulmonary angiography (CTPA) examinations, TN = true-negative CTPAs, FP = false-positive 

CTPAs, TP = true-positive CTPAs, FN = false-negative CTPAs, MCC = Matthew’s correlation coefficient. FUMPE = Ferdowsi University of Mashhad's PE dataset. 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 25, 2023. ; https://doi.org/10.1101/2023.04.21.23288861doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.21.23288861


28 

 

Supplementary Table 6. Diagnostic performance of the trained model with post-processing strategy 1 in the external RSPECT Dataset 

  RSPECT External Dataset (CTPAs = 770) 

  With Post-Processing Strategy 1 

Metric \ Threshold 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 

No. of TN 294 336 346 356 361 364 368 370 370 371 372 374 376 377 377 377 377 378 380 380 380 

No. of FP 91 49 39 29 24 21 17 15 15 14 13 11 9 8 8 8 8 7 5 5 5 

No. of TP 382 379 379 379 377 376 373 372 372 371 369 369 368 367 367 366 365 364 364 364 363 

No. of FN 3 6 6 6 8 9 12 13 13 14 16 16 17 18 18 19 20 21 21 21 22 

MCC 0.78 0.86 0.89 0.91 0.92 0.92 0.92 0.93 0.93 0.93 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 

Sensitivity 0.99 0.98 0.98 0.98 0.98 0.98 0.97 0.97 0.97 0.96 0.96 0.96 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.94 

Specificity 0.76 0.87 0.90 0.92 0.94 0.95 0.96 0.96 0.96 0.96 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.99 

Accuracy 0.88 0.93 0.94 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.96 0.96 0.96 0.97 0.97 0.96 

Balanced Accuracy 0.88 0.93 0.94 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.96 0.96 0.96 0.97 0.97 0.96 

Note. —  The thresholds are in mm³. CTPAs = computed tomography (CT) pulmonary angiography (CTPA) examinations, TN = true-negative CTPAs, FP = false-positive 

CTPAs, TP = true-positive CTPAs, FN = false-negative CTPAs, MCC = Matthew’s correlation coefficient. RSPECT = RSNA Pulmonary Embolism CT Dataset  
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Supplementary Table 7. Diagnostic performance of the trained model with post-processing strategy 2 in the internal Dataset 

  Internal Dataset (CTPAs = 679) 

  With Post-Processing Strategy 2 

Metric \ Threshold 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 

No. of TN 466 519 524 529 531 533 534 536 536 537 538 538 538 540 540 540 540 541 541 541 541 

No. of FP 85 32 27 22 20 18 17 15 15 14 13 13 13 11 11 11 11 10 10 10 10 

No. of TP 124 120 116 114 113 112 109 108 108 106 106 106 106 105 103 102 102 101 100 99 99 

No. of FN 4 8 12 14 15 16 19 20 20 22 22 22 22 23 25 26 26 27 28 29 29 

MCC 0.69 0.83 0.82 0.83 0.83 0.84 0.83 0.83 0.83 0.82 0.83 0.83 0.83 0.83 0.82 0.82 0.82 0.82 0.81 0.80 0.80 

Sensitivity 0.97 0.94 0.91 0.89 0.88 0.88 0.85 0.84 0.84 0.83 0.83 0.83 0.83 0.82 0.80 0.80 0.80 0.79 0.78 0.77 0.77 

Specificity 0.85 0.94 0.95 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 

Accuracy 0.87 0.94 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.94 0.94 

Balanced Accuracy 0.91 0.94 0.93 0.93 0.92 0.92 0.91 0.91 0.91 0.90 0.90 0.90 0.90 0.90 0.89 0.89 0.89 0.89 0.88 0.88 0.88 

Note. —  The thresholds are in mm³. CTPAs = computed tomography (CT) pulmonary angiography (CTPA) examinations, TN = true-negative CTPAs, FP = false-positive 

CTPAs, TP = true-positive CTPAs, FN = false-negative CTPAs, MCC = Matthew’s correlation coefficient. 
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Supplementary Table 8. Diagnostic performance of the trained model with post-processing strategy 2 in the eternal FUMPE Dataset 

  FUMPE External Dataset (CTPAs = 34) 

  With Post-Processing Strategy 2 

Metric \ Threshold 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 

No. of TN 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

No. of FP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

No. of TP 31 31 31 31 29 29 29 28 28 28 28 28 28 28 28 27 27 27 27 27 27 

No. of FN 1 1 1 1 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 

MCC 0.80 0.80 0.80 0.80 0.60 0.60 0.60 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.49 0.49 0.49 0.49 0.49 0.49 

Sensitivity 0.97 0.97 0.97 0.97 0.91 0.91 0.91 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.84 0.84 0.84 0.84 0.84 0.84 

Specificity 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Accuracy 0.97 0.97 0.97 0.97 0.91 0.91 0.91 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.85 0.85 0.85 0.85 0.85 0.85 

Balanced Accuracy 0.98 0.98 0.98 0.98 0.95 0.95 0.95 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.92 0.92 0.92 0.92 0.92 0.92 

Note. —  The thresholds are in mm³. CTPAs = computed tomography (CT) pulmonary angiography (CTPA) examinations, TN = true-negative CTPAs, FP = false-positive 

CTPAs, TP = true-positive CTPAs, FN = false-negative CTPAs, MCC = Matthew’s correlation coefficient. FUMPE = Ferdowsi University of Mashhad's PE dataset. 
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Supplementary Table 9. Diagnostic performance of the trained model with post-processing strategy 2 in the external RSPECT Dataset 

  RSPECT External Dataset (CTPAs = 770) 

  With Post-Processing Strategy 2 

Metric \ Threshold 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 

No. of TN 310 349 358 366 371 373 373 375 376 377 379 379 379 380 381 382 382 382 382 382 382 

No. of FP 75 36 27 19 14 12 12 10 9 8 6 6 6 5 4 3 3 3 3 3 3 

No. of TP 380 378 374 374 372 372 370 369 367 366 366 365 364 362 362 362 362 362 362 361 360 

No. of FN 5 7 11 11 13 13 15 16 18 19 19 20 21 23 23 23 23 23 23 24 25 

MCC 0.81 0.89 0.90 0.92 0.93 0.94 0.93 0.93 0.93 0.93 0.94 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 

Sensitivity 0.99 0.98 0.97 0.97 0.97 0.97 0.96 0.96 0.95 0.95 0.95 0.95 0.95 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 

Specificity 0.81 0.91 0.93 0.95 0.96 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

Accuracy 0.90 0.94 0.95 0.96 0.96 0.97 0.96 0.97 0.96 0.96 0.97 0.97 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.96 0.96 

Balanced Accuracy 0.90 0.94 0.95 0.96 0.96 0.97 0.96 0.97 0.96 0.96 0.97 0.97 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.96 0.96 

Note. —  The thresholds are in mm³. CTPAs = computed tomography (CT) pulmonary angiography (CTPA) examinations, TN = true-negative CTPAs, FP = false-positive 

CTPAs, TP = true-positive CTPAs, FN = false-negative CTPAs, MCC = Matthew’s correlation coefficient. RSPECT = RSNA Pulmonary Embolism CT Dataset  
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Supplementary Table 10. Diagnostic performance of the trained model with post-processing strategy 1 in the combined testing dataset 

  Testing Dataset (CTPAs = 1355) 

  With Post-Processing Strategy 1 

Metric \ Threshold 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 

No. of TN 735 849 869 881 889 895 899 902 902 903 905 909 912 914 915 915 916 918 920 920 920 

No. of FP 203 89 69 57 49 43 39 36 36 35 33 29 26 24 23 23 22 20 18 18 18 

No. of TP 413 410 410 410 407 405 402 401 401 399 397 397 396 395 395 394 393 392 392 391 390 

No. of FN 4 7 7 7 10 12 15 16 16 18 20 20 21 22 22 23 24 25 25 26 27 

MCC (%) 71.7 85.0 87.8 89.6 90.2 90.8 90.9 91.2 91.2 91.0 90.9 91.6 91.9 92.0 92.2 92.0 92.0 92.2 92.5 92.3 92.2 

Sensitivity (%) 99.0 98.3 98.3 98.3 97.6 97.1 96.4 96.2 96.2 95.7 95.2 95.2 95.0 94.7 94.7 94.5 94.2 94.0 94.0 93.8 93.5 

Specificity (%) 78.4 90.5 92.6 93.9 94.8 95.4 95.8 96.2 96.2 96.3 96.5 96.9 97.2 97.4 97.5 97.5 97.7 97.9 98.1 98.1 98.1 

Accuracy (%) 84.7 92.9 94.4 95.3 95.6 95.9 96.0 96.2 96.2 96.1 96.1 96.4 96.5 96.6 96.7 96.6 96.6 96.7 96.8 96.8 96.7 

Balanced Accuracy (%) 88.7 94.4 95.5 96.1 96.2 96.3 96.1 96.2 96.2 96.0 95.8 96.1 96.1 96.1 96.1 96.0 95.9 95.9 96.0 95.9 95.8 

Note. —  The thresholds are in mm³. CTPAs = computed tomography (CT) pulmonary angiography (CTPA) examinations, TN = true-negative CTPAs, FP = false-positive 

CTPAs, TP = true-positive CTPAs, FN = false-negative CTPAs, MCC = Matthew’s correlation coefficient. RSPECT = RSNA Pulmonary Embolism CT Dataset, FUMPE = 

Ferdowsi University of Mashhad's PE dataset, Testing Dataset = 551 PE negative CTPAs from internal testing set + 32 PE positive and 2 PE negative from FUMPE + 385 PE 

positive and 385 PE negative CTPAs from RSPECT 
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Supplementary Table 11. Diagnostic performance of the trained model with post-processing strategy 2 in the combined testing dataset 

  Testing Dataset (CTPAs = 1355) 

  With Post-Processing Strategy 2 

Metric \ Threshold 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 

No. of TN 778 870 884 897 904 908 909 913 914 916 919 919 919 922 923 924 924 925 925 925 925 

No. of FP 160 68 54 41 34 30 29 25 24 22 19 19 19 16 15 14 14 13 13 13 13 

No. of TP 411 409 405 405 401 401 399 397 395 394 394 393 392 390 390 389 389 389 389 388 387 

No. of FN 6 8 12 12 16 16 18 20 22 23 23 24 25 27 27 28 28 28 28 29 30 

MCC (%) 76.2 87.8 89.1 91.1 91.5 92.1 91.9 92.2 92.0 92.2 92.7 92.5 92.4 92.5 92.7 92.7 92.7 92.9 92.9 92.7 92.5 

Sensitivity (%) 98.6 98.1 97.1 97.1 96.2 96.2 95.7 95.2 94.7 94.5 94.5 94.2 94.0 93.5 93.5 93.3 93.3 93.3 93.3 93.0 92.8 

Specificity (%) 82.9 92.8 94.2 95.6 96.4 96.8 96.9 97.3 97.4 97.7 98.0 98.0 98.0 98.3 98.4 98.5 98.5 98.6 98.6 98.6 98.6 

Accuracy (%) 87.7 94.4 95.1 96.1 96.3 96.6 96.5 96.7 96.6 96.7 96.9 96.8 96.8 96.8 96.9 96.9 96.9 97.0 97.0 96.9 96.8 

Balanced Accuracy (%) 90.8 95.4 95.7 96.4 96.3 96.5 96.3 96.3 96.1 96.1 96.2 96.1 96.0 95.9 96.0 95.9 95.9 95.9 95.9 95.8 95.7 

Note. —  The thresholds are in mm³. CTPAs = computed tomography (CT) pulmonary angiography (CTPA) examinations, TN = true-negative CTPAs, FP = false-positive 

CTPAs, TP = true-positive CTPAs, FN = false-negative CTPAs, MCC = Matthew’s correlation coefficient. RSPECT = RSNA Pulmonary Embolism CT Dataset, FUMPE = 

Ferdowsi University of Mashhad's PE dataset, Testing Dataset = 551 PE negative CTPAs from internal testing set + 32 PE positive and 2 PE negative from FUMPE + 385 PE 

positive and 385 PE negative CTPAs from RSPECT 
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Supplementary Table 12. Diagnostic performance of the trained model without post-processing strategy in the combined testing dataset 

  Testing Dataset (CTPAs = 1355) 

  Without Post-Processing Strategy 

Metric \ Threshold 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 

No. of TN 346 640 705 748 764 781 796 802 806 812 816 824 827 831 836 836 839 841 842 846 848 

No. of FP 592 298 233 190 174 157 142 136 132 126 122 114 111 107 102 102 99 97 96 92 90 

No. of TP 417 417 417 417 417 417 416 415 414 414 413 413 412 410 405 405 405 404 403 403 403 

No. of FN 0 0 0 0 0 0 1 2 3 3 4 4 5 7 12 12 12 13 14 14 14 

MCC (%) 39.0 63.1 69.4 74.0 75.8 77.8 79.4 79.9 80.2 80.9 81.2 82.3 82.5 82.6 82.3 82.3 82.7 82.7 82.7 83.2 83.5 

Sensitivity (%) 100.0 100.0 100.0 100.0 100.0 100.0 99.8 99.5 99.3 99.3 99.0 99.0 98.8 98.3 97.1 97.1 97.1 96.9 96.6 96.6 96.6 

Specificity (%) 36.9 68.2 75.2 79.7 81.4 83.3 84.9 85.5 85.9 86.6 87.0 87.8 88.2 88.6 89.1 89.1 89.4 89.7 89.8 90.2 90.4 

Accuracy (%) 56.3 78.0 82.8 86.0 87.2 88.4 89.4 89.8 90.0 90.5 90.7 91.3 91.4 91.6 91.6 91.6 91.8 91.9 91.9 92.2 92.3 

Balanced Accuracy (%) 68.4 84.1 87.6 89.9 90.7 91.6 92.3 92.5 92.6 92.9 93.0 93.4 93.5 93.5 93.1 93.1 93.3 93.3 93.2 93.4 93.5 

Note. —  The thresholds are in mm³. CTPAs = computed tomography (CT) pulmonary angiography (CTPA) examinations, TN = true-negative CTPAs, FP = false-positive CTPAs, TP 

= true-positive CTPAs, FN = false-negative CTPAs, MCC = Matthew’s correlation coefficient. RSPECT = RSNA Pulmonary Embolism CT Dataset, FUMPE = Ferdowsi University 

of Mashhad's PE dataset, Testing Dataset = 551 PE negative CTPAs from internal testing set + 32 PE positive and 2 PE negative from FUMPE + 385 PE positive and 385 PE negative 

CTPAs from RSPECT 
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