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Abstract— Quantification of human behavior in a social
context may lead to discovery of subtle behavioral variations
in a population that can be used to improve classification and
screening for psychiatric disorders, and provide more accurate
targeting in the development of interventions and biomedical
treatments. However, it is difficult to study social interaction in
a controlled, reproducible environment, as well as analyze the
resulting behavior. In this research, we describe an experimental
framework that utilizes a game of iterated Rock-Scissors-Paper
played against an artificial intelligence agent, and a behavioral
hypothesis of rule-switching to motivate analytical methods,
that will extract behavioral features from game data. Subjects in
the study also completed the Autism Quotient Abridged survey,
and subscores from the survey were found to be predicted these
behavioral features. Finding quantifiable, observable behavior
that displays a spectrum in a population may be useful to
differentiate and diagnose psychiatric illness.

I. INTRODUCTION

Psychiatric diagnosis is presently based on self-report and
assessment by family members, teachers or psychiatrists [1],
[2], [3]. However, biased response in self-report [4], low
inter-rater reliability [5], [6] and inherent subjectivity, are
known drawbacks to these assessments. There is recent
efforts to instead observe behavior that can differentiate
disease and healthy state that can be invoked in a controlled
environment [7], [8]. Psychiatric illnesses are often most
evident in social interaction, and thus social interactions
are where it is most likely that differentiating behaviors
can be found [9], [10]. However, studying social interaction
is challenging for several reasons. First, describing a state
of interaction requires finding a relevant and succinct set
of variables that captures subtle social dynamic. Second,
most behavioral tests involve measuring reactions to pre-
determined stimuli [10], [7]. This can be repeated across
subject populations, but in a social interaction, there must be
mutual interaction between environment and subject. Pairing
subjects is a way to provide mutual interaction [11], but
pairing cannot reproduce an environment across a subject
population. To address these issues, we propose using AI-
backed interactive, competitive games [12]. Competitive
games can be described with a limited number of variables
yet may still exercise some of the same social cognitive skills
required in natural social interaction like reading anothers
intentions [13], [14]. We argue replacing human opponents
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with an AI agent allows all subjects to play against the same
opponent. Further, biomarkers can be derived from behaviors
that can be isolated, by augmenting with bio-signals such as
heart rate, respiration, EEG etc [15], [16], [17], [18].

In this research, we describe an experimental and ana-
lytical framework using an AI Rock-Scissor-Paper (RSP)
agent to perform experiments that allows standardization of
a social interaction across a subject population, and provide
a model of behavior of how humans play the game of RSP
in a repeated context against opponents that try to exploit
them by finding patterns in their playing. Competitive games
such as rock-scissors-paper have a game-theoretic optimal
minimax solution, the Nash Mixed Equilibrium (NME) [19]
that requires a player to choose actions randomly with equal
probability. A building consensus is that humans are ill-
equipped to behave randomly [20], [21], [9], and instead
players adjust to their opponents. Players appear to be able
to use historical information presented to them about novel
opponents in best-of-3 scenario [11], though do not fully
exploit regularities in their opponents over long, repeated
games [22], yet monkeys have been observed to react to
mixed NME computer opponents by selecting the same hand
90% of the time [23]. Humans may be relying on simple
heuristic rules like Win-Stay-Lose-Switch, an approximate
algorithm for sequential Bayesian inference [24]. The de-
gree to which human players conform to simple heuristics
like win-stay-lose-switch, have been found to be context
dependent [25], [26], and the difference in relative flexibility
of these two components suggest multiple decision making
circuits are active in different contexts [27]. Researchers
have considered evidence of heuristics beyond Win-Stay-
Lose-Switch [28], and found evidence of individuality in
the repertoire of heuristics used [29], [30], [31]. Building
on the view of individuality in the heuristics players em-
ploy, we further hypothesize that humans adapt their use
of heuristics during the course of multiple games [20] by
switching to different heuristic rules. Rule-switching makes
a testable prediction that competitive advantage is regained
following rule switches, and we further find evidence that
stable behavioral characteristic can be found from features
derived from the time series of rule changes and other aspects
of game play. These behavioral features are found to be
predictive of subscores of the Abridged Autism Quotient [3],
[2] answered by the subjects who played AI RSP.
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Fig. 1. Demographic and basic game statistics of 195 participants. A) Age
and B) gender distribution of participants. C) Net wins versus mean game
durations. D) Distribution of Abridged Autism Quotient subscores.
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Fig. 2. Rule-switch schedule of 2 simulated HPs playing according
to A) rule-switching and B) NME against the RSP AI. A) 6 rule sets,
each containing complete instructions to generate next hand, switched
episodically and randomly 8 times during course of 300-game round. Note
Rule Sets 1 and 4 triggered by different events (wtl vs. rAsApA while Rule
Sets 1 and 3 triggered by same wtl events, but generate actions differently
(relative to last hand DKU or concrete RSP). B) NME player plays randomly
with equal probability through entire round.

II. METHODS

A. Experiment

We used the online cognitive experimental platform test-
mybrain.org [32] to recruit 1370 anonymous volunteers (hu-
man players, HP) from July to December 2021 to play 300-
game rounds of rock-scissors-paper (rock beats scissors, scis-
sors beats paper, paper beats rock) against an AI agent run-
ning on a web browser, playable on iOS, Android, Windows
and Macintosh. The AI was comprised of 3-perceptrons each
representing R, S and P [33], [34], whose internal parameters
were updated online after each game, and that predicted the
next HP move using the past 2 HP and AI moves. The games
were self-paced, and a noticeable degradation of performance
was observed for participants who spent less than 400ms
per game, leading us to suspect lack of engagement in
such participants, and they were subsequently removed from
analysis. In addition, participants were also removed if there
were more than 10 game-game intervals > 1 minute, or more
than 15 consecutive repeated responses. This left 195 game
data where players completed a 300 game round and were
deemed credibly engaged. Most of the participants were in
their early 20s, with slightly more identifying as males than
females, Fig. IA,B. The mean net wins over a round for these
HPs was -15.4, with standard deviation 28.1, IC. In addition
to playing the 300-game round, participants also completed

DKU|wtl
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(SimRSvAI)

NME vs AI
(SimNMEvsAI)

Human vs AI
HumvsAI

RPS|wtl

RSP|rsp

LCB|rsp

DKU|rAsApA

LCB| rAsApA

B

A rule classified as IR  U|w

rule classified as NR  S|r

Fig. 3. A) Example traces of conditional probability for trigger-action rule
detected to be IR (top) and NR (bottom) from a human subject. IR rules tend
to have interspersed periods where probability is near 1 (switching), while
NR rules rarely go near 1. B) shows the fraction in populations of rule-
switcher simulations, NME simulations and human subjects in which each
of the 6 x 9 rules were classified as IR. For the rule-switcher simulations,
we have ground truth knowledge of what rules are actually in the repertoire
(every simulation in population has identical repertoire), and these rules are
marked with an orange box on the histogram. For the NME simulations,
we expect near chance level detection equally across all rules. Presumably
for human subjects, repertoire is heterogenous across population. Note the
qualitative difference of the NME in comparison to the humans and rule-
switchers.

the 28-item Abridged Autism Quotient [3], whose composite
score is a sum of 4 subscores assessing social behavior -
Social Skills (8 items), Imagination (8 items), Routine (3
items), Switch (4 items) and a subscore assessing fascination
with Numbers and Patterns (5 items), Fig. ID.

B. Rule-switching hypothesis

Humans might approximate randomness by episodic
switching between nearly deterministic rules of play [20] of
the form “when y happens, do X” (abbreviated as X|y) that
pairs a triggering condition with an action. Given real-world
cognitive limitations [24], [35], we further hypothesize that
these action decisions are based on a limited representation
of the most recent state of the game, for example the last
outcome. To systematize this notion, we consider 3 classes
of triggering condition: last outcomes (win, tie, lose), HP's
last hand (rock, scissors, paper), or AI's last hand (rAock,
sAcissors, pAaper. We also consider 3 classes of HP actions:
absolute (Rock, Scissors, Paper), relative to HPs last hand
(Downgrade, ie after playing rock play scissors, Keep, ie
after playing rock keep rock or Upgrade, ie after playing
rock play paper), or relative to AI's last hand (Lose to, ie
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if AI played rock, play scissors next, Copy, ie mimic AI's
last hand, or Beat, ie if AI played rock, play paper next). 9
rules are generated from a given trigger and action class pair
(TACP), which we abbreviate like DKU|wtl. There are 3 sets
of trigger and 3 sets of action classes, defining 9 TACPs, for
a total of 9 TACPs × 9 rules/TACP = 81 rules. 2 of the
3 TACPs sharing the same trigger class are re-descriptions
of the same behavior, ie DKU|rps and RPS|rps. They may
represent different cognitive stances with different mental
economy necessary to generate them [29], but are behav-
iorally indistinguishable. Acknowledging this limitation in
order to extract changes to observable behavior, we chose
one TACP from the 2 isomorphic descriptions, resulting in
the following 54 rules from 6 TACPs: DKU|wtl, RPS|wtl,
RPS|rps, LCB|rps, DKU|rAsApA, and LCB|rAsApA from here
on. The well-known “win-stay-lose-switch” heuristic, an
approximate algorithm for online Bayesian inference [24],
takes the rules K|w and D or U |l from DKU|wtl. How
strongly a player conforms to these rules on average has
been used to characterize changes in competitive behavior
in various conditions [36], [27], [26], [25] and to argue for
multiple drivers of decision making in the brain. LCB|rAsApA

are known as the Cournot Best, Second Best and Worst
Responses. We hypothesize players may be using several of
these rules in short bursts. A player may play 20 games
always following a win with a hand that beats their last
hand (U|w), then for the next 15 games, switch to keeping
the same hand following a win (K|w). To our knowledge,
consideration of these rules being used dynamically as part
of a larger repertoire and attempting to uncover the hidden
changes to behavior, is a novel research direction.

C. Simulated player vs AI, Human players vs AI

To test our ability to detect rules present in game data,
in addition to collecting data from human players vs AI,
we also simulated two idealized types of human players
against our AI. We simulated 1) a rule-switcher that can
choose and episodically switches rules from a rule repertoire
as illustrated in Fig. IA, and 2) an NME player that plays
RSP with equal probability randomly throughout the round,
Fig. IB. We refer to the data collected in these experiments
as HPvAI, SimRSvAI and SimNMEvAI, respectively. In
SimRSvAI, we know which of the 54 possible rules are in
the simulated HPs repertoire, and we know the exact moment
rule sets were switched. In the SimNMEvAI, we know there
is no conditional structure in the data, as well as no rule
changes.

D. Inferring rule repertoire

We hypothesize that player tendencies are reflected in
the types of rules they utilize [36], and that it is nearly
deterministic for several hands during its use, before a switch
to a different rule is made. We expect that a player uses
only a small subset of the 54 possible rules. We call this
subset the rule repertoire. If these assumptions hold, it is
possible to detect with reasonable fidelity whether a rule is
used at all during the round, and if so, when it is in use. For

A B

Fig. 4. A) Detected (white) and actual (black) rule change times shown
for an example round from SimRSvAI. B) Histogram of ground truth
rule change times triggered by detected rule change times, showing peak
near detected rule change time. The current rule change detection method
produces many false positive events, though most black ticks also have a
white tick nearby, indicating that real rule changes are rarely missed.

concreteness of discussion, we consider the rule “Upgrade
after winning” (U|w), and estimate the time evolution of
p(U|w) during a 300-game round. We first make a temporally
ordered list of all ws (not necessarily at consecutive game
#s). We estimated p(U|w) as a function of game # using a
sliding window of size B. We look at the first B ws in the
list, count the number of U actions that follow each one,
and divided by B to obtain a probability, and assign this
probability to p(U|w)(game # of middle w of window), and
slide by 1 in the list of ws and repeat the process for w #2,
#3, . . . #B+1, et cetera. Because consecutive w conditions are
not necessarily occuring at consecutive games, the p(U|w)
is defined at intermittent games. We interpolate between the
points at which they are defined, and smooth in anticipation
of taking time derivatives later. Because we do not expect
rules to be kept for too long, we chose B = 3 in our analysis.
Varying B between 3 and 5 does not qualitatively change the
results of our analysis.

If one of the rules employed by the player in a round
is U|w, we expect to see an excess of consecutive U
actions following triggering ws. Shuffling the game order
should destroy the trigger-action relationship, resulting in
a reduction of consecutive U actions following triggering
ws in shuffled data. We test for the excess by counting the
total duration where p(U|w)(game #) > pth, and compare
this to the bootstrap distribution created from the shuffled
data. Each of the 6 x 9 rules were tested, and we classify
a rule whose excess of consecutive U actions following a
triggering w is significant, as in-repertoire (IR). This rule is
considered to be part of the repertoire of rules HP uses, and
the remaining rules we refer to as non-repertoire (NR). For
our analysis, we chose pth = 0.6. Fig. 3A top and bottom
trace show conditional probabilities of rules from an HP that
were classified as IR and NR, respectively.

E. Detecting Rule Switches

After we find which rules are IR, we next detect at which
games switching in these IR rules may have occurred. In
Fig. 3A top trace, rapid swings from nearly 0 to 1 or 1 to
0 around games 50, 75, 100, 125, 150, 190, 250, 260 are
what we envision rule changes would look like. A simple
criteria to detect when rule switching occurred is to find the
local maxima of the absolute value of the time derivatives for
each IR rule. We consider the collection of these rule-change
time points are previously undetected changes in behavior
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that underlies the mechanism employed by humans to appear
random against a competitor.

F. Correlation of Behavioral Features to Subscores of
Abridged Autism Quotient

The Abridged Autism Quotient is a 28 item scale, with
subfactors Social Skills (X items), Imagination, Routine and
Switch, and Numbers and Patterns. Each item is scored on a
4 point Likert scale, and the scores from each item for each
subfactor are summed, while the composite score is the sum
of all 28 items. Bonferonni corrected correlation coefficients
between each feature and the subscores were calculated,
Fig. ??A. The predictive power these features have of
subscores were also investigated using cross-validated Lasso.
Lasso was employed due to the large number of constructed
features, and a sparse set of explanatory features for each
subscore was sought. Behavioral features and scores from
195 participants were split into train/test (150 / 42) folds.
Foreach fold, the LassoCV from sklearn library was used to
determine optimal α and sparse weights for the features, and
this model was used predict subscores using test features.
The median R2 was reported across folds for the data, as
well as 100 realizations of data with shuffled participant ID.

III. RESULTS

Because humans are poor random number generators, and
will try to gain advantage by seeking patterns and reading
intentions, we hypothesize that humans are employing a
general mechanism of episodic rule switching in playing
RSP against an agent that also is not random and capable of
reasoning. We expect random switchers to temporarily regain
advantage after rule-switches, as the AIs internal model,
whose weights are updated online, is immediately made
outdated (online, or episodically). In order for us to test our
hypothesis, we first verified our ability to detect IR rules in
games where AI played a rule-switcher or a NME player,
where IR rules are present and known or absent in the data,
respectively. We also tested our ability to detect when rule
changes occur in this same data. The type of rules that are
IR, and how different IR rules are used together over the
course of a round of play, are potential behavioral features
that characterize each player. We also performed preliminary
tests to assess how stable such behavioral features are over
multiple rounds.

A. Rule repertoire detection

vFig. 3B left, middle and right figure compares the frac-
tion of all the data in SimRSvAI, SimNMEvAI, HPvAI,
respectively, in which each of the 54 rules was classified
as IR. There is a noticeable difference in the number of IR
rules detected in the 3 types of data, with the fewest IR
rules detected in SimNMEvAI, as expected. The identities of
the detected IR rules are also found to be reasonably close
to what is actually in the repertoire for SimRSvAI. Also
notable is that the probability of any given rule detected as
IR is much more uniform in SimRSvAI, as expected. HPs,
unlike the population of simulated rule-switchers that all
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Fig. 5. RSTNWA for SimRSvAI, SimNMEvAI and HPvAI. Prominent
increase in wins occurs near instants of detected rule switches in SimRSvAI
and HPvAI but not in SimNMEvAI, as expected. Because RSTNWA is
looking at the change in net wins, we excluded detected switches of rules
from the TACPs DKU|wtl and RSP|wtl from our triggers, because any
effect on the net win rate near those rule switches might be due to the
fact that the triggers of the rules themselves are wins and losses. Note the
differences in offset in the 3 RSTNWA. RSTNWA offset for SimNMEvAI
is near 0 because the NME strategy is the minimax solution that can neither
exploit not be exploited. RSTNWA offset of both SimRSvAI and HPvAI
are < 0, indicating that on average, AI is exploiting both the simulated rule
switcher and HPs.

Feature categories

Fig. 6. Correlation between features in repeated measurements. Features
systematically generated and organized into categories measured from 18
subjects who played 2 rounds of RSPvAI. Top plot shows the correlation
between the 1st and 2nd measurement for features in each category. Red
line is the mean correlation for all features in the category. Bottom plot
shows the same mean correlation for different shuffles of the subject index
of the 2nd measurement, while red is the mean for unshuffled (same as top
plot). Blue line in both top and bottom is 0.

had identical rule repertoires, presumably are not identical,
and hence the fraction of any rule being IR is much lower
in HPvAI than SimRSvAI. It is notable that rules of type
RPS|wtl are much less likely to be IR in HPvAI, suggesting
that our analysis is picking up a general feature of human
competitive behavior.

B. Rule change detection

Once the IR rules are detected, known changes in the
rule-switcher simulations were assessed by comparing them
to the detected rule-switches, Fig. 4. The large number of
false positive detections is to be expected, given the simple
detection methodology presented in this paper. A latent state
model [15], [37] would improve upon the current sensitive
but non-specific algorithm, and our current exploratory anal-
ysis will motivate more sophisticated future modeling and
guide the design of the latent state.

C. Advantage regained at rule change

An expected consequence of episodic rule changing is that
advantage is temporarily regained immediately after a rule
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change. Because the AI is constantly updating its internal
model of the human HP, sudden changes in human behavior
should result in the internal model of the AI becoming
obsolete. We define the rule-switch triggered net win average
(RSTNWA), constructed by stacking the segments of the
timeseries of outcomes preceding and following detected rule
switches. At each lag from the triggering rule switch, the
number of losses is subtracted from the number of wins
at that lag, the netwins, is divided by the combined num-
ber of wins and losses, RSTNWA(lag) = #wins at lag −
#losses at lag)/(#wins at lag + #losses at lag). Fig. 5A
right shows RSTNWA abruptly increasing at moment of rule
change, as expected. Fig. 5B right shows RSTNWA for the
random player, showing no increase at rule change time,
while Fig. 5C shows qualitative similarity as Fig. 5A.

D. Features derivable from RPSvAI are characteristic of the
subjects

We aim to extract behavioral features that are characteristic
of the subject from RPSvAI game data. The features we
considered are 1) which rules are in a subjects repertoire,
2) how a subject coordinates the switches of multiple rules
over the course of a round, 3) how the AIs confidence in
a prediction fluctuates over time, and 4) the conditional
outcome probabilities, Fig. 6. From the 54 rules, a total
of 1485 features were systematically created. We created 2
types of features looking at the standard deviation of the con-
ditional probabilities (6 TACPs x 9 rules = 54 features) and
the correlation coefficient between pairs of rule conditional
probabilities (54 x 53 / 2 features). The correlations were
grouped by 1) terms from same TACP, same condition (ie
p(D|w) and p(U|w)), 2) terms from same TACP, different
condition, (ie p(U|w) and p(U|t)), 3) terms from different
TACP sharing condition class, same condition, (ie p(U|w)
and p(R|w)) 4) terms from different TACP sharing condition
class, different condition, (ie p(U|w) and p(R|t)) and 5)
terms from different TACP that do not share condition class
(ie p(U|w) and p(R|t)). Further, we looked at the decision
confidence of the AI perceptrons following wtl, rsp, rAsApA

(3 x 3 x 3 = 27 features), and the conditional outcome (3
x 3 = 9 features) for a total of 1521 features. We did not
account for whether a rule was IR or NR in each subject,
as this would make it difficult to compare the same set of
features across all 18 subjects, and with better methods to
detect rules, we do not expect the conditional probability
to be the best way to characterize rules. However for this
analysis, we deemed it sufficient. We measured these features
in 2 separate rounds, and measured the correlation in the
measurements. We expect repeated measurement of a feature
to be relatively stable, so we expect the correlations to be
positive. Because only 18 of 195 subjects played more than
1 round of RSPvAI, our analysis is preliminary, but we
found consistent trend towards positive correlation between
measurements made in 2 separate rounds, suggesting we are
capturing behavioral characteristics of individuals, Fig. 6, top
figure.. The average in 1521 total features of the correlation
coefficient between 1st and 2nd measurements was 0.2. For

AQ28 target Feature Corr, Bonferonni p-val

AQ28 composite corr K|w vs  D|t
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0.331, 4.4 x 10-3
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corr D|t vs  M|pA

0.325, 6.4 x 10-3

0.319, 9.6 x 10-3

Imagination corr K|w vs  D|t
S perceptron confidence after sH

prob of W after T

0.273, 2.0 x 10-1

0.307, 2.3 x 10-2

0.335, 3.2 x 10-3

Routine corr P|t vs  R|pH

corr P|sH vs  D|sA

corr R|pH vs  D|sA
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0.287, 8.1 x 10-2
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Fig. 7. Relationship between features and subscores. A) List of features
with large correlations with subfactors, and the corresponding Bonferronni-
corrected p-values. B) Mean R2 scores across folds of predictive models
of each subfactor (black), and the mean scores across folds for predictive
models with shuffled participant IDs (grey).

each category of feature, While this is not a high correlation,
the results are not discouraging for several reasons. First, all
features were systematically constructed, and it is likely that
not all features constructed in such fashion is a characteristic,
stable behavioral feature. Second, it may be a possibility that
300 game rounds is not long enough to accurately measure
some features, especially how certain rules are coordinated
with others. Most players were able to complete a round
in under 7 minutes, and longer rounds or possibly multiple
rounds are a possibility. Also, better methodology used to
find IR rules and detect rule changes, is an obvious area
where improvements are possible that may lead to better
quality in the extracted features.

E. Multiple features are significantly correlated, and are
predictive of subfactors

Multiple features (out of 1521) that are significantly
correlated with subscores Imagination, Social Skills, and
Routine, as well as the composite score, have been found,
and are listed in Fig. 7A. Further, the predictive power that
features have for the subscores was tested, and Fig. 7B
shows the mean coefficient of determination R2 over all
folds of the cross-validated Lasso models for each of the
subfactors. The mean R2 values shown in blue were > 0 for
Social Skills, Imagination, Routine and the composite score.
The realizations of the mean R2 for the data with shuffled
participant ID (100 shuffles) are shown in grey. The R2 can
take a maximum value of 1, but can take on arbitrarily large
negative values. The shuffled data are almost always < 0,
that is shuffled data are not able to predict the mean value
of the subscores. The positive R2 values are only slightly
larger than 0, but this is to be expected given the large
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number of candidate explanatory features. The construction
of an actual predictor of the subscores would not include
the feature selection step, and the set of features would be
selected to those a priori found to be relevant. We also
note the significance that 3 subscores are jointly found to
be predicted by RSP features. While shuffling occasionally
produces an R2 > 0 in one of the subscores, having R2 > 0
jointly in multiple subscores is very rare.

IV. CONCLUSION

We developed an experimental framework using a com-
petitive game played against an AI agent to incorporate
social interaction in a repeatable and controlled way. We
also put forth a model of behavior, rule-switching, that builds
testable hypothesis about the deviations from the Nash Mixed
Equilibrium strategy that allows us to interpret, quantify and
extract behavioral features that potentially characterizes indi-
vidual subjects. We believe that our analysis methods, while
unsophisticated, explicitly exposes a randomization mecha-
nism implicitly assumed, for playing against an opponent that
can exploit regularities, and lays the groundwork for future,
more sophisticated statistical latent modeling of behavior.
We have also shown that, in addition to features derived
from human behaviors, those derived from the internal AI
parameters shaped by game play against the HP, may also
characterize each individual. Altering the AIs exploitability
may reveal differences in how advantageous rules switched
to are, and offer a more fine-grained metric of competitive
strength than simple net wins that may provide further
quantitative features of behavior.
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