
Investigating the role of common cis-regulatory
variants in modifying penetrance of putatively

damaging, inherited variants in severe
neurodevelopmental disorders

Emilie M. Wigdor1*, Kaitlin E. Samocha2,3,4, Ruth Y. Eberhardt1, V. Kartik Chundru1, Helen V.
Firth5, Caroline F. Wright6, Matthew E. Hurles1, Hilary C. Martin1*

1. Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome
Campus, Hinxton, UK

2. Program in Medical and Population Genetics, Broad Institute of MIT and Harvard,
Cambridge, USA

3. Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston,
USA

4. Center for Genomic Medicine, Massachusetts General Hospital, Boston, USA
5. Department of Medical Genetics, Addenbrooke’s Hospital, Cambridge University

Hospitals, Cambridge, UK
6. Institute of Biomedical and Clinical Science, University of Exeter Medical School,

Royal Devon and Exeter Hospital, Exeter, United Kingdom

* Correspondence to emilie.wigdor@sanger.ac.uk and hcm@sanger.ac.uk

Abstract
Recent work has revealed an important role for rare, incompletely penetrant inherited coding
variants in neurodevelopmental disorders (NDDs). Additionally, we have previously shown
that common variants contribute to risk for rare NDDs. Here, we investigate whether
common variants exert their effects by modifying gene expression, using
multi-cis-expression quantitative trait loci (cis-eQTL) prediction models. We first performed a
transcriptome-wide association study for NDDs using 6,987 probands from the Deciphering
Developmental Disorders (DDD) study and 9,720 controls, and found one gene, RAB2A, that
passed multiple testing correction (p = 6.7x10-7). We then investigated whether cis-eQTLs
modify the penetrance of putatively damaging, rare coding variants inherited by NDD
probands from their unaffected parents in a set of 1,700 trios. We found no evidence that
unaffected parents transmitting putatively damaging coding variants had higher
genetically-predicted expression of the variant-harboring gene than their child. In probands
carrying putatively damaging variants in constrained genes, the genetically-predicted
expression of these genes in blood was lower than in controls (p = 2.7x10-3). However,
results for proband-control comparisons were inconsistent across different sets of genes,
variant filters and tissues. We find limited evidence that common cis-eQTLs modify
penetrance of rare coding variants in a large cohort of NDD probands.
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Introduction
Neurodevelopmental disorders (NDDs) such as intellectual disability, epilepsy and autism
have a large genetic component1. One of the largest studies of NDD patients, the
Deciphering Developmental Disorders (DDD) study2,3, consists of 13,451 undiagnosed
probands, ~85% of whom have at least one abnormality of the nervous system, who
underwent exome sequencing and exon-resolution microarray analysis. Exome-wide burden
analysis has shown that ~42% of the cases within the cohort are attributable to de novo
coding mutations in either known or undiscovered Developmental Disorder (DD)-associated
genes4, with smaller contributions from coding variants following other Mendelian inheritance
modes such as X-linked (~7%)5 and autosomal recessive variants (~3%)6. To date, around
41% of probands have received a genetic diagnosis7.

Most parents in the DDD study are unaffected; amongst the 1,230 trio probands with an
affected father and/or mother, inherited autosomal dominant causes have been identified in
257 (20.9%), which is 2.6% of the 9,859 trio probands7. However, there is increasing
evidence that incompletely penetrant, inherited, rare, coding variants contribute to risk of
NDDs. Firstly, burden analyses have demonstrated that probands with autism have an
increased rate of rare deleterious coding variants compared to neurotypical individuals,
particularly in a set of ~3,000 ‘constrained’ genes that are intolerant of loss-of-function (LoF)
variation in the general population8, and that they over-inherit such variants from unaffected
parents9,10. Indeed, we find similar signals in our undiagnosed DDD probands and evidence
that these variants contribute to risk in a large fraction of probands (Samocha et al.,
manuscript in preparation). Secondly, a small number (N = 22) of DDD probands have been
diagnosed with known pathogenic variants in autosomal dominant conditions that were
inherited from clinically unaffected parents11. In parallel, there is emerging evidence from
population-based cohorts that rare, deleterious coding variants in known DD-associated
genes12 or constrained genes13,14 are associated with reduced cognitive function and mental
health conditions in the general population. Why these variants are incompletely penetrant
represents a major gap in our understanding of DDs and these related phenotypes.
Stochastic environmental and genetic modifiers of penetrance likely exist. We previously
showed that genome-wide common variants contribute to risk of NDDs15; we hypopthesize
that at least some of these common variants may act by modifying penetrance of rare coding
variants in these disorders.

Castel et al. previously presented evidence that cis-expression quantitative trait loci
(cis-eQTLs) modify penetrance of rare coding variants in healthy and disease cohorts16.
Specifically, they found evidence in a healthy cohort (N = 620) for a depletion of haplotype
configurations that should increase penetrance of pathogenic variants (implying a role for
negative selection), but that cancer patients (N = 615) and autistic individuals (N = 2,600)
were enriched for penetrance-increasing haplotype configurations of pathogenic variants in
disease-linked genes. Michaud et al. found an example of a similar mechanism in albinism,
whereby a common regulatory variant modified the penetrance of two common coding
variants in TYR17. We set out to test whether this mechanism is contributing to the
incomplete penetrance of rare, inherited coding variants in DD-associated and constrained
genes in the DDD study.
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We build on the work of Castel et al.16 in four main ways. Firstly, we apply more stringent
filtering of rare coding variants to focus on those most likely to be damaging. Secondly, we
use a cross-tissue, multiple cis-eQTL method (UTMOST18) to predict gene expression, rather
than using a single cis-eQTL per gene. Thirdly, we consider genetically-predicted expression
in a disease-relevant tissue (cortex) as well as in whole blood, rather than taking the most
significant cis-eQTL in any tissue for each gene. Finally, we use a within-family design which
allows us to avoid potential false positive associations due to population stratification,
comparing predicted expression between probands with an inherited rare coding variant to
their variant-transmitting parents. Our analysis finds limited evidence to support the
hypothesis that cis-eQTLs are modifying the penetrance of inherited, putatively damaging
coding variants in DDs.

Results

Datasets

Individuals from the DDD study were exome-sequenced and genotyped on three different
SNP arrays, with some individuals genotyped on more than one array (Supplementary
Figure 1). In this work, we used two different array datasets from DDD (see Methods).
Analyses on individual NDD probands were based on the dataset used in Niemi et al.15,
comprising 6,987 unrelated NDD cases from DDD with ancestry similar to the 1,000
Genomes19,20 Great British samples (henceforth referred to as ‘GBR ancestries’) and 9,270
ancestry-matched controls from the UK Household Longitudinal Study (UKHLS)21. These
had been genotyped on the Illumina CoreExome chip and imputed to the Haplotype
Reference Consortium (HRC) panel22. Analyses based on trios used a dataset of 1,700
undiagnosed NDD probands with unaffected parents (of which 1,352 probands were also in
the aforementioned CoreExome dataset), all with GBR ancestries, genotyped on either the
Illumina OmniExpress chip or the Illumina Global Screening Array and imputed to
TOPMed23–25.

Predicting genetically-determined gene expression

To predict the genetically-determined component of gene expression, we used UTMOST18, a
cross-tissue multi-eQTL method that jointly models multiple tissues when estimating the
SNP weights. This has been shown to increase imputation accuracy, particularly for tissues
with small sample sizes in the training data, and to generate effective imputation models for
an average of 120% more genes than single-tissue methods18. We used UTMOST18 weights
generated from GTEx v6p training data26 for two tissues: cortex and whole blood. We chose
cortex because it is implicated in various cognitive functions relevant to global
developmental delay and intellectual disability27,28. We also used weights based on GTEx
v6p whole blood (N = 338 versus N = 96 for cortex) in an attempt to balance statistical power
with likely physiological relevance to NDDs. While brain tissues may be the most relevant to
NDDs, work by Qi et al. has shown a gain of power in gene discovery for brain-related
phenotypes using blood cis-eQTL data on larger sample sizes29. We restricted our analyses
to genes with cross-validation adjusted p-value < 0.05: 11,103 genes for whole blood, and
11,338 in cortex, with an overlap of 9,476 genes.
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Testing the effect of genetically-predicted gene expression on NDD risk

We first tested whether genetically-predicted expression of any given gene was associated
with being an NDD case, regardless of the presence of rare variants, to assess whether
cis-eQTLs play a role in risk of NDDs when considering average predicted expression. We
conducted a transcriptome-wide association study (TWAS) comparing 6,987 unrelated NDD
cases with GBR ancestries with 9,270 ancestry-matched UKHLS controls. TWAS have been
widely used to try to prioritize likely causal genes underlying complex disease risk30. While
the GWAS for NDDs in DDD did not identify any genome-wide significant SNPs15, a TWAS is
generally better powered than a GWAS31,32. In our TWAS for NDDs using predicted gene
expression from whole blood, we identified one gene passing Bonferroni correction (p =
6.7x10-7), RAB2A (Figure 1). This gene encodes a protein belonging to the Rab family which
is required for protein transport from the endoplasmic reticulum (ER) to the Golgi complex33.
Mutations in multiple other genes in the Rab family are known to cause NDDs34–37. RAB2A
was not significant in the TWAS in cortex (p = 0.34), and no other genes pass Bonferroni
correction (Figure 1). Thus, while RAB2A is an interesting candidate for involvement in
NDDs, it requires replication in another cohort, and would be more compelling if there were
also evidence for association with genetically-predicted expression in a brain tissue or if
coding variants in RAB2A were associated with in NDDs. Summary statistics for both TWAS
can be found in the Supplementary Data.

Figure 1. Gene-based p-values from a TWAS comparing genetically-predicted gene expression
between 6,987 NDD cases and 9,270 UKHLS controls. The cis-eQTL weights are from GTEx v6p
cortex (N = 11,338 genes) and whole blood (N = 11,103 genes). Black dotted line represents the
significance threshold after Bonferroni correction (p = 0.05/(11,338+11,103)).
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The TWAS was intended to assess whether cis-eQTLs play a role in risk of NDDs when
considering average predicted expression for cases versus controls. We next hypothesized
that a small subset of NDD probands might be explained by having an unusual configuration
of cis-eQTLs for a gene such that it was expressed at an extremely low level (for a LoF
mechanism gene) or an extremely high level (for a gain-of-function mechanism gene). Thus,
we tested DD-associated genes in the Development Disorder Genotype-Phenotype
Database database (DDG2P)38 to see whether undiagnosed NDD probands were enriched
for extreme genetically-predicted gene expression compared to controls (±3 standard
deviations from the mean for controls), using a Fisher’s exact test. None of the genes
passed Bonferroni correction (p > 0.05/1,321 DD-associated protein-coding genes = 3.8x10-5

in cortex; p > 0.05/1,202 = 4.2x10-5 in whole blood).

Testing whether cis-QTLs modify penetrance of rare coding variants in
NDDs
We next used the genetically-predicted expression values from NDD probands to test
whether cis-eQTLs modify the penetrance of putatively damaging, heterozygous, rare coding
variants that had been inherited by these probands from their unaffected parents (hereafter:
‘putatively damaging variants’). We focused on rare, inherited heterozygous variants (single
nucleotide variants (SNVs) and insertions and deletions (indels); minor allele frequency
(MAF) < 1.0x10-5 in gnomAD8, and ≤ 1.0 x 10-4 in DDD) predicted to be damaging, in three
categories: i) protein-truncating variants (PTVs) and missense variants (missense badness,
PolyPhen-2, and constraint (MPC) ≥ 239) in constrained genes (probability of LoF intolerance
(pLI) > 0.9)40, ii) PTVs or missense variants in dominant DDG2P genes with a LoF
mechanism, and iii) PTVs or missense variants in recessive DDG2P genes with a LoF
mechanism. We focused on constrained genes and DD-associated genes with a LoF
mechanism because the effect of PTVs and missense variants in such genes is more
interpretable (i.e. we assume they result in LoF), whereas identifying which missense
variants have an activating or gain-of-function effect in genes for which this is the pathogenic
mechanism is more difficult. For the first two categories (constrained genes and dominant
DD-associated genes), we hypothesized that the penetrance of the putatively damaging
variant is increased by low expression of the other wild-type haplotype (Figure 2A). For the
third category (recessive DD-associated genes), we hypothesized that lower expression of
the non-variant-carrying haplotype constitutes a ‘second hit’ to the gene, such that,
combined with the putatively damaging variant on the other haplotype, gene activity is
reduced to a level that is below the pathogenic threshold (Figure 2A).

We began with a within-family test on 1,700 undiagnosed NDD trios to assess whether
unaffected parents transmitting a putatively damaging variant were protected by higher
genetically-predicted expression of the gene compared to their affected child. Specifically,
we ran a one-sided paired t-test to compare genetically-predicted gene expression in cortex
and whole blood between unaffected parents transmitting a putatively damaging variant and
their affected children, with the hypothesis that transmitting parents had higher
genetically-predicted expression of the relevant gene. This within-family test controls for
population stratification, and allows for a direct comparison of predicted expression of the
wild-type haplotype while controlling for both the same putatively damaging variant, and the
haplotype wherein it lies (the shared haplotype). We saw no significant difference in
genetically-predicted expression between putatively damaging variant-transmitting parents
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and their children (Figure 2B). We repeated this analysis with a more lenient MAF threshold
(MAF < 0.1%) and also saw no significant difference in genetically-predicted expression
(Supplementary Figure 2).

Figure 2. Comparison of predicted gene expression between unaffected variant-transmitting parents
and their undiagnosed children with an NDD. A) Schematic figure depicting how cis-eQTLs may
modify the penetrance of a putatively damaging variant transmitted from an unaffected parent to their
undiagnosed child in a gene with a LoF mechanism. The haplotype with the ‘+’ symbol has higher
predicted expression based on its cis-eQTLs, whereas the one with the ‘-’ symbol has lower predicted
expression. B) Mean difference (parent - child) in predicted gene expression between parents
transmitting putatively damaging variants and their children with an undiagnosed NDD, with lines
indicated 95% confidence intervals. N denotes the number of unique child-parent pairs. Predicted
gene expression can be interpreted as the inverse quantile-normalised number of reads per kilobase
of transcript per million mapped reads (RPKM). The three panels show results for putatively damaging
variants in three different sets of genes: dominant DD-associated genes with a LoF mechanism (left),
recessive DD-associated genes with a LoF mechanism (middle) or constrained genes (pLI > 0.9)
(right). Red and blue dots represent results from genetically-predicted gene expression imputed from
whole blood and cortex, respectively. We show estimates considering only PTVs, as well as PTVs and
missense variants (with MPC ≥ 2) together.

We next compared genetically-predicted expression between NDD probands carrying a
putatively damaging variant in a given gene with the predicted expression for the same gene
in 9,720 UKHLS controls. Specifically, we calculated the percentile ranks of
genetically-predicted gene expression values, per gene, in both cortex and whole blood,
across undiagnosed NDD probands with putatively damaging variants in the gene and
UKHLS controls. We then aggregated these percentile ranks across genes and ran a
one-sided Wilcoxon rank test to compare the average ranking of variant-carrying probands
with controls. We hypothesized that the probands’ ranked predicted expression values would
be lower than in controls. We found that genetically-predicted expression from whole blood
of constrained genes harboring putatively damaging variants is lower in variant-carrying
probands than in controls (PTVs: p = 1.0x10-4; PTVs + missense: p = 2.7x10-3, which pass
Bonferroni correction for 12 tests) (top right panel of Figure 3; Table 1). We also found
nominally significant evidence to suggest that, in cortex, genetically-predicted expression of
recessive (p = 0.03) DD-associated genes harboring putatively damaging PTVs is lower in
variant-carrying probands than controls (bottom middle panel of Figure 3; Table 1). Similarly,
we found nominally significant evidence (p = 0.04) to suggest that, in whole blood,
genetically predicted expression of dominant DD-associated genes harboring putatively
damaging PTVs and/or missense variants is lower in variant-carrying probands than controls
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(top left panel of Figure 3; Table 1). These findings are consistent with our hypothesis that
the haplotype with the wild-type allele may be expressed at a lower level, thus increasing the
penetrance of putatively damaging variants in undiagnosed NDD cases compared to
controls. However, results were inconsistent across the two tissues and gene sets tested.
Furthermore, this analysis does not take into account whether any controls carry a rare,
potentially damaging variant in the same gene as the cases (since sequence data are not
available for controls), and is thus less robust than the within-family analysis mentioned
above. We repeated this analysis with a more lenient MAF threshold (MAF < 0.1%) and
found similarly inconsistent results (Supplementary Figure 3).

Figure 3. Violin and box plots of percentile-ranked genetically-predicted expression values of genes
harboring putatively damaging variants in undiagnosed NDD cases, compared to controls. Vertical
lines of the box plot indicate the range and horizontal lines indicate the lower quartile, median and
upper quartile. The p-value is from a one-sided Wilcoxon test assessing whether cases are lower than
controls. The Bonferroni multiple testing threshold is p = 0.05/12 = 4.2x10-3.
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Tissue Variant Type Gene Type N genes N cases
with variant

Mean
case rank

Mean
control rank P-value

Blood PTV dominant DD 43 85 57.82 50.00 0.99

Blood PTV + missense dominant DD 156 1,055 48.68 50.00 0.04

Cortex PTV dominant DD 50 90 45.85 50.00 0.08

Cortex PTV + missense dominant DD 186 1,168 49.54 50.00 0.26

Blood PTV recessive DD 297 469 48.40 50.00 0.10

Blood PTV + missense recessive DD 590 1,895 50.38 50.00 0.80

Cortex PTV recessive DD 316 501 47.72 50.00 0.03

Cortex PTV + missense recessive DD 627 1,950 50.11 50.00 0.61

Blood PTV constrained 386 901 46.79 50.00 1.0x10-4

Blood PTV + missense constrained 731 1,242 48.11 50.00 2.7x10-3

Cortex PTV constrained 440 951 49.61 50.00 0.32

Cortex PTV + missense constrained 839 1,327 49.85 50.00 0.41

Table 1. Results of one-sided Wilcoxon rank test for percentile-ranked predicted expression of genes
harboring putatively damaging variants in undiagnosed NDD probands compared to controls. The
sample size for each test is the (number of probands with a putatively damaging variant) + (number of
unique genes in which a proband has a putatively damaging variant x N controls (9,270)).

A limitation of these analyses is that, while these variants were filtered to be rare and
predicted to be damaging by in silico predictors, many of the variants are likely not
damaging, or only have mild effects. Thus, we investigated differences in predicted gene
expression for specific cases in which the proband had a diagnostic variant that was
inherited from an unaffected parent, and thus incompletely penetrant. We focused on a set
of twenty-two variants in DDG2P genes that were known to be pathogenic based on their
ClinVar annotation and that were deemed pathogenic/likely pathogenic by the proband’s
clinician, despite having been inherited from an unaffected parent11. We postulated that this
set of variants is the most likely to show evidence of this mode of modified penetrance. In
Table 2, we show the results for the five variants that fell in genes with a predicted
loss-of-function consequence and whose expression was predicted by UTMOST with
FDR-adjusted p-value < 0.05 in blood and/or cortex. For three of these variants, our
hypothesis was supported by the results based on the one tissue for which predicted
expression was available (RORA, plus two variants in EBF3). However, there were two
variants (those in ANKRD11 and NF1) for which results were inconsistent between
genetically-predicted gene expression values from cortex versus from whole blood. This is
either because one or more cis-eQTLs have different predicted directions of effect in the two
tissues, or different cis-eQTLs are used to predict expression in the two tissues, or some
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combination of the two. Thus, even in this small set of variants for which we most expected
to see some signal of this mode of modified penetrance, the evidence for it is inconsistent.

Gene Location (GRCh37)
(chr:pos:ref:alt)

Gene
consequence Variant consequence

Child vs
parent
(Blood)

Child vs
parent
(Cortex)

EBF3 chr10:131665510:G:
A loss-of-function NM_001005463.3:p.Arg303* child lower NA

EBF3 chr10:131665510:G:
A loss-of-function NM_001005463.3:p.Arg303* child lower NA

RORA chr15:60789728:G:A loss-of-function NM_134260.2:p.Arg533* child lower NA

ANKRD11 chr16:89348863:G:A loss-of-function NM_001256182.2:p.Arg1363
* child higher child lower

NF1 chr17:29560229:T:C loss-of-function NM_001042492.3:p.Trp1236
Arg child higher child lower

Table 2. Comparison of genetically-predicted gene expression in cortex and whole blood between
variant-transmitting parents and their children, for a set of known pathogenic variants from ClinVar that
were deemed pathogenic/likely pathogenic in the proband by their clinician, despite being inherited
from an unaffected parent11. These genes are listed in DECIPHER41 as causing DDs via a LoF41. In the
two rightmost columns, NA indicates that the gene’s expression was not sufficiently well predicted in
that tissue to be considered.

Discussion

In this work, we evaluated whether levels of gene expression predicted based on common
variants modulated NDD risk and penetrance of rare, inherited damaging variants in a large
sample of probands from the DDD study. In a TWAS comparing NDD cases with controls,
we found one gene passing multiple testing correction in whole blood, RAB2A. We are
cautious in interpreting this result for several reasons: there is no additional supporting
evidence in the literature, the gene showed no signal in cortex (a more disease-relevant
tissue), it has not yet been replicated in an independent sample, and TWAS hits may not
reflect the true causal gene30,42. In evaluating the role of cis-eQTL-mediated gene expression
in modifying penetrance of rare, inherited, damaging variants, our within-family test found no
evidence of this, while results from a case/control analysis were more equivocal, supporting
our hypothesis for some gene set-tissue-variant type combinations but not others. Analysis
of a small set of known pathogenic, incompletely penetrant variants also failed to provide
consistent evidence that their penetrance was being modified by cis-eQTLs.

There are several limitations to our analysis. A major one is that, in an attempt to boost
power, we aggregated evidence across rare variants in many genes, many of which are
likely not deleterious. We used stricter filtering of rare coding variants than Castel et al.16,
focusing on a set that is over-transmitted from unaffected parents to probands in DDD
(Samocha et al., manuscript in preparation). For example, we used a more stringent MAF
filter of < 0.001% in gnomAD8 rather than MAF < 1%. Castel et al. considered all missense
variants with CADD > 15 and, at least for part of their analysis, assumed that penetrance
would be increased by higher expression of the variant-containing haplotype. This is not
what one would expect if the variant results in loss-of-function, and hence, we restricted to
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variants that seemed more likely to have a LoF consequence (PTVs or missense variants in
genes constrained against LoF variation and/or with a known LoF disease-causing
mechanism), and considered predicted expression of the other haplotype. Despite our more
stringent filtering, many of the rare variants we included still likely do not result in true LoF,
which undoubtedly reduces our power.

Another limitation is that our set of NDD probands is phenotypically heterogeneous; 88% of
recruited DDD probands also had abnormalities in at least one other organ system15. This
makes it challenging to choose an appropriate tissue in which to predict gene expression,
since this may differ between probands. Furthermore, eQTLs can be cell-, state- and
time-dependent30,43–49, and the more relevant cell type and developmental stage to consider
is even more difficult to pinpoint, and likely will differ between probands. It may be that
selecting cis-eQTLs ascertained in fetal brain would be more physiologically relevant for
neurodevelopmental disorders than those from adult brain.

A fundamental problem is that common cis-eQTLs only explain about 10% of the genetic
variance in real gene expression30, which limits their predictive accuracy. For example, using
a single tissue method, PrediXcan, the average Pearson correlation between predicted gene
expression and real gene expression across tissues is around 0.1450. UTMOST18 modestly
improves average imputation r2 across tissues over PrediXcan by 36.8%18. Moreover, genes
associated with Mendelian diseases are likely depleted for common cis-eQTLs40,51–55. Future
studies could potentially incorporate methods that use rare eQTLs53, trans-eQTLs, and
epigenetic information56 to predict gene expression. Alternatively, they could measure gene
expression directly using RNA sequencing, to assess whether expression patterns (whatever
their causes) are modifying penetrance of rare variants. To have sufficient power, such
studies would either need to be very large or targeted at individuals with putatively
pathogenic transmitted variants.

In conclusion, we did not find strong evidence to support the hypothesis that common
cis-eQTL-mediated gene expression modifies NDD risk or penetrance of rare coding variants
in NDDs. Despite addressing this in one of the largest available datasets of NDD probands,
our power was still limited by the phenotypic heterogeneity of the cohort, uncertainty about
which variants have true effects, and the low accuracy of gene expression prediction
models. Future studies should consider this hypothesis in larger datasets with direct
measurements of expression and genome sequencing data to evaluate rare variants that
could alter gene expression. They should also consider alternative explanations for this
apparent incomplete penetrance of rare inherited variants, such as a modifying role of
polygenic background57, epistasis, stochastic effects, alternative splicing, changing effects of
these rare variants with age, or environmental factors.

Methods

Preparation of DDD cases and UKHLS controls on the CoreExome chip
We focused the case-control analyses (Figure 1, Figure 3, Table 1) on the DDD and UKHLS
data that were used in Niemi et al.15. These included 6,987 unrelated NDD cases from DDD
with GBR ancestries (defined based on their clustering around the 1000 Genomes Great
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British samples) and 9,720 ancestry-matched controls from UKHLS. These samples were
genotyped on the Illumina HumanCoreExome chip15. Pre-imputation quality control of these
genotype data and imputation to the HRC panel are described in Niemi et al.15.
Post-imputation, genotype data were filtered to SNPs with an imputation r2 ≥ 0.8 and MAF >
1%.

Preparation of genotype data from DDD trios
The analyses in Figure 2 and Table 2 are based on a set of DDD trios that had been
genotyped on either the Illumina Infinium Global Screening Array (GSA) or the Illumina
OmniChipExpress chip. The preparation of those data is detailed below, with a summary of
the filtering steps in Supplementary Figure 4.

Quality control and imputation of the GSA data
9,850 DDD samples were genotyped on the GSA at King’s College London in March 2020.
Samples were genotyped in a pilot batch (N = 1,152), and a second, larger batch (N =
8,698). Tables S1 and S2 show the results of the quality control steps applied to samples
and SNPs before and after merging the batches, respectively.

Samples were checked for concordance with whole-exome sequencing (WES) data
previously generated and cleaned on all DDD individuals, described in previous
publications2; discordant samples were removed, as were sample swaps and duplicate
samples. Individuals with ≥ 5% SNPs missing genotyped data were removed. After
examining the heterozygosity rate per individual versus the proportion of missing genotypes
per individual58, we removed individuals with a heterozygosity rate below 0.158 and above
0.17. Trios for which the offspring had > 200 Mendelian errors (~ 0.03% error rate) were
removed.

Palindromic, duplicated and multiallelic markers were removed, as well as indels. Markers
with either a call rate < 5%, a MAF < 1%, or with significant deviation from Hardy-Weinberg
Equilibrium (p < 1.0 x10-6) were also removed. Markers with a significantly different
non-missing rate (p < 1.0 x 10-50) or marked allele frequency difference between the pilot
batch and second batch of GSA data were removed. SNPs with Mendelian errors in > 1% of
trios were removed. This left 9,534 individuals and 474,926 genotyped SNPs before
imputation.

After this SNP-level QC, we identified individuals of GBR ancestries. (See Supplementary
Figure 5 and Supplementary Methods for further detail). This left 8,879 individuals.

Imputation was carried out using the TOPMed imputation server. After removing variants
with imputation r2 ≥ 0.8, 35,901,148 autosomal SNPs remained.

Preparation of DDD trios genotyped on the Omni chip

Niemi et al.15 also made use of a set of 3,504 individuals from DDD who had been
genotyped on the Illumina OmniChipExpress chip. The pre-imputation quality control of
these genotype data has been described previously15. The prior study used the Haplotype
Reference Consortium (64,976 low-coverage genomes) as an imputation panel. We
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re-imputed the post-QC genotype data using the TOPMed reference panel (97,256
high-coverage genomes) and imputation server, which uses Eagle2 for phasing and
minimac424 for genotype imputation23–25,59. We removed SNPs with imputation r2 < 0.8,
leaving 36,904,864 SNPs.

Merging and checking ancestry of the DDD trios genotyped on the Omni and GSA
chips

We merged the data from the GSA and Omni chips (11,227 individuals) and verified that the
individuals were well-matched for ancestry (Supplementary Figure 6). See Supplementary
Methods for further details. This merged dataset contained 3,344 trios of which all three
individuals were inferred to have GBR ancestries.

Subsetting DDD trios for analyses

We then removed trios in which probands or parents were related to individuals in other trios
up to three degrees of relatedness. To identify related individuals across trios, we ran the

–genome command in PLINK v1.960. Pairs of individuals with ≤ 0.2 were consideredπ
unrelated. After filtering, we retained a set of 3,170 unrelated trios with GBR ancestries.
Among these, 2,422 probands were considered undiagnosed (see section below on
‘Identifying undiagnosed probands’), and 2,002 had unaffected parents. Finally, of those,
1,700 had a neurodevelopmental disorder, defined as having one of the following HPO
terms61: abnormal metabolic brain imaging by MRS (HP:0012705), abnormal brain positron
emission tomography (HP:0012657), abnormal synaptic transmission (HP:0012535),
abnormal nervous system electrophysiology (HP:0001311), behavioural abnormality
(HP:0000708), seizures (HP:0001250), encephalopathy (HP:001298), abnormality of higher
mental function (HP:0011446), neurodevelopmental abnormality (HP:0012759), abnormality
of the nervous system morphology (HP:0012639). This filtering process is depicted in
Supplementary Figure 4.

Identifying undiagnosed probands
The DDD exome analysis team identified potentially clinically relevant variants from the WES
and arrayCGH data as described in Wright et al.3. The clinical filtering procedure focuses on
identifying rare damaging variants in a set of genes known to cause developmental disorders
(DDG2P) (https://www.deciphergenomics.org/ddd/ddgenes), that fit an appropriate
inheritance mode. Variants that pass clinical filtering are uploaded to DECIPHER41, where
the probands’ clinicians classify them as either ‘definitely pathogenic’, ‘likely pathogenic’,
‘uncertain’, ‘likely benign’ or ‘benign’. We downloaded all DDD variants from DECIPHER41,
on July 30, 2021. Of these, 23.5% had not yet been classified by clinicians. Thus, to better
differentiate between diagnosed and undiagnosed probands, we estimated positive
predictive values (PPV) for different classes of variants and used this to identify probands for
whom the variants that passed clinical filtering seemed likely to contain the true diagnosis.
We estimated positive predictive values as the proportion of variants in that class (e.g. de
novo PTV in dominant gene with a loss-of-function mechanism) that clinicians had rated as
‘pathogenic’ or ‘likely pathogenic’. The classes of variants considered and their positive
predictive values are shown in Supplementary Table 3.
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We defined ‘undiagnosed probands’ as those that did not fulfill at least one of the following
criteria:
i) the proband was amongst the diagnosed set in a thorough reanalysis of the first 1,133
trios62,
ii) the proband had at least one variant (or pair of compound heterozygous variants) rated as
pathogenic’ or ‘likely pathogenic’ by a clinician,
iii) the proband had at least one variant (or pair of compound heterozygous variants) in a
class with a high or medium PPV (i.e. PPV>50%; see Supplementary Table 3) that passed
clinical filtering but had not yet been rated by clinicians,
iv) the proband had a de novo PTV in a gene with a pLI > 0.940.

Predicting gene expression
We used SNP weights from UTMOST18 to genetically predict gene expression based on the
imputed genotype dosage files. UTMOST18 is a cross-tissue gene expression imputation
model18. Genetically-predicted expression was only generated for genes which had a
cross-validation FDR-adjusted p-value < 0.05 in the dataset used to build the models. We
used cis-eQTL SNP weights generated from two datasets: GTEx v6p brain cortex and whole
blood.

Transcriptome-wide association study (TWAS) for NDDs
We ran two TWASs using predicted gene expression with weights derived from the GTEx
v6p brain cortex (N = 96) and GTEx v6p whole blood (N = 338). We predicted gene
expression using estimated SNP weights from UTMOST, then ran logistic regression of
predicted expression for each gene on case status (N = 6,987 cases, N = 9,270 controls),
controlling for the first 10 genotype PCs. We set a Bonferroni significance threshold of
p-value < 2.23 x 10-6 for the two TWAS (0.05/(11,338 genes in cortex + 11,103 genes in
whole blood)).

Quality control of whole-exome sequencing data
A brief overview of the quality control carried out on the DDD whole-exome sequencing data
can be found in Supplementary Table 5. We focused on SNVs and indels. Coding
consequences are defined by the worst annotation across transcripts using the Variant Effect
Predictor63.

When multiple indels are found nearby in the same individual, this frequently indicates a
complex mutational event. Properly resolving these complex mutational events would require
haplotype-aware annotation, which was beyond the scope of this work. Consequently, we
removed instances in which a sample had more than one indel in a given gene. This filter
removed fewer than 4% of all indels with a MAF < 1% in our dataset.

Investigating role of genetically-predicted gene expression in modifying
penetrance of rare variants
Amongst the undiagnosed, NDD probands of GBR ancestries with unaffected parents, we
identified those with at least one rare (MAF < 0.001% in gnomAD8 and < 0.01% in DDD,
inherited, heterozygous variant that was either 1) a PTV or missense variant in a dominant
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DDG2P gene with a LoF mechanism, 2) a PTV or missense variant in a recessive DDG2P
gene with a LoF mechanism or 3) a PTV or missense variant (MPC ≥ 2) in a constrained
gene (pLI > 0.9). We used the DDG2P list downloaded on August 20, 2020, and focused on
genes that were confirmed/probable DD genes.

In the first analysis (Figure 2), we compared genetically-predicted expression between
probands with a putatively damaging variant in one of the aforementioned categories with
their transmitting parent. Specifically, we tested (using a one-sided paired t-test) whether
undiagnosed NDD cases carrying a variant in a given class had lower predicted gene
expression than their parent who transmitted the variant. We only compared gene
expression for one proband with one parent for one gene with a putatively damaging variant.
If a proband inherited more than one putatively damaging variant, either from the same or
both parents, a unique proband-parent-gene combination was selected at random with an
equal probability of selection.

In the second analysis (Figure 3; Table 1), we calculated the percentile ranks of
genetically-predicted gene expression values, per gene, in both cortex and whole blood,
across undiagnosed NDD probands with putatively damaging variants in the gene and
UKHLS controls. For each gene, we extracted the rank of genetically-predicted expression
for cases carrying a variant in a given class, as well as the controls’ ranks. We then
aggregated the ranks across genes and conducted a one-sided Wilcoxon rank test to test
whether these ranks were lower in the variant-carrying cases compared to controls.

Identifying undiagnosed probands with outlier expression in DDG2P
genes
For each DDG2P gene, we identified undiagnosed NDD probands that had predicted gene
expression at least three standard deviations above or below the mean predicted gene
expression in controls from brain cortex or whole blood. We then conducted a Fisher’s exact
test to test whether the number of cases with extreme levels of predicted gene expression
was significantly different from that in controls.
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