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Abstract 
Freely available electronic medical record (EMR) data collections have transformed data 

science and observational research in critical care medicine. Descriptive characterisation of 

these data collections can aid in highlighting variation in clinical practice and patient 

outcomes across Intensive Care Units (ICUs). Glycaemic control and nutritional 

management are important aspects of patient management in the ICU. Blood glucose on 

admission has a well-known U-shaped relationship with mortality and morbidity, with both 

hypo- and hyper-glycemia being associated with poor patient outcomes. The importance of 

nutritional support has been highlighted in critical care guidelines. However, both areas have 

open research questions and highly variable clinical practices that observational data may 

help highlight and inform. To aid in this research, we curated a database of patients using 

the eICU collaborative research data (eICU-CRD), which we describe in the current paper, 

focusing on patient blood glucose, insulin therapy and enteral nutrition. The eICU-CRD is 

derived from a telehealth EMR covering 208 United States hospitals from 2014-2015. In 

addition to descriptive statistics and graphical analysis, we highlight any limitations in data 

quality. Our results are in line with previous research suggesting the eICU-CRD cohort is of 

lower illness severity than the average ICU patient cohort and so receive less invasive 

interventions. Examinations of data missingness revealed issues with medication orders and 

non-reporting of nutrition by several hospitals. Overall, with care around missingness we 

believe the eICU-CRD to be a valuable resource in evidence generation for critical care 

research. 
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Introduction 
Freely available electronic medical record (EMR) data collections have transformed  data 

science and observational research in critical care medicine Sauer et al. (2022). The MIMIC-

III database (Johnson et al., 2016) is perhaps the most well-known and as of December 

2022 has been cited more than 4,000 times and extensively used in research areas such as 

machine learning in medicine (Shillan, Sterne, Champneys, & Gibbison, 2019). Alternative 

data sources include the eICU collaborative research database (eICU-CRD) (Pollard et al., 

2018), the Amsterdam University Medical Center database (AmsterdamUMCdb) (Thoral et 

al., 2021), the High time-resolution intensive care unit dataset (HiRID) (Faltys et al., 2021) 

and newer versions of MIMIC (Johnson et al., 2020). Given this increasing choice, 

researchers have sought to characterise the patient populations and data quality of the 

various datasets (O’Halloran, Kwong, Veldhoen, & Maslove, 2020; Sauer et al., 2022), and 

create curated datasets geared towards particular clinical applications such as glycaemic 

control (Arévalo et al., 2021). In this article we provide a descriptive introduction to the use of 

eICU-CRD, a database constructed from the Philips eICU program, a critical care telehealth 

service, for research relating to blood glucose management and nutritional support in the 

ICU. 

Glycaemic control is a core aspect of patient management in the ICU. Blood glucose on 

admission has a well-known U-shaped relationship with mortality and morbidity, with both 

hypo- and hyper-glycaemia being associated with poor patient outcomes (Siegelaar et al., 

2010). As a result, up to 40-90% of ICU patients receive insulin, with the upper bound 

applicable to patients with longer ICU stays and tighter blood glucose targets (Fitzgerald et 

al., 2021; Nice-Sugar Study Investigators, 2009; van Steen, Rijkenberg, van der Voort, & 

DeVries, 2019). Generally clinical guidelines for glycaemic control (e.g. Qaseem, Chou, 

Humphrey, Shekelle, and Physicians (2014)) are based on a series of trials that culminated 

in the NICE-SUGAR study (Nice-Sugar Study Investigators, 2009), a multicentre study 

demonstrating that tight glycaemic control (a target of 80-140 mg/dL) did not improve patient 

outcomes compared to moderate control (<180 mg/dL). However, there remain open 

questions around the impact of glucose variability (Ceriello & Ihnat, 2010), the potential for 

more personalised glycaemic targets (Sechterberger et al., 2013), and the potential for an 

“artificial pancreas” via control algorithms (Chase et al., 2006), which openly available EMR 

collections such as eICU-CRD can play a role in answering. 

Nutritional support in the ICU is increasingly recognised as an important issue, with variation 

in degree and timing of feeding associated with patient mortality and morbidity (Marik, 2014; 

Preiser et al., 2021). It is also clearly related to glycaemic control, with enteral and parental 

nutrition (PN) parameters predictive of future blood glucose values (Fitzgerald et al., 2021). 

Nevertheless, many blood glucose protocols are solely based on previous blood glucose and 

insulin measures (Krikorian, Ismail-Beigi, & Moghissi, 2010; Wilson, Weinreb, & Hoo, 2007). 

As with glycaemic control, there exist open questions around optimal nutritional support, 

such as optimal total calories and protein and timing of nutrition (Preiser et al., 2021). For 

example, clinical guidelines for nutrition in the ICU increasingly recommend early (24-48 

hours) initiation of enteral nutrition (EN) to reduce morbidity and mortality (McClave et al., 

2016; Singer et al., 2019). However, there remain some concerns around the standard of 

evidence supporting these recommendations (Padilla et al., 2019). While studies of 

nutritional support using observational data such as eICU-CRD may not necessarily be 

considered a high-quality source of evidence, the large size and immediate availability will 

help in goals such as selecting target population who may benefit the most from clinical trials 

(such as in Zheng et al. (2022)). 
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Clearly, glycaemic control and nutritional support are areas of critical care in which further 

research is warranted. High quality data are of particular importance for research 

investigating longitudinal relationships between patient characteristics, patient management 

and patient outcomes with the aim of personalising care (e.g. development of reinforcement 

learning algorithms). Details of the timing and nature of an action or decision (for example, 

insulin rate/dose) are required in order to model its effects. O’Halloran et al. (2020) 

previously published a high-level description of the patient population and data quality of the 

eICU-CRD. Their main findings were: 1) the patient population has a lower illness severity 

(based on mortality rate, length of stay and interventions) than the average ICU in the USA; 

2) vital signs are generally well recorded but certain lab results commonly used in severity 

scores have low reporting rate; and 3) complex interventions (e.g., dialysis, intubation) have 

unclear prevalence due to heterogeneity in how they are recorded in the source database. 

We aim to extend this analysis to glycaemic control and nutritional support, characterising 

aspects of the data such as patient blood glucose, insulin therapy and enteral and parental 

nutrition using descriptive statistics and graphical analysis and highlighting any limitations in 

data quality. 

Methods 

Data source 
Data for this study were sourced from the eICU collaborative research database (eICU-CRD) 

open access critical care database, de-identified to conform with the Health Insurance 

Portability and Accountability Act (HIPAA). eICU-CRD is a large multi-center critical care 

database holding data associated with 200,859 ICU stays admitted at 208 hospitals across 

the United States between 2014 and 2015 (Pollard et al., 2018). 

Data extraction, pre-processing, and analysis 
We accessed the eICU-CRD database using Google BigQuery, performing the data curation 

steps using the open source dbt package (https://docs.getdbt.com/) a SQL based data 

modelling tool. The contents and schema of the resulting database are outlined in Appendix 

A. Following this step we imported the data into R version 4.2 (Team, 2013) using the 

bigrquery package (H Wickham & Bryan, 2018), with the data.table package (Dowle & 

Srinivasan, 2019) used for further data cleaning and summarisation. Data engineering and 

pre-processing steps are outlined below and in further detail in the associated code 

repository www.github.com/oizin/eicu-glucose-cohort. 

The analysis was descriptive in nature, using counts, percentages, transformations, and 

summary statistics as appropriate. Given the skewed nature of many variables, continuous 

variables are reported as median and interquartile range unless otherwise stated. Graphical 

analysis was performed using ggplot2 (Hadley Wickham, 2011). All analyses were by ICU 

stay (rather than patient) unless stated otherwise. In cases where the “admission” value of a 

variable is reported this is first value recorded during a patient’s ICU stay. In contrast to 

some of the analyses reported in (O’Halloran et al., 2020) we excluded or set to missing (i.e. 

NA) clearly implausible values (e.g. patient weights above 500 kg), and attempted to 

transform variables (e.g. insulin infusions) to consistent scales where the data was recorded 

heterogeneously (which was the norm).  

ICU stay characteristics and outcomes 
The patient and icustay tables were used to extract details of the ICU stay (admission and 

discharge date, ICU and hospital outcomes, and APACHE admission diagnosis, APACHE-

IVa score (Zimmerman, Kramer, McNair, & Malila, 2006)), patient 
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characteristics/demographic information (age, weight, diabetic status) and the ICU/hospital 

(medical/surgical/cardiac, teaching status and region). 

Blood glucose measurements 
Blood glucose measurements were extracted from the nurseCharting and lab tables. Point of 

care (bedside) measurements were present in both tables, with lab additionally containing 

results that occurred as part of linkable lab results. Details of the measurement device were 

not recorded in the database but are presumably chemistry analysers for lab measurements 

and fingerstick glucometers (or in rare cases arterial blood gas analysers) for bedside 

measures, in line with common practice. 

Insulin 
The data items in the intakeOutput, infusionDrug, medication and treatment tables were 

searched for any items related to insulin. The medication table contains active medication 

orders, with information on the product ordered (e.g., 100 units/mL of Aspart) or a product 

code, start and stop times, the route, dose, frequency, whether the insulin was to be given 

as required (PRN from the Latin “pro re nata” or “as required”) or at a set frequency and 

whether the insulin was an intravenous (IV) admixture. This data was recorded in a 

heterogenous manner, for example,”sc” or “s.c.” used to indicate subcutaneous (SC) insulin. 

During data cleaning, these data was converted into variables that indicated whether the 

insulin order was SC or IV , PRN, by the type of insulin (aspart, lispro, regular, glargine, or 

detemir - inferred from the product name),  insulin analog rate of action (e.g., short or long), 

and by the implied daily frequency of treatment (for example, “t.i.d.” to 3, that is 3 times a 

day, from the Latin “ter in die”). Additionally, the character column dosage was converted to 

numeric column “dose”, or in some cases to “dose low” and “dose high” where (for example) 

“1-10 UNITS” was the value in the data.  

The rate of IV insulin (units/hour), and infusion start times were extracted from the 

infusionDrug table. The infusionDrug table contains the IV insulin infusion start time, and 

either the rate or total insulin units given. This table does not contain an infusion end time 

column and so changes in the infusion (such as termination) need to be inferred by linking 

together all rows for a particular ICU stay and using the next event time to infer a change. 

Additional, similar information was extracted from the intakeOutput table, with the 

information from these two tables then combined. 

Intravenous dextrose 
All distinct data items in the intakeOutput, infusionDrug and medication tables were 

assessed as to whether they indicated IV glucose (dextrose) intake. The infusion start/stop 

times and glucose content (0.45%, 5%, 10% or 50%) were extracted.  

Importantly while infusionDrug and intakeOutput contain interventions performed, the 

medication table is orders, which are not necessarily administered, a note applicable to 

insulin and IV dextrose. 

Nutrition 
All distinct data items in the intakeOutput, infusionDrug, medication, treatment and 

nurseCare tables were assessed as to whether they were related to non-specific oral 

nutritional intake (liquid or solid), oral intake of glucose, EN, PN, or other unspecified 

nutrition and categorised as such. The EN data items were further subcategorised into 

whether they indicated tube feeding of a specific product (e.g. Nutren 1.5), tube feeding of 

an unspecified product, intake of non-food (water, medication intake or flushing) or, other 

enteral related procedure. The start/stop time, and rates of EN and PN were extracted. 
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Results 
An overview of the ICU stays and patient characteristic found in the eICU-CRD database 

can be found in Table 1. We include additional results, including a breakdown of admission 

diagnosis and characterisation of hospital variability in the use of insulin and nutritional 

support in Appendix B. The data included 200,859 ICU stays across 166,355 patients, a 

mean of 1.2 ICU stays per individual. The median length of ICU stay was 1.6 days (IQR: 0.8; 

3.0) with a hospital mortality rate of 9.0%. The majority (92%) of stays were over 6 hours 

with patient mortality accounting for 14% of those with stays under 6 hours. ICU stays by 

older and female patients resulted in higher hospital mortality rates (the mortality rates for 

those over and under 60 was 10.9% and 6.5%, and for females and males was 9.2% and 

8.9%, respectively), with age at ICU admission being on average 2 years younger for males 

than females (64 and 66 years). Among the 90.1% of ICU stays with weight and height 

information available, 36.9% were for obese patients (BMI > 30 kg/m2), with the median 

patient BMI in the overweight range (27.5 kg/m2, IQR of 23.5-32.9 kg/m2). A higher BMI was 

a protective factor for hospital mortality (the so-called “obesity paradox” (Dickerson, 

2013))(Table 1). One-fifth (19.6%) of ICU stays were for patients with diabetes, with a 

diagnosis of diabetes also associated with reduced hospital mortality (8.4% vs 9.8% for non-

diabetics). Caucasian patients accounted for the majority of ICU stays (77.3%), while ICU 

stays by Hispanic patients had the highest mortality rate (9.9%). 

Most ICU admissions were to a mixed medical-surgical ICU (56.4%) with specialist cardiac 

or neurological ICUs accounting for 28.9%. Among the operative ICU stays, 10.7% were 

elective, with the elective surgeries experiencing a far lower hospital mortality rate (3.2%) 

than non-elective surgical stays (10.1%). The most common APACHE admission diagnosis 

was some form of sepsis (11.5%) with these ICU stays associated with an above average 

hospital mortality rate of 16.5%. A similar proportion of patients (11.4%) had no reported 

admission diagnosis. 

Based on the APACHE admission diagnosis, just under 3% of ICU admissions were 

primarily for derangements in blood glucose homeostasis. These admission diagnoses 

included diabetic ketoacidosis (DKA) and hyperosmolar hyperglycaemic coma (HHC) which 

were present in 2.4% and 0.2%. In line with expectations, the HHC group had higher blood 

glucose levels at ICU admission, with a median of 642 mg/dL (IQR: 468-881 mg/dL) for HHC 

stays and 456 mg/dL (IQR: 331-599 mg/dL) for DKA. The ICU length of stay and hospital 

outcomes for DKA and HHC were comparable, with respective median ICU length of stay of 

25 hours (IQR: 18-43 hours) and 29 hours (IQR: 19-39 hours), and in-hospital mortality of 

1.2% and 0.7%. A further 0.25% of patients were admitted primarily for hypoglycaemia. 

These admissions had a median blood glucose of 77 mg/dL (IQR: 45-123 mg/dL), a median 

32 hour (IQR: 19-56 hour) stay in ICU and a 5.0% hospital mortality rate. 

Insulin therapy was prescribed or administered in 31.0% of ICU stays. Patient blood glucose 

at admission for these ICU stays was typically h23 mg/dL higher than for patients who were 

not treated with insulin and patients treated with insulin during their stay were more likely to 

be diabetic than the non-treated population (55.1% vs. 22.9%). The most common route of 

insulin administration was SC injection (88.8% of cases) rather than IV infusion. 

TABLE 1. Overview of the eICU-CRD cohort. Note that due to missing outcome columns may 

not add to all. 

Continuous variables are median 
(IQR) 
Categorical variables are count (%) 

All Hospital outcome 
Survived 

Died in hospital 

Stay characteristics 
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Continuous variables are median 
(IQR) 
Categorical variables are count (%) 

All Hospital outcome 
Survived 

Died in hospital 

ICU stays 200,859 181,104 (90.2%) 18,004 (9.0%) 

ICU stays over 6 hours 185,473 168,015 (90.6%) 15,846 (8.5%) 

Patients 166,355 150,252 (90.3%) 14,623 (8.8%) 

Age (years) 65 (53-76) 64 (52-75) 72 (61-81) 

Gender    

   Male 108,379 97,875 9,608 (8.9%) 

   Female 92,303 83,097 8,372 (9.1%) 

   Missing    

BMI (kg/m2) 27.5 (23.5-32.9) 27.6 (23.6-33.0) 26.6 (22.5-32.2) 

  Underweight (BMI < 18.5) 8,204 6,984 (85.1%) 1,135 (13.8%) 

  Normal (BMI 18.5-25) 55,479 49,539 (89.3%) 5,450 (9.8%) 

  Overweight (BMI 25-30) 54,643 49,761 (92.0%) 4,409 (8.0%) 

  Obese (BMI > 30) 69,324 63,340 (91.4%) 5,433 (7.8%) 

Diabetic    

  Yes 39,308 35,698 (90.8%) 3,282 (8.3%) 

  No 131,869 117,834 (89.4%) 12,811 (9.7%) 

  Missing 29,682 27,572 (92.9%) 1,911 (6.4%) 

Ethnicity    

  Caucasian 155,285 140,030 (90.2%) 13,934 (9.0%) 

  African American 21,308 19,268 (90.4%) 1,865 (8.8%) 

  Hispanic 7,464 6,692 (89.7%) 736 (9.9%) 

  Asian 3,270 2,911 (89.0%) 310 (9.5%) 

  Native American 1,700 1,550 (91.2%) 138 (8.1%) 

  Other/unknown 11,832 10,653 (90.0%) 1,021 (8.6%) 

ICU type    

  Mixed 113,222 102,223 (90.3%) 9,906 (8.7%) 

  Medical 17,465 15,097 (86.4%) 2,231 (12.8%) 

  Surgical 12,181 10,996 (90.3%) 1,124 (9.2%) 

  Cardiac (CCU/CTICU) 43,540 40,025 (91.9%) 3,515 (8.1%) 

  Neurological 14,451 13,048 (90.3%) 1,228 (8.5%) 

    

Admission type    

  Non-operative 143,620 128,453 (89.4%) 15,167 (10.6%) 

  Operative (non-elective) 3,666 3,296 (89.9%) 370 (10.1%) 

  Operative (elective) 30,577 29,591 (96.8%) 986 (3.2%) 

APACHE-IVa score 51 (37; 68) 49 (36; 64) 84 (64; 108) 

    

Blood glucose measurements 

  ICU stays with at least one 
measurement 

175,952 
158,981 (90.4%) 15,440 (8.8%) 

  Measures per day (median IQR) 4.3 (2.7; 7.2) 4.2 (2.7; 7.1) 4.6 (2.9; 7.6) 

  Admission blood glucose (mg/dL) 132 (109; 167) 131 (108; 165) 143 (113; 186) 

  Mean blood glucose (mg/dL) 128 (108; 157) 127 (107; 156) 141 (117; 173) 

  Max blood glucose (mg/dL) 161 (123; 224) 158 (121; 219) 198 (149; 273) 

  Blood glucose SD (mg/dL) 24 (14; 40) 24 (14; 39) 32 (20; 50) 

  Any hyperglycaemic (>180 mg/dL) 
measure on day 1 

59,703 
51,989 (87.1%) 7,214(12.1%) 

  Any hypoglycaemic (<70 mg/dL) 
measure on day 1 

9,936 
8,027 (80.7%) 1,819 (18.3%) 

    

Insulin therapy 

Any insulin 74,464 66,181 (88.9%) 7,693 (10.3%) 

Insulin route    

  Intravenous (IV) 23,506 20,689 (88.0%) 2,693 (11.5%) 

  Subcutaneous (SC) 58,023 51,947 (89.5%) 5,690 (9.8%) 
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Continuous variables are median 
(IQR) 
Categorical variables are count (%) 

All Hospital outcome 
Survived 

Died in hospital 

Nutrition / IV dextrose 

Route of intake    

  Enteral (tube feeding) 14,509 11,600 (79.9%) 2,741 (18.9%) 

  Parenteral 5,676 4,627 (81.5%) 993 (17.5%) 

  IV dextrose 64,839 57,333 (88.4%) 7,161 (11.0%) 

Patient outcomes 

Died in ICU 10,941 0 (0.0%) 7,315 (66.9%) 

Length of ICU stay (days) 1.6 (0.8; 3.0) 1.5 (0.8; 2.9) 2.0 (0.7; 4.8) 

Length of hospital stay (days) 5.5 (2.9; 10.0) 5.5 (3.0; 9.9) 5.3 (1.9; 11.9) 

    

*1,751 ICU stays are missing their hospital outcome 

Blood glucose measurements 
Using the bedside and lab tables we extracted 2,351,977 bedside and 823,513 lab 

measurements after ensuring the measurement occurred within an ICU stay (or at most 12 

hours prior to ICU admission) and accounting for duplication of measurements between and 

within tables. There were 2 hospitals with no blood glucose measurements, although these 

only accounted for 36 ICU stays. Among the hospitals with reported blood glucose 

measurements, 95.3% of admissions with an ICU stay of at least 12 hours had at least one 

blood glucose measurement, with a median number of bedside measurements per day of 

4.3 (IQR 2.7-7.2) (Table 1).  Factors that were related to more frequent blood glucose 

measurement were insulin prescription (5.5 measures per day (IQR: 3.8-10.5)), diagnosis of 

diabetes (5.2 measures per day (IQR: 3.9-9.3 hours)), a hypoglycaemic measurement on 

day 1 of the ICU stay (6.3 measures per day (IQR: 4.1-11.0)) and a hyperglycaemic 

measurement on day 1 of the ICU stay (5.3 measures per day (IQR: 3.8-10.1 hours)). From 

Figure 1D we see that the distribution of time between bedside blood glucose measurements 

is bimodal, with a tendency for blood glucose measurements to occur approximately either 

every 1 hours or every 4 hours, with a long tail of infrequent measurements. This is 

presumably a combination of the influence of standard practises (e.g., rounds and standard 

insulin injection times) on the time of measurement (the most common hours of 

measurement were 16:00-17:00, 22:00-23:00 and 04:00-05:00), and above outlined patient 

specific factors influencing the frequency blood glucose measurement. 

As seen in Table 1, the proportion of patients experiencing hypoglycaemic and 

hyperglycaemic episodes on day 1 of an ICU stay was 29.7% and 4.9%, respectively. As 

expected using average blood glucose on day 1 of the ICU stay these figures reduced to 

17.1% and X%. The severity of both hypoglycaemia and hyperglycaemia tended to decrease 

following the initial 24 hours of ICU stay and remain stable thereafter (Figure 1E). The 

distribution of all blood glucose measurements and the average blood glucose during ICU 

stays are shown in Figure 1B and 1C. As expected, the average blood glucose distribution is 

narrower, with a reduction in observations in the hypoglycaemic and hyperglycaemic ranges. 

In patients who died in hospital, blood glucose tended to be both higher and show greater 

variability (Figures 1G-J). On average, these patients had a 14 mg/dL higher average blood 

glucose and 8 mg/dL higher average standard deviation. In non-diabetics, blood glucose had 

a U-shaped risk curve, with both hypoglycaemia and hyperglycaemia associated with 

increased mortality (Figure 1G). In diabetics the hyperglycaemic portion of this risk profile 

was greatly attenuated, with the hypoglycaemic portion of the risk curve generally shifted 

rightward compared to non-diabetics (Figure 1G). The inter-patient blood glucose variability 

is visible in Figure 1A where we see patients with relatively well controlled blood glucose 
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(e.g., ICU stay - A) and patients with high average (e.g., ICU stay - D) and high variability 

(e.g., ICU stay - G) blood glucose. Within patients, blood glucose measurements trended 

towards a moderate degree of regularity over time, with the correlation between 

measurements plateauing at 0.5 after 10 hours between measurements (Figure 1F). 

  
Figure 1. Characterising blood glucose in eICU-CRD. A) Sample blood glucose trajectories of 10 
different patients during their ICU stay. The pink shaded region is 80-180 mg/dL. Black points are 
bedside blood glucose measurements while blue coloured points are laboratory measurements. B) The 
distribution of bedside blood glucose measurements. C) The distribution of laboratory blood glucose 
measurements. D) The distribution of the time between blood glucose measurements. E) The distribution 
of bedside blood glucose measurements over time. The solid line is the median. The shaded regions are 
the percentiles between the 2.5th and 97.5th percentiles incrementing by 5. F) The correlation between 
blood glucose measurements over time. G) Hospital mortality by admission blood glucose stratified by 
diabetic status. H) Scatter plot of mean and standard deviation (SD) of blood glucose across ICU stay 
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with added smoothing line I) Hospital mortality by blood glucose SD across ICU stay J) 2D density plot of 
mean and standard deviation (SD) of blood glucose across ICU stay stratified by hospital outcome  

Insulin management 
Insulin orders and infusions can be found in the medication, infusionDrug, intakeOutput and 

treatment tables. There were 7 hospitals (3.4%), accounting for 308 ICU stays, where no 

patient was indicated as having received insulin. There was considerable heterogeneity in 

the completeness of the data between these tables. The medication table had a low rate of 

data completeness with 20.7% of rows having a perfectly complete record (defined as the 

availability of type, dose and frequency). The infusionDrug table was largely complete with 

99% of insulin events containing a complete set of information (defined as the availability of 

insulin rate and start time). The treatment table contained information on whether the patient 

initiated an insulin infusion or received a short or long acting insulin injection at a particular 

time, with no information on the dose or rate. 

A patient received IV insulin during 23,506 ICU stays (Table 1). Unfortunately, 81.0% of IV 

insulin orders in the medication table did not have any dose information and generally just 

noted the product ordered (e.g., “insulin regular human 100 unit/ml”) which did not allow for 

deterministic calculation of an infusion rate. Of the 4,006 ICU stays where insulin infusion 

details were recorded in intakeOutput half (48.3%) were additionally reported in the 

infusionDrug table. As such we largely concentrate on the 12,918 ICU stays in the 

infusionDrug table in characterising insulin infusion therapy in the eICU-CRD due to more 

consistent data (intakeOutput contained a mix of units). For these ICU stays the median 

infusion rate was 2.4 units/hour (IQR: 1.0-5.0), albeit with considerable variation (Figure 3B). 

Here we have assumed for the 26% of cases where the units (part of the drugname column) 

are mL/hr the solution contains 1 unit per mL. Diabetics were more likely to receive a higher 

dose, with a median rate of 3.0 units/hour (IQR: 1.8-6.0). 

For the 58,023 ICU stays where SC insulin was ordered, a total of 192,033 active orders 

were available (from the medication table), with 15.5% containing full information on dose, 

insulin type and frequency. The most common order was for a short acting insulin (65.8%) 

followed by long acting insulin (11.6%), with short acting insulin typically a low dose (0-5 

units) and frequency of 3-4 times a day while long acting orders were most typically at least 

10 units and once per day (Figure 3C and 3D). 

As expected, higher blood glucose and diagnosed diabetes were associated with an 

increased likelihood of some form of insulin therapy (Figure 3F). The form of insulin therapy 

used varied by hospital with small hospitals (<100 beds) less likely to use infusion (8% of 

patients prescribed insulin), compared to larger hospitals (20% of patients prescribed 

insulin).  
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Figure 3. Characterisation of insulin therapy in the eICU-CRD. A) Sample insulin infusion rates of 8 ICU 
stays. B) Distribution of insulin infusion rate stratified by diabetic status. C) SC insulin dosage by type of 
insulin. D) SC insulin injections per day by type of insulin E) SC insulin minimum and SC dosage. F) 
Probability of receiving insulin on day 1 of an ICU stay by blood glucose level on admission and diabetic 
status 

 

Intravenous dextrose 
Similar to insulin, details of IV dextrose orders and administrations can be found in the 

medication, infusionDrug and intakeOutput tables. As above the medication table contains 

orders which are not guaranteed to be administered, however for simplicity we group all 
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information across the tables for the purpose of this analysis and refer to “IV dextrose 

orders”. Across these tables it was possible to determine the concentration of the IV 

dextrose for 100% of orders using the product name (or equivalent variable). IV dextrose 

was ordered in 64,839 stays. The most common order was for 5% dextrose (59.7%). A large 

percentage (24.1%) of ICU stays had a 50% dextrose order (35.4% of orders), with these 

patients generally having a lower minimum blood glucose level compared to patients who did 

not have a 50% dextrose order (92 mg/dL vs 99 mg/dL). Amongst the ICU stays indicated as 

receiving IV insulin, 78.3% were indicated as having an IV dextrose order during their stay, 

most commonly 5% dextrose (53.1%), followed by 50% dextrose (42.3%). There were 77 

hospitals, accounting for 34,813 ICU stays, where no ICU stay was indicated as having 

received IV dextrose. 

Oral, enteral and parenteral nutrition 
Information on nutritional support, including oral (eating or drinking), EN or PN feeding, was 

found largely in the intakeOutput table (1,377,059 events across 72,346 ICU stays). To a far 

lower degree some indications of PN were found in the infusionDrug and medications table 

(13,161 events across 656 ICU stays). The treatment table contains an indication of PN and 

EN for 1,026 and 3,744 ICU stays, with the nurseCare table containing an indication of PN 

and EN for 214 and 2,163 ICU stays. For the latter two tables only the event name (e.g., 

“enteral” or “regular diet”) and the time is available with no rates or quantities recorded. The 

presence of nutritional information varied widely across patients and hospitals. As seen in 

Figure 4A, patients were more likely to have reported nutritional support with an increasing 

length of ICU stay, with variation in the intake route by illness severity (Figure 4B). While the 

lack of patient data may be partially explained by the high rate of no feeding common in ICU 

(discussed below), there were 34 hospitals (16%), accounting for 10,318 ICU stays, 

containing no nutritional information at all. Additionally for 68,039 ICU stays across 99 

hospitals, it could only be inferred the patient has some form of intake, with no 

quantity/volume recorded. Further, the remaining reported wide variation in the rates of 

nutritional support (Figure 4B). 

Amongst ICU stays receiving enteral nutritional support (for examples see Figure 4C) the 

median start time was 32 hours (IQR: 14-63 hours) after admission to ICU (see Figure 4D), 

with earlier initiation of EN associated with better hospital outcomes (Figure 4G). In a large 

percentage of cases the product used was not recorded (>26%), with Abbot Pivot and Nepro 

the most common recorded products (>9% of EN under different naming conventions). The 

median feeding rate was 45.0 mL/hr (IQR 30.0-60.0) (see Figure 4D). As seen in Figure 4E, 

assuming a 1.5-2.0 calorie per mL product was used, the majority (78.0-54.7%) of EN fed 

patients were likely to have caloric intakes under 2,000 calories, with 55.7-37.0% under 

1,500 calories. As with earlier initiation, higher intake of EN was associated with better 

hospital outcomes (Figure 4H). 
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Figure 4. Charactering EN in the eICU-CRD. A) The percentage of ICU stays recorded as receiving EN, 
PN or oral nutritional intake by their length of ICU stay. Note this figure excludes hospitals where no 
nutritional information quantity is recordedl. B) Percentage of ICU stays receiving nutritional support via 
intake route by APACHE-IV score C) Sample EN feeding rate profiles. D) The distribution of EN starting 
times E) The distribution of EN feeding rates. F) The distribution of the EN total daily feeding. G) Hospital 
mortality by EN starting time H) Hospital mortality by average daily EN feeding volume 
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Discussion 
The goal of this paper was to support research into glycaemic control and nutritional support 

in the ICU through curating an eICU-CRD database and characterising the resulting cohort. 

The eICU-CRD is a de-identified release of data from the Philips telehealth program, and to 

the best of our knowledge is the only open access critical care telehealth EMR database. It 

is unique because it contains detailed information on ICU stays across multiple hospitals, 

with a large cohort of over 200,000 ICU stays. We have given a detailed analysis, including 

summary statistics, graphs and missingness analysis of the blood glucose, insulin therapy, 

and nutritional (IV dextrose, EN and PN) data that is often duplicated across several tables 

in the database, depending on how the originating hospital used the telehealth EMR. 

Overall, the eICU-CRD appears to be an excellent resource for research relating to 

glycaemic control and nutritional support. For certain research questions, in particular those 

requiring information on the timing and dosage of SC insulin, issues with missing information 

may limit the usefulness of the database, or require analysis of a smaller subset of hospitals 

with higher rates of data completion.  

Relationship to previous research 
The eICU-CRD patient cohort has previously been noted to have a lower illness severity 

than the typical US ICU (O’Halloran et al., 2020), with a hospital mortality rate of 9.0%. In 

comparison, the commonly used MIMIC-III database, constructed from the ICUs in the Beth 

Israel Deaconess Medical Center (Boston), has a hospital mortality rate of 11.5%, more in 

line with the typical US ICU. 

The use of insulin is comparable with other observational ICU EMR databases such as 

MIMIC-III. The rate of insulin usage is at most 37% depending on whether all insulin orders 

are administered. This is comparable with the rate in MIMIC-III (37%) (Fitzgerald et al., 

2021) despite a slightly lower rate of hyperglycaemic episodes on day 1 of the ICU in the 

eICU-CRD at 29.8%, compared with 36% in MIMIC-III (Baker et al., 2020). However, eICU-

CRD has a higher rate of patients with a mean blood glucose above 180 mg/dL (17.1% vs. 

14%), with these differences likely related to variation in measurement frequency. For 

comparison, in the sicker cohort of the multicentre NICE-SUGAR study the rate of insulin 

use was 69.0% for the <180 mg/dL target arm (patients with expected ICU stay over 24 

hours and not eating). In contrast to recommendations for ICU patients (Care, 2022; Evans 

et al., 2021), but comparable to MIMIC, there is high rate of SC insulin use (88.8% of insulin 

prescribed ICU stays). This may be partially explained by the lower illness severity of the 

cohort, as noted in (O’Halloran et al., 2020) nearly two-third of eICU-CRD ICU stays had no 

IV infusions (in line with our rate of IV dextrose usage of 32%). Relatedly, use of SC insulin 

injections is less resource intensive (Tran, Kibert, Telford, & Franck, 2019). Clinical 

recommendations and practice are constantly evolving with variation in their applicability to 

all patient groups. Analysis of the variation between the Surviving Sepsis Campaign 

guidelines and clinical practice found similar variation, with the recommendations being fully 

followed in 0.1% of cases (Reade et al., 2010). 

In other areas related to glycaemic control, the eICU-CRD is again similar to published 

results. Diabetics make up 23% in MIMIC-III (Fitzgerald et al., 2021), 20% in NICE-SUGAR, 

comparable to the rate of approximately 22.9% in the eICU-CRD. Diabetic ketoacidosis 

(DKA) patients, a cohort requiring different management to standard ICU glycaemic control 

protocols, have previously been reported as accounting for 1.4% (IQR: 1.0-2.5%) of ICU 

admissions (Gershengorn et al., 2012), within range of the 2.4% rate in eICU-CRD. 
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However, the 1.2% hospital mortality rate of ICU admitted DKA patients is above average 

compared to the rate of 0.7% (range: 0.4% to 3.4%) in Gershengorn et al. (2012), possibly in 

line with previous evidence that eICU-CRD patient experience slightly above expected 

mortality rates (O’Halloran et al., 2020). In patients receiving insulin infusions the distribution 

of infusion rate was similar to that published for MIMIC-III, with most ICU stays receiving 

under 2 units of insulin per hour and a long tail of higher rates falling to near 0% at 20 

units/hour (Baker et al., 2020).  

Based on our analysis it would appear most eICU-CRD patients stayed in ICU for a relatively 

short period of time and were able to tolerate some form of oral intake (Table 1 and Figure 

4D). Data quality for nutritional support was variable, with nutritional information only 

recorded by 36.5% of the hospitals. Generally, it wasn’t possible to determine what the oral 

intake specifically referred to (e.g., water or oral nutritional supplement), with it largely limited 

to a mL quantity and generic description (e.g., “PO”) (Appendix B). Amongst the hospitals 

recording nutritional information in the telehealth system the rates of EN and PN varied 

widely from 1-23% and 1-12% (Appendix B). Half of EN was initiated within 37 hours, with 

clinical guidelines recommending that EN be initiated within 48 hours for patients that cannot 

eat orally (Singer et al., 2019). A large percentage of patients on EN appear to be underfed 

(Figure 4F), assuming a 1.5-2.0 calories/mL product, and 1,500-2,000 calorie per day 

nutritional requirement, in line with previous research (Ridley et al., 2018). The rates of oral 

intake are higher (~50%) compared to a rate of 43.6% in Fadeur, Preiser, Verbrugge, 

Misset, and Rousseau (2020) a group with an ICU stay greater than 3 days (Figure 4A), 

although as noted, what the oral intake consisted of in the eICU-CRD cohort was often 

ambiguous. 

The associations of measures of glycaemic control and nutritional support with hospital 

mortality were in line with previous research. The eICU-CRD cohort displayed the 

characteristic U-shaped risk curve for blood glucose, with attenuation of the effect for 

diabetics. Glycaemic variability (as measured using the standard deviation of blood glucose 

(Eslami, Taherzadeh, Schultz, & Abu-Hanna, 2011)) was additionally associated with 

increased mortality risk. While blood glucose mean level and standard deviation are strongly 

associated (as shown in Figure 1H), our analysis (Figure 1J) suggests that the association 

between variability and poor prognosis is independent of the mean blood glucose level, as 

previously suggested by Meyfroidt et al. (2010). The results for nutritional support were 

similarly in line with previous literature (Kreymann et al., 2006). A shorter time to initiation of 

EN, and higher rates of feeding were both associated with better patient prognosis. We 

emphasise that associations are confounded by other factors such as illness severity and 

treatment – for instance diabetics are often treated with insulin (Figure 3F) and initiation of 

EN requires hemodynamic stability (Yang, Wu, Yu, & Li, 2014). 

Future directions 
Hernán, Hsu, and Healy (2019) describe a taxonomy of data science tasks – descriptive 

analysis, predictive analysis (e.g., statistical model fitting for risk factor discovery) and causal 

inference. The importance of descriptive (epidemiological) research in critical care has 

previously been noted (Garland, Olafson, Ramsey, Yogendran, & Fransoo, 2013). It aids in 

understanding where variation in clinical practice and patient outcomes exist. As a large 

geographically dispersed population, the eICU-CRD can provide valuable information for this 

task. This paper initiated such research in the areas of glycaemic control and nutritional 

support, building upon previous descriptive analysis using eICU-CRD by O’Halloran et al. 

(2020) and MIMIC-III (Baker et al., 2020). Further work may expand this work to other 

clinical areas, or continue work on glycaemic control and nutritional support through creation 
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of benchmark datasets for comparison of blood glucose forecasting and insulin 

recommendation algorithms (as done for MIMIC-III (Arévalo et al., 2021)). 

As noted above there are a variety of open questions in critical care research relating to 

glycaemic control and nutritional support. The eICU-CRD appears to be a valuable resource 

for evidence generation in several of these areas, whether through replication of existing 

observational research or the design of novel research studies. For instance, increased 

glycaemic variability has been linked to poorer patient outcome (as seen in Table 1)(Ceriello 

& Ihnat, 2010). Most patients in the eICU-CRD have 4 or more blood glucose measures per 

day and detailed information on confounding factors, enabling research in this area. 

Similarly, in the area of nutritional support, studies such as Zheng et al. (2022) on EN vs. no 

EN and patient outcome appear wholly or partially replicable in eICU-CRD. Data 

missingness presents one barrier to these research topics, with research focused on insulin 

therapy or nutritional support likely to need to exclude up to 50% of the hospitals in the 

eICU-CRD to have a near complete dataset.  

The eICU-CRD is unique among open access critical care databases in containing many 

hospitals. This opens the possibility that the eICU-CRD may be quite a useful resource for 

observational treatment comparison research. In recent years causal inference has been 

given a sound theoretical basis in the work of authors such as Judea Pearl and James 

Robins (e.g., Pearl (2009) and Robins (1997)) leading to the generation of a wide variety of 

methods and software libraries for the estimation of treatment effects in complex 

observational datasets (e.g., targeted learning (Van der Laan & Rose, 2018)). The 

necessary assumption of positivity (that all in target population have some chance to be 

treated/untreated) may be difficult to meet in single-centre data collections where protocols 

(such as described in Wilson et al. (2007) for insulin) may limit the variation in who gets 

treated. While participation in Philips telehealth may bring some degree of standardisation, 

the analysis above revealed considerable variation in factors such as use of insulin and 

EN/PN (Appendix B). However, any such analysis would still need to adjust for confounding, 

which given the heterogeneity in eICU-CRD presents its own challenges.  

Strengths and limitations 
This analysis is not without limitations. Ultimately certain assumptions needed to be made in 

extracting the relevant information from the various tables in eICU-CRD. We have released 

our source code documenting these assumptions. Of course, care must still be taken even 

where the assumptions are correct, as in all EMR collections there may be ambiguity 

between the data and what occurred in clinical practice. Not all clinically relevant information 

may have been entered into the telehealth system from which eICU-CRD is built, or it may 

have been entered incorrectly. Similarly, our data extraction is not exhaustive, with 

information such as administration of glucocorticoids not included. Further cleaning of the 

data may also be possible. For example, data exploration suggests it may be possible to 

improve the data completeness characteristics of the medication table orders by examining 

all orders for a particular patient during an ICU stay and assuming doses and frequencies 

repeat across orders.  

Conclusions 
The eICU-CRD is a unique and valuable resource for glycaemic control and nutritional 

support research. Issues of data quality and completeness that we have documented will 

assist in assessing its suitability for addressing specific research questions. We urge that 

further open access EMR resources are made available to support advances in critical care 

and data science research. 
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Appendix A: eicu_crd_glucose data sources and schema 
Below we describe the source tables and resulting schema of the curated eicu_crd_glucose 

schema, which can be created using the dbt project code in the eicu_glucose folder of the 

project Github repository. 

 

Figure A1. Illustration of the eICU-CRD tables included in the analysis, and the process of schema 
transformation to create a blood glucose management and nutrition support focused 
schema/database.  
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Figure A2. Information included in the blood glucose management and nutrition support focused 
schema/database. 
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Appendix B: Additional results 

Additional descriptive results 
Table B1. Admission diagnosis and hospital outcome 

 All Survived hospital Died in hospital 

APACHE Admission diagnosis 
(non-operative) 

   

  Sepsis    

  Sepsis (pulmonary) 8,862 7,221 (81.5%) 1,641 (18.5%) 

  Sepsis (renal) 5,273 4,682 (88.8%) 591 (11.2%) 

  Sepsis (GI) 2,881 2,302 (79.9%) 579 (20.1%) 

  Sepsis (unknown) 2,602 2,122 (81.6%) 480 (18.4%) 

  Cardiovascular    

  Myocardial infarction 7,228 6,883 (95.2%) 345 (4.8%) 

  Heart failure 6,617 5,934 (89.7%) 683 (10.3%) 

  Rhythm disturbance 4,827 4,542 (94.1%) 285 (5.9%) 

  Cardiac arrest 4,580 2,235 (48.8%) 2,345 (51.2%) 

  Unstable angina 2,658 2,613 (98.3%) 45 (1.7%) 

  Neurological     

  Stroke 6,647 5,985 (90.0%) 662 (10.0%) 

  Coma 2,902 2,642 (91.0%) 260 (9.0%) 

  Seizure 2,776 2,678 (96.5%) 98 (3.5%) 

  ICH 2,450 1,983 (80.9%) 467 (19.1%) 

  Metabolic    

  DKA 4,825 4,792 (99.3%) 33 (0.7%) 

  Respiratory (excl. sepsis)    

  Emphysema/bronchitis 4,494 4,166 (92.7%) 328 (7.3%) 

  Pneumonia 4,101 3,516 (85.7%) 585 (14.3%) 

  Respiratory arrest 2,599 2,033 (78.2%) 566 (21.8%) 

  Gastrointestinal/Renal (excl. 
sepsis) 

 

  

  Upper GI bleed 3,238 3,037 (93.8%) 201 (6.2%) 

  Lower GI bleed 2,423 2,307 (95.2%) 116 (4.8%) 

  Renal failure 2,349 2,151 (91.6%) 198 (8.4%) 

  Other    

APACHE Admission diagnosis 
(operative) 

   

  Cardiovascular    

  CABG 4,543 4490 (98.8%) 53 (1.2%) 

  Aortic valve replacement 2,239 2201 (98.3%) 38 (1.7%) 

  Carotid endarterectomy 1,741 1728 (99.3%) 13 (0.7%) 

  Neurological    

  Craniotomy 1,193 1175 (98.5%) 18 (1.5%) 

  Gastrointestinal    

  GI obstruction 1,044 939 (89.9%) 105 (10.1%) 
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Characterisation of hospital variability 

 
Figure B1. Percentage of ICU stays having an insulin order or receiving an infusion by number of ICU 
stays per hospital 

 
Figure B2. Percentage of insulin orders having complete information by number of ICU stays per 
hospital 

 
Figure B3. Percentage of ICU stays receiving nutritional support by number of ICU stays per hospital 
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