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Abstract1

Although deep learning has become state of the art for nu-2

merous tasks, it remains untouched for many specialized3

domains. High stake environments such as medical settings4

pose more challenges due to trust and safety issues for deep5

learning algorithms. In this work, we propose to address6

these issues by evaluating the performance and explanability7

of a Bidirectional Encoder Representations from Transform-8

ers (BERT) model for the task of medical image protocol9

assignment. Specifically, we evaluate the performance and10

explainability on this medical image protocol classification11

task by fine tuning a pre-trained BERT model and measur-12

ing the word importance by attributing the classification13

output to every word through a gradient based method. We14

then have a trained radiologist review the resulting word15

importance scores and assess the validity of the model’s16

decision-making process in comparison to that of a human.17

Our results indicate that the BERT model is able to identify18

relevant words that are highly indicative of the target proto-19

col. Furthermore, through the analysis of important words in20

misclassifications, we are able to reveal potential systematic21

errors in the model that may be addressed to improve its22

safety and suitability for use in a clinical setting.23

1 Introduction24

Machine learning systems are being rapidly adopted for25

many applications including high-stakes settings such as26

medical applications [18, 19, 22]. Recent progress with self-27

attention techniques, and specifically Transformers, have28

dominated the field of text processing and classification tasks.29

Large pretrained Transformers have outperformed humans30

on language understanding tasks such as SuperGLUE [26].31

However, many specialized text analysis tasks do not make32

use of modern machine learning methods. It remains ques-33

tionable how well existing pretrained models will transfer34

to large, specialized texts.35

In many high-stake applications, such as medicine, law,36

or security where the main workers are humans trained in37

specialized tasks, the direct application of these machine38

learning algorithms, without human oversight, is currently39

inappropriate. This reason is not only due to accuracy con-40

cerns, but also arise from the lack of explanability and trust41
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humans have for the machine learning algorithm. Therefore,42

in order to implement a machine learning algorithm to help43

with specialized medical tasks it must not only have human44

level performance, but also provide trustworthy explanations45

to the user [10]. Furthermore, model explainability is being46

driven by laws and regulations which state that decisions47

from machine learning algorithms must provide information48

about the logic behind those decisions [1]. In fact, the lack of49

explainability of ML models often plagues medical artificial50

intelligence (AI) [8]. For these reasons, in high-stake settings,51

explainability should be a priority for researchers.52

In this study, we focus on the specialized task of identi-53

fying medical imaging protocols within text descriptions.54

Medical imaging plays a crucial role in modern healthcare,55

allowing physicians to visualize the inside of the human56

body in order to diagnose and manage various conditions.57

Clinicians often order radiologic studies, such as magnetic58

resonance imaging (MRI) or computed tomography (CT), to59

help answer clinical questions and guide treatment decisions60

[24].61

Typically, when a physician orders an imaging study, he/she62

will provide a brief description of the indication for the exam63

outlining the patient’s signs and symptoms, medical history,64

and any relevant clinical findings. These requests are then65

sent to the radiologists, who are responsible for reviewing66

the orders and recommending a radiologic protocol that best67

addresses the clinical question. A radiologic protocol is a68

specific set of instructions that defines the type of radiologic69

exam to be performed on a particular body part, taking into70

account the patient’s presentation and the expected imag-71

ing findings. The protocol may involve different imaging72

sequences contrast agents, imaging planes, field of view, etc73

in an MRI exam.74

Assigning the appropriate protocol requires a thorough75

understanding of the radiological appearance of different76

pathologies, as well as a detailed knowledge of the patients’77

clinical presentation and medical history. It also requires78

familiarity with the types of protocols offered by the institu-79

tion, as different facilities may have different capabilities and80

resources. In MRI, accurate protocol assignment is particu-81

larly crucial to patient care, as the chosen protocol dictates82

which sequences are obtained and can impact the quality83

and diagnostic accuracy of the exam [3, 4].84
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Traditionally, protocol assignment to each radiologic order85

is done manually by the radiologists or radiology technol-86

ogists. This can incur substantial costs to the healthcare87

system. This tedious task may take up to at least 6% of the88

radiologists’ time [21]. With increasing radiology orders, an89

automated process with high throughput and accuracy is90

desirable to ensure patient care and to avoid radiologists’91

burnout. However, given the high stakes of medical tasks,92

machine learning models must be evaluated for any system-93

atic biases or errors before they can be trusted by clinicians94

and patients [7]. In order for these models to be used in95

practice they need to provide valid explanations for how the96

decisions are made.97

To address these problems, we fine-tuned a BERT model98

using thousands of archived physician orders to learn the99

medical language used to describe a given radiological exam.100

Physicians’ orders are generally written poorly, with many101

typos and grammatical errors. In many cases they are written102

with a few keywords to try and convey their point. Further-103

more, they use terminology that only make sense in the104

context of human anatomy or physiology. This can pose105

challenges for existing pre-trained models as there is a distri-106

bution shift between the physician’s text and what existing107

models have been trained on [15]. In addition, we evaluate108

the model’s ability to provide explanations of its decision109

based on word importance. A trustworthy algorithm should110

be able to demonstrate it is making complex decisions using111

similar rational to a human. For this application, explana-112

tion is increasingly complex because the model will need to113

understand language in the context of human anatomy and114

physiology.115

The main contributions of this study are as follows:116

• We fine-tune a pre-trained BERT model using a medi-117

cal dataset ofmedical imaging protocol text, and demon-118

strate that it achieves state-of-the-art performance.119

• We employ a gradient-based method called integrated120

gradients to quantify the contribution that each word121

in the input text makes to the model’s decision.122

• We validate the model’s word importance claims using123

a technique called erasure.124

• We demonstrate that the model is capable of complex125

decisions in a manner similar to that of a trained radi-126

ologist.127

• We analyze the model’s mistakes using word impor-128

tance and identify systematic errors that may pose129

potential safety risks and need to be addressed before130

the model can be safely deployed in a clinical setting.131

2 Data132

In order to train a specialized model for medical text clas-133

sification, we have compiled a new large-scale dataset for134

image protocol review. This dataset consists of deidentified135

order entries and assigned protocols for magnetic resonance136

Figure 1. A proposed system in which physician notes are
used as input to a model. The output of the model is an
imaging protocol, as well as an explanation of the process
by which the protocol was determined. This system aims
to provide a more efficient and accurate method for deter-
mining appropriate imaging protocols, while also offering
insight into the decision-making process of the model. By
incorporating an explainability component, the proposed
system has the potential to enhance trust and understanding
in the use of machine learning for medical image protocol
assignment.

(MR) neuroradiology studies that were conducted at our in-137

stitution between June 2018 and July 2021. Each row in the138

dataset represents a single radiology order and includes the139

’reason for exam’, patient age and gender, and the protocol140

assigned by the radiologist.141

Wehave excluded orders for spine imaging from this study,142

as the assigned protocol typically reflects the specific seg-143

ment of the spine indicated in the order. From the original144

dataset of 119,093 rows, we removed the most common pro-145

tocol, ’routine brain’, as it can be used for a wide range of146

indications and serves as the default protocol at our institu-147

tion. The remaining dataset was narrowed down to the 10148

most common protocols (Table 1).149

To ensure the accuracy and quality of the data, we per-150

formed a thorough review by an experienced radiologist151

(ET) with 10 years of experience. We also applied standard152

text preprocessing techniques, such as the removal of redun-153

dant fields, handling of missing outputs, and expansion of154

acronyms, to further clean and organize the data. The final155

dataset includes 88,000 recorded notes with expert-annotated156

imaging protocols.157

3 Methods158

This retrospective study was conducted with the approval of159

the Stanford Institutional Review Board (IRB) and under a160

waiver of informed consent. The study was approved for col-161

laboration between Stanford University and the University162

of California, Berkeley.163

3.1 BERT Fine Tuning164

We approach the problem of text classification as predict-165

ing the class that corresponds to a given input text. In our166

dataset, we have 10 possible classes that can be predicted. To167

achieve this, we fine-tune a pre-trained BERT model using168

the HuggingFace Transformers library [28].169

3

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 25, 2023. ; https://doi.org/10.1101/2023.04.20.23288684doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.20.23288684
http://creativecommons.org/licenses/by/4.0/


Protocol Name BERT DNN XGBoost RF KNN
MR BRAIN DEMYELINATING 0.92 0.91 0.92 0.90 0.75
MR BRAIN MASS/METS/INFECT 0.85 0.77 0.71 0.66 0.59
MR BRAIN MOYA-MOYA DIAMOX 0.96 0.96 0.98 0.97 0.90
MR NASOPHARYNX OROPHARYNX 0.89 0.92 0.93 0.91 0.75
MR ORBIT SINUS FACE 0.85 0.83 0.81 0.75 0.68
MR BRAIN SEIZURE 0.95 0.77 0.78 0.68 0.66
MR SELLA 0.96 0.94 0.94 0.89 0.74
MR SKULL BASE 0.82 0.79 0.74 0.64 0.61
MR STROKE 0.84 0.83 0.79 0.73 0.72
MR VASCULAR MALFORMATION 0.87 0.84 0.83 0.75 0.65
Weighted Average 0.89 0.85 0.84 0.77 0.70

Table 1. A comparison of imaging protocol F1 scores.

Before being processed by the BERT encoder, the input170

data is transformed by passing it through three embedding171

layers: a token embedding layer, a segment embedding layer,172

and a position embedding layer. In the token embedding173

layer, the input sentences are tokenized and each token is174

transformed into a fixed-dimensional vector representation175

(e.g., a 768-dimensional vector). Special classification [CLS]176

and separator [SEP] tokens are also inserted at the beginning177

and end of the tokenized sentence to serve as input represen-178

tations and sentence separators for the classification task.179

The segment embedding layer is useful for classifying180

a text when provided with a pair of input texts. The po-181

sitional embedding layer encodes the relative position of182

tokens within a sentence using a sinusoidal function. The183

final input embedding is the sum of these three individual184

embeddings, which is then passed to the transformer for185

further processing.186

Resemblant to the clinical setting, the number in each pro-187

tocol is not evenly distributed. More than half of the imaging188

protocol entries belong to two of the classes. To mitigate this189

imbalance we up sample the remaining 8 imaging protocols190

so that the dataset is approximately balanced between all 10191

classes of imaging protocols. The data is randomly split into192

a train, validation and test sets. We have 70% of the protocols193

make up the train set, 20% make up the validation set, and194

10% make up the test set. The validation set was used to per-195

form a hyperparameter grid search. The learning rate was196

tuned from the range of 1𝑥10−4 to 1𝑥10−6. During our exper-197

iments we found the model would converge after 20 epochs198

and training for any longer would degrade performance. The199

model is trained using a single A6000 GPU.200

3.2 Model Baseline201

In order to establish a baseline and compare the performance202

of our fine-tuned BERT model against traditional machine203

learning methods, we conducted experiments using several204

well-known algorithms, namely K-Nearest Neighbors (KNN),205

Random Forest (RF), XGBoost, and Deep Neural Networks206

(DNN). These algorithms have been used in previous stud-207

ies for medical imaging protocol assignment and provide a208

benchmark to evaluate the effectiveness of our approach.209

To implement and evaluate the traditional machine learn-210

ing methods, we used popular and widely adopted Python211

libraries for each of the algorithms. For KNN, RF, and XG-212

Boost, we utilized the scikit-learn library. For the DNN, we213

employed Keras for building a 1D Convolutional Neural Net-214

work (CNN) classifier.215

3.3 Word Importance216

For the purposes of this study, we use the concept of "word217

importance" as a means of interpreting the model. Word218

importance quantifies the contribution that each word in219

the input text makes to the model’s prediction. To calculate220

word importance, we utilize a gradient-based method called221

integrated gradients [16, 23].222

Integrated gradients exploit the gradient information of223

the model by integrating first-order derivatives. This method224

does not require the model to be differentiable or smooth,225

making it particularly suitable for large and complex models226

such as Transformers. We use integrated gradients to accu-227

rately estimate the importance of individual words within228

an input sentence.229

The integrated gradients method can be formally defined230

as follows: let x be the input sentence, represented as a231

(𝑥1, ..., 𝑥𝑚), and let 𝑥 ′ be a “blank” baseline input. We have232

a trained model 𝐹 , and 𝐹 (𝑥)𝑛 is the output of the model at233

time step n. The contribution of the𝑚𝑡ℎ word in 𝑥 to the234

prediction of 𝐹 (𝑥)𝑛 can be calculated by taking the integral235

of gradients along the straight line path from 𝑥 ′ to the input236

𝑥 . In other words, we are measuring how much the predic-237

tion at time step 𝑛 changes as we move from the baseline238

input 𝑥 ′ to the actual input 𝑥 , and specifically how much the239

𝑚𝑡ℎ word in 𝑥 contributes to this change.240

Theword importance value of eachword in the input is cal-241

culated by summing the scalar attributions across the dimen-242

sions of the input embeddings. A positive attribution value243
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indicates that the word contributed to the prediction made244

by the model, while a negative attribution value indicates245

that it opposed the prediction. In cases of the BERT model,246

which uses sub-word tokenization to divide rare words into247

smaller pieces, we can obtain word-level attributions that248

are more understandable to humans by taking the sub-word249

with the highest absolute attribution value as the attribution250

for the entire word.251

3.4 Validating Word Importance252

The assumption to use heat-maps of attribution values over253

the inputs as explanations is particularly popular for natural254

language processing. To test the validity of these explana-255

tions, "stress tests" can be designed using a method called256

erasure, where the most or least important parts of the input,257

as indicated by the explanation, are removed and the model’s258

prediction is observed for changes [2]. Specifically, we erase259

the most (or least) important word from the input sentence260

and measure the resulting model accuracy.261

3.5 Aggregating word attribution262

We aggregate the word attributions across multiple texts for263

each imaging protocol. Integrated gradient assigns attribu-264

tion scores to each prediction made on a text segment that265

is a maximum of 512 sub-words long. We calculate the top 5266

words for each imaging protocol by taking the average attri-267

bution value for each word across all text for a given imaging268

protocol, and select the top words as those with the highest269

average attribution value. We further filter out words that270

appear in less than 3 texts. A trained radiologist assigned271

a measure of word importance across all text for a given272

imaging protocol. This measure was based on a numerical273

score, with a value of 1 indicating a strong influence on the274

radiologist’s decision, 0.5 indicating a slight influence, and275

0 indicating a neutral influence. For each word, the human276

word importance score was determined as the average of277

all word scores across a single image protocol class. These278

methods were employed to generate lists of the most influ-279

ential words for each imaging protocol, utilizing both the280

BERT model and the judgments of the trained radiologist.281

4 Results and Analysis:282

The results of our fine-tuning experiment on the BERTmodel283

are shown in Table 1. The model’s performance was evalu-284

ated using three metrics: precision, recall, and F1 score. The285

F1 score is a measure of the model’s accuracy, taking into286

account both the precision and recall of the model. We found287

that the BERT model had an F1 score of 0.89, which repre-288

sents a significant improvement over the results of previous289

studies using other machine learning methods. One such290

study using deep neural network, random forest algorithm,291

and k-nearest neighbors (kNN) achieved a F1 scores of only292

0.83, 0.81 and 0.76 respectively[14].293

Figure 2. Model performance after step-wise removal of
the 4 most important words and the 4 least important
words from the text prompt. The results show that the
least important words are less likely to degrade model
performance while the most important words substan-
tially degrade the performance.

Figure 3. The bar plot decomposes the mistakes into four
categories: multifarious choices, age-related, ambiguous
text, and flagrant errors.

For our dataset, we also measured the weighted average F1294

scores of the traditional machine learning models: XGBoost295

achieved an F1 score of 0.84, RF scored 0.77, KNN obtained296

0.70, and the DNN yielded an F1 score of 0.85. These results297

are comparable to the performance of existing studies. Over-298

all, the results of our experiment demonstrate the superior299

performance of the pre-trained BERT model compared to300

non-Transformer based approaches. The BERT model was301

able to achieve a higher level of accuracy, as indicated by302

the higher F1 score, and outperformed other methods in this303

task.304

4.1 Word Importance305

The attribution scores assigned to individual words by the306

integrated gradients are intended to reflect the influence of307

those words on the model’s decisions.308

To verify the validity of these attribution scores, we con-309

ducted a "stress test" using a technique called erasure. This310
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Figure 4. Top 5 words where human (trained radiologist) and BERT agree or disagree for 3 selected protocols. Human & robot
are words both human and BERT agree are important. Human only are words with high human importance but low BERT
importance. Robot only are words with high BERT importance but low human importance.

involved systematically removing the most and least impor-311

tant words from the input text, and measuring the resulting312

impact on the performance of the BERT model. The results313

of this stress test are shown in Figure 2. We can see that314

the removal of the least important words had a relatively315

small effect on the model’s performance, causing a decline316

in the F1 score from 0.89 to 0.86. In contrast, the removal317

of the most important words had a much more significant318

impact, with the F1 score dropping sharply from 0.89 to 0.62319

when the topmost important words was removed. Each sub-320

sequent removal of the most important words also resulted321

in a decremental drop in the F1 score.322

These results provide strong evidence that the attribution323

scores generated by the integrated gradients method are324

valid, as they accurately reflect the influence of each word325

on the model’s performance. The stress test demonstrates326

that the most important words have a substantial impact on327

the model’s ability to make accurate predictions, and that328

the words with the highest attribution scores are particularly329

influential in the model’s decision making process.330

We aggregate word attribution scores for each image pro-331

tocol and investigate the difference in the word importance332

ranks of BERT and those of a radiologist (figure 4). Both333

human (trained radiologist) and BERT picked the words334

most frequently mentioned in the indications for brain mass335

workup. Meningioma is the most common type of brain tu-336

mor and lung cancer is the most common cause of brain337

metastases. Mets is a very commonly used shorthand for338

metastases. Both human and BERT picked up words suggest-339

ing a history of treatment for brain tumors, human picked ‘cy-340

berknife’, while BERT picked ‘post, stereo, treatment’. ‘Rule’341

and ‘date’ favored by BERT are most likely due to bias.342

Seizure and epilepsy (a condition with prolonged or repet-343

itive seizures) are obviously important for the seizure proto-344

col, both human and BERT agreed. They also consider ‘visu-345

alase’, which is an ablation technique for treating seizures,346

important. BERT did not recognize the specific anatomic347

structures (hippocampus, temporal lobe) and specialized me-348

dial term that are considered important for humans. Instead349

BERT was biased by some non-specific words.350

The top 5 words in agreement for stroke protocol are351

indeed critical, specific, and frequently used. Again BERT352

was biased by a few generic words, and failed to recognize353

words that describe the symptoms of stroke or the medical354

acronym for stroke (‘cva’).355

Furthermore we examine individual texts and their word356

attribution values to assess the model’s understanding of357

language in the context of human anatomy and pathology.358

Figure 5 presents a physician’s text alongside the model’s359

corresponding word attribution values. In the first exam-360

ple, the model places emphasis on the patient’s history of361

breast cancer and a headache. In older patients, headaches362

can often indicate the presence of a brain tumor, and cancer363

can spread from the breast to the brain, leading to brain364

metastasis. Despite the presence of symptoms such as dizzi-365

ness, facial, and numbness, which suggest the possibility of366

a stroke, the model de-emphasizes these words and correctly367

determines that brain metastasis is the most likely cause,368

given the patient’s history of breast cancer and a headache.369

In the second example, we see a case where the model makes370

an incorrect decision. The mention of possible edema on a371

computerized tomography scan suggests the possibility of372

a brain tumor. Additionally, the model ignores the age of373

the patient, which is relevant because for patients over the374

age of 50, seizures are often caused by brain tumors. While375

an MRI to diagnose brain seizure is plausible, the reasons376

described indicate that an MRI to diagnose brain metastasis377

is generally more likely in this case.378

4.2 Error Analysis379

In order to understand the errors made by our fine-tuned380

BERT model on the test set, we conducted an analysis of the381

model’s explanations and looked for any systematic patterns382

in the mistakes. Our analysis identified four broad categories383

of errors: (1) multifarious choices, (2) age-related results, (3)384

ambiguous entries, and (4) flagrant errors.385

The most common type of mistake occurred when the386

clinical question was too complex or broad, with multiple387

clinical questions, regions of interest, or complex medical388

histories. In these cases, there may be multiple valid imaging389
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Figure 5. Selected samples from the dataset. The indication for the exam is provided by the ordering physician, which briefly
summarizes the symptoms, relevant medical history, and the medical questions. The ‘true label’ is the protocol, assigned
manually by a trained radiologist, that is most suitable for the indication. The ‘predicted label’ is the protocol predicted by the
AI model.

protocols, and the model struggled to select the most appro-390

priate one. This accounted for 52% of the errors in the test391

set.392

Errors in the second category, age-related results, occurred393

when the model failed to consider the age of the patient in394

its prediction. For example, the best protocol for a patient395

with intracranial hemorrhage may vary depending on their396

age group. This category accounted for 15% of the errors in397

the test set. Errors in the third category, ambiguous entries,398

occurred when the model was unable to make a prediction399

due to ambiguous or esoteric language in the input text.400

This could include stems that were too rare or cryptic, or401

protocols that could not be designated to ambiguous stems.402

This category accounted for 5% of the errors in the test set.403

Finally, flagrant errors, the fourth category, occurred when404

the model made a wrong prediction or the order of word im-405

portance did not make sense for the prediction. This category406

accounted for 28% of the errors in the test set.407

Overall, the largest issue for the model was its difficulty408

in understanding the hierarchical ordering of protocols. This409

accounted for 52% of the errors in the test set, andwill require410

further work to address before the model can be used in a411

clinical setting. Another issuewas themodel’s partial capture412

of important regions of the input text, which accounted for413

15% of the errors. This may be due to biases or limitations414

in the training data, and will also require further work to415

address. By understanding the patterns of errors made by416

the model, we can begin to identify areas for improvement417

and fine-tune the model to achieve even better performance.418

5 Discussion419

Protocoling is a crucial task for radiologists to ensure that420

the appropriate sequences are acquired in response to clin-421

ical questions. However, manual protocoling can be time-422

consuming, disruptive, and prone to errors. In recent years,423

the volume of radiologic orders has increased, making pro-424

tocoling an increasingly costly burden. To address these425

challenges, we utilized a large pre-trained language model426

that was fine-tuned by training it with a large dataset of427

radiologic orders. This allowed the model to learn medical428

terminology and accurately process orders, which frequently429

contain typos, acronyms, and grammatical errors, and are430

often written in shorthand using specialized medical termi-431

nology.432

Furthermore, in response to the increasing demand for ‘ex-433

plainable AI’, we investigated the decision-making process434

of our model. We evaluated the model’s ability to provide ex-435

planations of its decision based on ‘word importance’. Model436

explanation techniques were applied to estimate the impor-437

tance of each word within the text of each radiologic order.438

This allowed us to delve into the model’s decision-making439

process and determine whether it was making correct pre-440

dictions for the right reasons, as well as to identify the root441

causes of any mistakes. Our results indicate that the BERT442

model is able to identify relevant words that are highly in-443

dicative of the target protocol.444

Our error analysis revealed that the model struggled most445

with understanding complex indications involving multiple446

clinical questions, leading to incorrect protocol selection447

in some cases. For example, the model may have difficulty448

distinguishing between protocols for a patient with acute449

7

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 25, 2023. ; https://doi.org/10.1101/2023.04.20.23288684doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.20.23288684
http://creativecommons.org/licenses/by/4.0/


neurologic deficits after brain tumor resection, as it may450

not fully comprehend the hierarchical ordering of protocols.451

Furthermore, we identified that approximately 15% of the452

model’s mistakes were due to insufficient capture of impor-453

tant regions of the input text. This could be due to various454

factors such as bias in the training data or limited examples455

of certain edge cases.456

Overall, the utilization of integrated gradients in our anal-457

ysis has provided valuable insights into the model’s decision-458

making process compared to that of a trained radiologist.459

This information was used to evaluate the strengths and460

weaknesses of the model, and will be instrumental in making461

the model more robust and trustworthy before its application462

in clinical settings.463

6 Limitation464

There are several limitations to consider in the context of465

this study. First, our dataset comprised of neuroradiologic466

orders from a single center, and thus may be limited in its467

representation of the racial, social, and ethnic diversity of468

other regions. Validation with datasets from different insti-469

tutions is necessary to more accurately compare the model’s470

performance. Additionally, we limited the number of proto-471

cols to the ten most commonly used protocols in this study,472

which may not fully capture the breadth of protocols used in473

clinical practice. The data was collected from routine clinical474

work, which means that protocols were assigned by multiple475

radiologists with varying levels of experience, potentially476

leading to inter-operator variability. While the dataset is rela-477

tively large at over 80,000 entries, it is possible that additional478

data could further improve model performance.479

Additionally, it is important to note that there may be sig-480

nificant variations in the importance of certain words when481

considering the perspectives of different radiologists. In this482

study, we were constrained to a single radiologist when eval-483

uating word-level agreement with BERT. However, in future484

studies, it would be beneficial to evaluate word importance485

from the perspectives of a diverse group of radiologists to486

achieve more robust results.487

7 Related Work488

Previous work has been done using classification models489

to predict imaging protocol from a physician’s notes using490

machine learning techniques such as SVM, Random Forests,491

and Gradient Boosted Machine [5, 6]. More recently, a deep492

neural network approach was used to automate radiolog-493

ical protocols which showed a slight boost over kNN and494

random forests [14]. However, these models are limited by495

the size of the model and the use of classical word embed-496

dings which don’t provide deep contextual word embeddings497

[27]. To date, there has been no research on explainable med-498

ical text for image protocol classification tasks or on the499

decision-making process of these models to identify poten-500

tial systematic errors that may need to be addressed.501

Recently bidirectional RNN’s and transformers have im-502

proved text representation to be sensitive to its local context503

in a sentence and optimized for specific tasks by using a self-504

attention mechanism to help embed the context of each word505

[25]. Large language models such as BERT [9] and ELMo506

[20] have been shown to provide substantial performance507

improvements for language modeling and text classification.508

We hypothesize that the use of context-dependent token509

embeddings will provide a substantial improvement for med-510

ical text classification and model interpretation. While there511

has been recent work evaluating large pretrained models for512

specialized tasks such as legal contract review [13], to the513

best of our knowledge, this paper is the first to evaluate how514

these models will perform on this specialized medical text515

which poses different challenges.516

Furthermore, in the case of high stake applications, both517

accuracy and trust are necessary for the adoption of the518

model’s decisions. Recent studies have focused on incorpo-519

rating model explanations to improve trust [17]. Explainable520

models have been developed to visualize word importance521

and attention layers [11]. This has provided researchers with522

insight into understanding the model’s decisions [12]. How-523

ever, to the best of our knowledge, no other group has at-524

tempted to evaluate if machine learning models can provide525

valid explanations for specialized medical texts.526

8 Conclusion527

In this study, we demonstrate state-of-the-art performance528

for the radiologic protocol classification task and provide a529

better understanding of how natural language processing530

(NLP) models make decisions in the medical domain. Using531

a large dataset of over 80,000 entries annotated by medical532

experts, we evaluated a pretrained BERT model and found533

that it significantly outperformed existing machine learn-534

ing methods. We showed that BERT is able to identify rele-535

vant words that are highly indicative of the target protocol.536

The differences in BERT and human word importance were537

driven by BERT not recognizing specific anatomic structures538

and specialized medial terms that are important for humans.539

Furthermore, our analysis of the errors revealed that the540

largest source of errors was due to the model’s difficulty in541

understanding the hierarchy of protocol assignments, while542

the third largest contributor was potential limitations or543

biases in the dataset.544

Overall, our findings demonstrate that BERT can provide545

valuable insight into its decision making process for special-546

ized medical tasks. This insight is valuable in understanding547

the error profile of the model. Understanding BERT’s deci-548

sion making process is a necessary stop to deploying it in a549

real life clinical environment.550
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