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Parkinson’s disease pathology is hypothesized to spread through the brain via axonal connections
between regions and further modulated by local vulnerabilities within those regions. The resulting
changes to brain morphology have previously been demonstrated in both prodromal and de novo
Parkinson’s disease patients. However, it remains unclear whether the pattern of atrophy progres-
sion in Parkinson’s disease over time is similarly explained by network-based spreading and selective
vulnerability. We address this gap by mapping the trajectory of cortical atrophy rates in a large, multi-
centre cohort of Parkinson’s disease patients and related this atrophy progression pattern to network
architecture and gene expression profiles. Across 4-year follow-up visits, increased atrophy rates were
observed in posterior, temporal, and superior frontal cortices. We demonstrated that this progression
pattern was shaped by network connectivity. Regional atrophy rates were strongly related to atrophy
rates across structurally and functionally connected regions. We also found that atrophy progression
was associated with specific gene expression profiles. The genes most related to atrophy rates were
those enriched for mitochondrial and metabolic function. Taken together, our findings demonstrate
that both global and local brain features influence vulnerability to neurodegeneration in Parkinson’s
disease.
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INTRODUCTION

Structural brain changes are observed in Parkinson’s
disease (PD; [60, 92, 111]). The spatial topography of
disease-related atrophy is not uniform across the cortex,
however. Some regions appear to be more vulnerable
to disease pathology than others, but the brain features
that may determine this atrophic pattern and its progres-
sion are not entirely clear. One possibility is that PD oc-
curs through a network spreading process. Early propos-
als by Braak et al., [16, 17] described a spatiotemporal
distribution of Lewy pathology in post-mortem samples
that followed a stereotyped caudal-to-rostral gradient.
Pathology appeared first in the dorsal motor nucleus of
the vagus in the lower brainstem, then progressed to the
midbrain coinciding with the onset of motor symptoms
that typify PD, before reaching subcortical and cortical
areas. This pattern of disease spread appears to reflect
brain network organization, suggesting that PD might
target large-scale intrinsic networks [85, 105].

Recent evidence involving alpha-synuclein fibrils in-
jected in mice further supports the theory that PD pathol-
ogy propagates via neuronal connections [56, 65, 69].
MRI studies in PD patients are also consistent with a net-
work spreading model. Brain atrophy in PD measured
with deformation-based morphometry was found to cor-
relate with connectivity to the substantia nigra, a pre-
sumed disease epicenter [111]. Cortical thinning in PD
was associated with structural and functional connectiv-
ity to a subcortical “disease reservoir” [107]. The ob-
served pathology distribution in PD does not always fit
the pattern originally described by Braak’s staging model

[15], however, which suggests that factors other than or
in addition to network connectivity may shape the dis-
ease pattern.

One such factor might be the selective vulnerability of
certain regions to PD pathology [35, 95], which can be
conferred by local features such as cellular composition
[106], neuroreceptor profiles [38], and gene expression
[6]. For example, variations in regional alpha-synuclein
protein expression have been shown to produce differ-
ences in vulnerability to neurodegeneration [57]. Agent-
based simulations of pathology spread in PD also showed
that incorporation of local differences in gene expression
related to alpha-synuclein synthesis and degradation im-
proved the in silico recreation of brain atrophy, suggest-
ing a crucial involvement of regional gene expression in
shaping disease propagation [77, 79, 113]. Indeed, the
underlying factors that shape the atrophy pattern PD are
complex and multifactorial, requiring further investiga-
tion.

In the present study, we aimed to characterize the net-
work connectivity and local gene expression features un-
derpinning the pattern of cortical atrophy progression in
PD. We first charted the trajectory of cortical atrophy us-
ing the Parkinson Progression Marker Initiative (PPMI;
[61]), a large, multi-centre cohort of de novo PD patients
followed longitudinally up to 4 years after diagnosis. We
then explored whether the cortical atrophy progression
pattern mapped onto specific functional networks, cy-
toarchitectonic classes, cellular distributions, and neuro-
transmitter systems. Next, we applied a network spread-
ing model [88, 89] to examine whether network connec-
tivity constrained the atrophy progression pattern in PD.

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 13, 2023. ; https://doi.org/10.1101/2023.04.20.23288538doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:alain.dagher@mcgill.ca
https://doi.org/10.1101/2023.04.20.23288538


2

Finally, we investigated the gene expression profiles as-
sociated with cortical atrophy progression in PD and its
transcriptional relevance in terms of biological processes.

MATERIALS AND METHODS

Clinical and imaging data used in this study are part of
the PPMI database and can be accessed at http://www.
ppmi-info.org/data. All other datasets and analysis tools
along with their sources are cited in the Materials and
Methods section.

Participants

Demographic, clinical, and MRI data were down-
loaded from the PPMI (http://www.ppmi-info.org;
[61]). All participating sites received approval from their
local research ethics committee. Informed consent was
obtained from all participants in accordance with the
Declaration of Helsinki [8]. PD patients met the inclu-
sion criteria outlined by the PPMI. Healthy controls were
free of neurological disease. For participants with avail-
able 3T MRI data, only PD patients with a minimum of
two visits and healthy controls with a baseline visit (due
to limited longitudinal imaging in this group) were in-
cluded in the present study.

Cortical thickness analysis

T1-weighted MRI scans were acquired follow-
ing standardized procedures and acquisition pa-
rameters (http://www.ppmi-info.org/study-design/
research-documents-and-sops/). We used the
CIVET 2.1.1 pipeline (http://www.bic.mni.mcgill.
ca/ServicesSoftware/CIVET) to generate cortical thick-
ness maps for PD patients across follow-up visits and
healthy controls at baseline [3]. Briefly, T1-weighted
MRIs were linearly transformed to the MNI-ICBM152
volumetric template, corrected for signal intensity
non-uniformity, and segmented into grey matter, white
matter, CSF, and background [27? , 28]. The grey and
white matter surface boundary was fitted across 40,692
vertices in each hemisphere (inner cortical surface)
and expanded to fit the grey matter and CSF boundary
(outer cortical surface) using a fully automated method
(Constrained Laplacian Anatomic Segmentation using
Proximity algorithm; [47]). Cortical thickness at each
of 81,920 vertices was measured as the linked distance
between corresponding inner and outer surface vertices
in millimetres. Quality control of the resulting outputs
was carried out by two independent reviewers and only
scans with consensus of the two reviewers were retained
for further analysis. 146 of the 624 PD and 57 of the 194
HC scans failed quality control. Reasons for exclusion
involved: motion artifacts, low signal-to-noise ratio,
artifacts due to hyperintensities from blood vessels,
surface-surface intersections, and poor grey and white
matter segmentation.

To control for age- and sex-related effects on corti-
cal thickness, we generated W-score maps for each PD
patient at each follow-up visit. W-scoring is compara-
ble to z-scoring but allows for the combined adjustment
of many covariates [44]. Vertex-wise linear regressions
were first performed in healthy controls between age,
sex, and cortical thickness. W-score maps were then com-
puted in PD patients using the following formula:

Wi =
raw thicknessi � exp thicknessi

SDres

where Wi is the W-score at vertex i, raw thicknessi
is the raw cortical thickness in PD measured at vertex
i, exp thicknessi is the expected cortical thickness in
healthy controls at vertex i given the patient’s age and
sex (thickness ⇠ AGE + SEX), and SDres is the stan-
dard deviation of the residuals in healthy controls. Note
that only data from healthy controls at baseline were
used as the reference because only a limited number had
longitudinal MRI data available. For interpretability, W-
scores were inverted such that more positive scores indi-
cated greater atrophy whereas more negative scores de-
noted lower atrophy. These W-scored maps were then
used to model cortical atrophy rates with linear mixed
effects.

Cortical atrophy maps were parcellated into equally
sized regions (or parcels) using a multi-scale edition of
the Desikan-Killiany atlas [24] referred to here as the
“Cammoun atlas” [19]. Available parcellation resolu-
tions spanned 68, 114, 219, 448, and 1000 cortical re-
gions. Parcel-wise values were calculated as the mean
value of all vertices assigned to a given parcel according
to the Cammoun atlas. We modeled cortical thickness at
different parcellation resolutions to ensure results were
replicable and robust to the choice of spatial scale.

Cortical atrophy progression analysis

W-scored vertex-wise cortical thickness values were
averaged for the whole-brain as well as within parcels
of the Cammoun atlas [19]. Linear mixed effects mod-
els were used to examine the change in cortical thickness
across follow-up visits:

thickness ⇠ 1 + time+ site+ (time|subj)

Time since baseline visit (years) and study site were
used as fixed effects of interest [11]. Subject-wise slope
and intercept were modeled as random effects. Sepa-
rate models were fitted for each parcel and results were
corrected for multiple comparisons using false discovery
rate (FDR)-correction with p < 0.05 indicating statistical
significance. The resulting t-statistic map corresponding
to the effect of time on cortical thickness in PD was used
as a measure of atrophy progression in all subsequent
analyses.
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Clinical variable progression analysis

Analogous to our cortical atrophy progression analysis,
we performed linear mixed effects modeling on longitu-
dinal clinical data in PD patients. The full list of clinical
variables is reported in Table 1. Imputation of missing
scores (7.6%) was performed through replacement with
the group mean at each time point. Separate models
were fitted for each clinical outcome:

clinical variable ⇠1 + time+ age+ sex+ edu+

site+ (time|subj)

with time since baseline visit (years), adjusted for age,
sex, education, and study site as fixed effects. Subject-
specific slope and intercept were modeled as random ef-
fects. Results were FDR-corrected for multiple compar-
isons using a threshold of p < 0.05.

Atrophy-clinical progression relationship

Behavioural partial least squares (PLS) analysis is a
multivariate approach that identifies latent variables that
explain the maximum covariance between two datasets
[50, 66]. Here, we related a regional atrophy progres-
sion matrix Xn⇥p (160 patients × 68 regions) with a
clinical progression matrix Yn⇥q (160 patients × 25 clin-
ical outcomes). The matrices were first z-scored column-
wise and used to generate an atrophy-clinical covariance
matrix Rq⇥p = Y 0X. This covariance matrix was then
subjected to singular value decomposition (SVD; [25])
such that R = USV 0 where Up⇥l and Vq⇥l are orthogo-
nal matrices of left and right singular values and Sl⇥l is a
diagonal matrix of singular values. Each latent variable i
was comprised of the ith columns of U and V and the co-
variance between these singular vectors was represented
by the ith element of S. Left singular vectors of U repre-
sented the degree to which each brain region contributed
to a latent variable (i.e., brain weight) whereas right
singular vectors of V represented the degree to which
clinical outcomes contributed to the same latent variable
(i.e., clinical weight). Positively weighted brain regions
covaried with positively weighted clinical outcomes and
negatively weighted brain regions covaried with nega-
tively weighted clinical outcomes. Pearson correlation
tested the relationship between regional brain weights
and atrophy rates, with a positive correlation indicating
more positively weighted brain regions were associated
with greater cortical atrophy progression. The effect size
(⌘) associated with a given latent variable was estimated
as the ratio of the squared singular value (�) to the sum
of all squared singular values. SVD generates the same
number of latent variables as the rank of the covariance
matrix R (i.e., 25).

Permutation tests were used to evaluate the statistical
significance of each latent variable; that is, whether the
variance explained was significantly greater than what
would be expected by a null. Rows of matrix X were ran-
domly reordered to generate a covariance matrix R from

the permuted matrix X and original matrix Y before ap-
plying SVD. This procedure was repeated 5,000 times to
generate a null distribution of singular values to which
the original singular value was compared. Bootstrap re-
sampling was then used to estimate the contribution and
reliability of individual variables (i.e., brain regions and
clinical outcomes) to each latent variable. The rows of
both matrices X and Y were randomly selected with re-
placement to generate a resampled covariation matrix R
that was subjected to SVD. This procedure was repeated
5,000 times to generate a sampling distribution for each
weight in the singular vectors U and V . For each singu-
lar vector, a bootstrap ratio was calculated as the ratio of
each singular vector to its bootstrap-estimated standard
error. Thus, individual variables with larger bootstrap
ratios had larger weights (i.e., contributed greatly to the
multivariate pattern) and smaller standard errors (i.e.,
were more reliable).

Null models

“Spin tests” [4, 64], or spatial autocorrelation-
preserving null model testing, were used to assess the
statistical significance whenever examining the corre-
spondence between topologies of two brain maps. Given
that neighbouring brain regions are not statistically in-
dependent and instead demonstrate a high degree of
autocorrelation, null models that preserve this spatial
autocorrelation of brain maps allow for more accurate
inferences of the underlying data [64]. Null mod-
els were generated using the netneurotools toolbox
[64]. Briefly, each parcel of the Cammoun atlas regis-
tered on the FreeSurfer fsaverage surface space was as-
signed the spatial coordinate of the vertex on an fsav-
erage spherical projection that was closest to its cen-
ter of mass. The spatial coordinates were then ran-
domly rotated for one hemisphere and mirrored to the
other hemisphere. Lastly, each original parcel was re-
assigned the value of the closest rotated parcel. This
procedure was repeated 10,000 times to generate a spa-
tial autocorrelation-preserving null distribution against
which empirical observations could be benchmarked
[101].

Spatial overlap between atrophy rates and brain features

We tested if the longitudinal atrophy pattern was as-
sociated with specific brain features such as intrinsic net-
works [109], tissue cytoarchitectonic classes [84, 104],
cell type distributions [86, 90], and neurotransmitter re-
ceptor and transporter densities [38, 63]. The Yeo in-
trinsic networks [109] classify brain regions as one of
seven resting state networks (visual, sensorimotor, dor-
sal attention, ventral attention, limbic, frontoparietal,
and default mode) and the von Economo cytoarchitec-
tonic classes [84] label brain regions as one of seven
laminar cortical types (primary motor, association 1/2,
primary/secondary sensory, primary sensory, limbic, and
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TABLE 1: Demographic and clinical variable progression. Parkinson’s disease patient (N = 160) baseline demo-
graphics and ‘time’ effect parameter estimates for linear mixed effect models fit to longitudinal clinical data.

Variable Baseline Estimate 2.5% CI 97.5% CI T-statistic P-Value PFDR

Demographic
Age (yrs) 61.12 ± 9.76 - - - - - -
Sex (M/F) 102/58 - - - - - -
Educ (yrs) 15.57 ± 2.96 - - - - - -
Motor
H&Y stage 1.58±0.53 0.058 0.028 0.089 3.782 <0.001 <0.001
Rigidity 3.75±2.63 0.458 0.305 0.611 5.887 <0.001 <0.001
Tremor 2.9±2.85 0.256 0.079 0.432 2.849 0.005 0.01
UPDRS-II 5.05±4.21 1.169 0.883 1.455 8.024 <0.001 <0.001
UPDRS-III 19.12±8.58 1.17 0.647 1.692 4.398 <0.001 <0.001
Non-motor
Benton JLO 25.88±4.14 0.196 0.003 0.388 1.995 0.047 0.083
HVLT (total recall) 24.89±5.12 -0.029 -0.255 0.198 -0.249 0.804 0.804
HVLT (recognition) 10.98±1.49 0.097 0 0.195 1.958 0.051 0.085
HVLT (delayed recall) 8.37±2.65 0.057 -0.061 0.175 0.951 0.342 0.428
LNS 10.99±2.45 -0.057 -0.181 0.067 -0.908 0.364 0.434
MoCA 27.4±2.23 0.033 -0.094 0.16 0.507 0.613 0.638
Phonemic fluency 13.27±4.26 0.326 0.123 0.53 3.156 0.002 0.004
QUIP 0.33±0.71 0.03 -0.022 0.082 1.123 0.262 0.345
RBDSQ 3.9±2.58 0.211 0.059 0.364 2.723 0.007 0.013
SCOPA-AUT 8.94±5.8 0.721 0.452 0.991 5.255 <0.001 <0.001
Semantic fluency 21.3±4.87 0.241 -0.02 0.502 1.815 0.07 0.109
Symbol digit 41.89±10.06 -0.158 -0.571 0.255 -0.751 0.453 0.506
UPDRS-I 4.38±3.97 1.129 0.866 1.393 8.419 <0.001 <0.001
Mood
GDS 0.94±1.2 0.047 -0.005 0.099 1.788 0.074 0.109
STAI 88.4±16.14 0.201 -0.34 0.742 0.73 0.466 0.506
CSF (pg/mL)
Alpha synuclein 1482.6±579.5 -31.634 -79.173 15.905 -1.308 0.192 0.266
Beta amyloid 868.82±299.75 -69.334 -83.771 -54.897 -9.437 <0.001 <0.001
NfL 12.16±5.76 1.553 0.64 2.466 3.344 0.001 0.002
p-tau 14.29±4.25 -0.9 -1.099 -0.7 -8.863 <0.001 <0.001
Total tau 165.63±47.63 -9.719 -11.994 -7.443 -8.391 <0.001 <0.001

H&Y stage = Hoehn and Yahr stage score; UPDRS = Unified Parkinson’s Disease Rating Scale; Rigidity = rigidity score on the
UPDRS-III; Tremor = tremor score on the UPDRS-III; UPDRS-II = score on Part II (Activities of Daily Living) of the UPDRS; UPDRS-
III = score on Part III (Motor Examination) of the UPDRS; Benton JLO = Benton Judgement of Line Orientation test score; HVLT =
Hopkins Verbal Learning Test-Revised score; LNS = Letter-Number Sequencing test score; MoCA = Montreal Cognitive Assessment
score; Phonemic fluency = number of words beginning with the letter ‘F’ listed in 1 minute; QUIP = Questionnaire for Impulsive-
Compulsive Disorders score; RBDSQ = REM Sleep Behavior Disorder Sleep Questionnaire score; SCOPA-AUT = Scales for Outcomes
in PArkinson’s disease-Autonomic Dysfunction score; Semantic fluency = number of category items listed in 1 minute; Symbol digit
= Symbol Digit Modalities Test score; UPDRS-I = score on Part I (Mentation, Behavior, Mood) of the UPDRS; GDS = Geriatric
Depression Scale score; STAI = State Trait Anxiety Inventory score; NfL = neurofilament light chain; p-tau = phosphorylated tau

insular). We calculated the mean atrophy progression for
each intrinsic network and cytoarchitectonic class and
compared these empirical means to null mean distribu-
tions generated from spatial autocorrelation-preserving
null models to determine their statistical significance.

For cell type distributions, we correlated the longi-
tudinal atrophy pattern with the gene expression maps
of seven different cell classes including: astrocytes, en-

dothelial cells, excitatory and inhibitory neurons, mi-
croglia, oligodendrocytes, and oligodendrocyte precur-
sors. Each cell class was first associated with a gene list
derived from single-cell RNA sequencing studies of post-
mortem human cortical samples [86]. The spatial ex-
pression patterns of each gene list were generated and
parcellated to the Cammoun atlas using post-mortem
brain data from the Allen Human Brain Atlas (AHBA;
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[40] and the abagen toolbox [62] based on recommen-
dations outlined by Arnatkeviciute et al. [6] Pearson
correlations compared regional atrophy rates to gene ex-
pression patterns for each of the seven cell classes. These
correlations were tested against spatial autocorrelation-
preserving null models [4, 64].

We also compared the atrophy rate pattern to maps
of different neurotransmitter receptor and transporter
densities derived from PET imaging of more than
1,200 total individuals [63]. These 19 receptors and
transporters spanning nine neurotransmitter systems in-
cluded: acetylcholine (↵4�2, M1, VAChT), cannabinoid
(CB1), dopamine (D1, D2, DAT), GABA (GABAA/BZ ,
histamine (H3), glutamate (mGluR5, NMDA), nore-
pinephrine (NET), opioid (MOR), and serotonin (5-
HT1A, 5-HT1B , 5-HT2A, 5-HT4, 5-HT6, 5-HTT). Volu-
metric tracer maps were obtained from https://github.
com/netneurolab/hansen_receptors, parcellated to the
Cammoun atlas and individually z-scored using the
neuromaps toolbox [63]. Tracers for which multiple den-
sity maps were available were combined using weighted
averaging. Pearson correlations compared regional atro-
phy rates to receptor/transporter expression and were
tested against spatial autocorrelation-preserving null
models [4, 64].

Lastly, we tested if there was asymmetry in cortical
thinning between hemispheres, both at baseline and with
disease progression. For each PD patient, mean corti-
cal thickness was calculated in each hemisphere and an
asymmetry index was computed based on the following
formula:

asymmetry index =
left� right

(left+ right)

with more positive scores reflecting greater left dom-
inance and more negative scores denoting greater right
dominance. Asymmetry index scores were submitted to
a linear mixed effects model to examine the change in
cortical thickness asymmetry across follow-up visits.

Structural and functional networks

Structural and functional data from n = 70 healthy
young adults (25.3 ± 4.9 years; 16 females) were
obtained from the publicly available Lausanne dataset
[36]. Imaging was acquired in a 3T MRI scanner (Trio,
Siemens Medical) with a 32-channel head coil. Acquisi-
tion parameters and preprocessing steps are described in
greater detail elsewhere [? ].

Diffusion spectrum imaging (128 diffusion-weighted
volumes and a single b0 volume, maximum b-value =
8,000 s/mm2, voxel size = 2.2 × 2.2 × 3.0 mm)
was analyzed with deterministic streamline tractography
to generate individual structural connectivity networks.
These networks were parcellated according to the Cam-
moun atlas. A binary group-consensus structural net-
work was created using an approach that preserved the
density and edge-length distributions of individual con-

nectomes [12]. A weighted structural network was then
generated by weighting edges in the binary network by
the log-transform of non-zero fiber density, scaled to val-
ues between 0 and 1.

Resting-state MRI data was acquired with a gradi-
ent echo EPI sequence sensitive to blood-oxygen-level-
dependent (BOLD) contrast (3.3 mm in-plane resolution
and slice thickness with 0.3 mm gap, TR = 1920 ms,
280 volumes). Time series data were parcellated accord-
ing to the Cammoun atlas. Pairwise Pearson correlations
were used to estimate individual functional connectiv-
ity networks. A group-average functional network was
constructed as the mean pairwise connectivity across in-
dividuals. One individual did not have fMRI data and
therefore the functional network was derived from n =
69 participants.

Network spreading analysis

Next, we related the atrophy progression pattern to
brain connectivity using a network spreading approach
[89]. For each region (or node), we calculated a neigh-
bourhood atrophy rate. This score described the mean
atrophy rate across anatomically connected neighbours
weighted by the strength of connectivity. Connectivity
was defined using structural and functional reference
networks derived from a separate cohort of healthy par-
ticipants (see Structural and functional networks). Neigh-
bourhood atrophy rate was calculated as follows:

Ai =
1

Ni

NiX

j=1

aj ⇥ connij , j 6= i

where Ai is the average neighbour atrophy rate of node
i, aj is the atrophy rate of the j-th neighbour of node i,
connij is the strength of connection between nodes i and
j, and Ni is the total number of neighbours that are struc-
turally connected to node i (i.e., node degree). Neigh-
bour atrophy rate is made independent from node de-
gree by normalization with term Ni. For a given node, a
neighbour was defined as another structurally connected
node. Self-connections of a node and itself were ex-
cluded (j 6= i). Connectivity (connij) was defined either
structurally or functionally in separate analyses. Pear-
son correlations tested the relationship between the at-
rophy rate of each node with that of its neighbourhood
and compared against spatial autocorrelation-preserving
null models [4, 64]. We also examined the impor-
tance of structural and functional connectivity to node-
neighbour correlations by comparing connected versus
not-connected neighbours using Fisher’s z tests.

Gene expression

To understand the gene expression profiles under-
pinning cortical atrophy progression patterns, regional
gene expression data were obtained from the AHBA [40]
dataset and processed with the abagen toolbox [64].
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The AHBA is a comprehensive atlas of microarray data
from six post-mortem brains (1 female, mean age =
42.5 ± 13.4 years). Microarray probes were first rean-
notated following previous recommendations [6]. Only
those probes with a signal-to-noise ratio relative to back-
ground of greater than 50% were retained. When mul-
tiple probes indexed expression of the same gene, the
one with the most consistent pattern of regional vari-
ation across donors was selected. This procedure re-
sulted in 15,633 total genes being retained. Samples
were assigned to parcels according to the Cammoun at-
las. To increase spatial coverage, tissue samples were
mirrored bilaterally across the left and right hemisphere
[74, 83, 87]. When a sample was not found directly
within a parcel, the nearest sample (up to a 2 mm dis-
tance) was selected. If no samples were found within
2 mm of a parcel, the sample closest to the centroid of
the empty parcel across all donors was selected. This
sample-to-region matching was restricted to each hemi-
sphere and within gross structural divisions (i.e., cortex,
subcortex/brainstem, and cerebellum) to minimize the
potential for misassignment. Samples without an assign-
ment were discarded. Expression values were normal-
ized across genes using a scaled robust sigmoid function
[32] and rescaled to the unit interval. Microarray sam-
ples belonging to the same parcels were aggregated by
computing the mean expression across samples for the
individual parcels, for each donor. Finally, regional ex-
pression profiles were averaged across donors to con-
struct a region × gene expression matrix that was sub-
mitted to a PLS regression.

Gene set enrichment analysis

We used PLS analysis to uncover the gene expres-
sion profiles that predicted atrophy progression in PD.
Latent variables that explained the maximum covari-
ance between predictor matrix X (68 regions × 15,633
genes) and matrix Y (68 region × 1 atrophy rate)
were identified. To determine the statistical signifi-
cance of components (i.e., that the variance explained
was greater than expected by a null), empirical variance
was tested against the variance observed in 10,000 spa-
tial autocorrelation-preserving null models. The contri-
bution of genes to each component was measured us-
ing bootstrap resampling. Rows in X and Y matrices
were randomly shuffled and PLS regression was repeated
5,000 times to generate a null distribution and estimate
standard errors for each gene. Bootstrap ratios were cal-
culated as the ratio of each gene expression weight to
its bootstrapped-estimated standard error. Genes with
large bootstrap ratios contributed greatly to the latent
variable and were more reliable. Genes lists were or-
dered according to their bootstrap ratios and this ranked
list was entered into a gene set enrichment analysis
(GSEA). GSEA, performed on the WebGestalt platform
(http://www.webgestalt.org; [54]) with the Gene On-
tology knowledge base (http://geneontology.org), was

used to explore the biological processes enriched in the
gene expression profiles associated with atrophy rates in
PD. This analysis tested whether the most positively and
negatively weighted genes in the ranked list occurred
more frequently than expected by chance [94]. The min-
imum and maximum number of genes for enrichment
was set to 3 and 2,000, respectively. Results were FDR-
corrected for multiple comparisons using 1,000 random
permutations. Only the top 10 most significant positively
and negatively weighted terms were interpreted.

RESULTS

Participants

After completing quality control of the cortical thick-
ness maps, the final sample was comprised of n = 160
patients contributing 478 scans (151 at baseline, 121 at
year-1, 114 at year-2, and 82 at year-4) and n = 137
healthy controls at baseline. The two groups were sim-
ilar to one another at baseline in terms of age (PD =
61.1 ± 9.8 years, HC = 59.9 ± 11.4 years; t(286) =
0.97, p = 0.37) and sex (�2 = 0.25, p = 0.61). Table 1
displays demographic and clinical measure scores for PD
patients included in the present study. Linear mixed ef-
fects models of clinical progression in PD patients re-
vealed a significant effect of time for measures of disease
stage (i.e., Hoehn Yahr score), motor symptoms (i.e.,
MDS-UPDRS-II, MDS-UPDRS-III, tremor, rigidity), non-
motor symptoms (e.g., MDS-UDPRS-I, Scales for Out-
comes in Parkinson’s Disease-Autonomic, REM sleep be-
havior disorder, phonemic fluency), and CSF protein lev-
els (amyloid beta, phosphorylated and total tau, neuro-
filament light chain [NfL]). Generally, these results re-
flected a worsening of clinical symptoms over time ex-
cept for phonemic fluency, which improved across visits.
Whereas amyloid beta, phosphorylated tau, and total tau
levels in CSF decreased over time, NfL levels increased.

Longitudinal changes in cortical atrophy

Linear mixed effects models of whole-brain corti-
cal thickness revealed a significant effect of time (t =
4.955, p < 0.001) reflecting increased atrophy across vis-
its. Region-wise analysis of cortical thickness showed a
largely posterior parietal, temporal, and superior frontal
pattern of atrophy progression (Fig. 1a). No regions
showed statistically significant increases in cortical thick-
ness over time (Fig. 1b). The spatial pattern of atrophy
progression observed was consistent across parcellation
resolutions (Fig. S1). Overall, we observed a widespread
pattern of longitudinal cortical atrophy progression in PD
patients.

Atrophy-clinical progression

PLS was used to relate changes in atrophy and clinical
progression in PD. We identified the first latent variable
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Figure 1: Pattern of cortical atrophy progression in Parkinson’s disease. (a) Rates of cortical thickness changes
(t-statistic of ‘time’ effect) for linear mixed effect models fit to longitudinal MRI data in Parkinson’s disease patients.
Bluer regions denote greater atrophy progression over 4-year follow-up. (b) Cortical regions demonstrating significant
’time’ effect after FDR-correction for multiple comparisons (pFDR < 0.05).

that accounted for 49.1% (p < 0.001) of the covariance
between these measures. Regional brain weights associ-
ated with this latent variable were positively correlated
with atrophy rates (r = 0.309, pspin = 0.028; Fig. 2b),
such that brain regions with more positive weighting
on the latent variable also demonstrated greater atrophy
rates (Fig. 2a). Of the 25 longitudinal clinical measures
included in the analysis, five measures significantly con-
tributed to the latent variable (Fig. 2c), namely the Ben-
ton Judgement of Line Orientation test (Benton JLO),
the Symbol-Digit Modalities test, the Questionnaire for
Impulsive-Compulsive Disorders in Parkinson’s Disease-
Rating Scale (QUIP), the Scales for Outcomes in Parkin-
son’s Disease-Autonomic (SCOPA-AUT), and CSF levels
of neurofilament light chain (NfL). In other words, PD-
related cortical atrophy progression co-vary most with
changes in visuospatial perception, psychomotor slow-
ing, impulsive and compulsive behaviours, autonomic
dysfunction, and CSF levels of NfL.

Cortical atrophy progression is distributed within discrete
brain systems

Spatial correspondence analyses tested whether the
pattern of atrophy progression in PD was pronounced
in specific brain systems. Specifically, we examined the
relationship between atrophy rates and the (i) Yeo in-
trinsic networks [109], (ii) von Economo cytoarchitec-
tonic classes [84, 104], (iii) cell type distributions, and
(iv) neurotransmitter receptor and transporter densities
[63]. Atrophy rates were relatively greater in the senso-
rimotor network (mean = 3.636, pspin = 0.018; Fig. 3a)
and relatively lesser in the ventral attention network
(mean = 1.516, pspin = 0.014; Fig. 3a). We also noted
relatively greater atrophy rates within primary motor
cortex (mean = 4.309, pspin = 0.022; Fig. 3b). The atro-
phy progression pattern was negatively correlated with
astrocyte cell distribution (r = -0.451, pspin = 0.019;

Fig. 3c). Regions with greater expression of astrocytes
corresponded with relatively lower atrophy rates. Fi-
nally, atrophy progression was negatively correlated with
the distribution of several receptors and transporters, in-
cluding: 5HTT (r = -0.361, pspin = 0.024), CB1 (r =
-0.460, pspin = 0.040), D1 (r = -0.604, pspin <0.001),
DAT (r = -0.470, pspin = 0.001), H3 (r = -0.504, pspin =
0.005), mGluR5 (r = -0.393, pspin = 0.011), and MOR
(r = -0.551, pspin = 0.009). Atrophy progression was
negatively correlated with each of these neurotransmit-
ter systems (Fig. 3d), suggesting that regions with lower
expression of these neuroreceptors displayed higher at-
rophy rates. Finally, cortical asymmetry was not found
between left and right hemispheres at baseline (t = -
0.764, p = 0.445) and did not progress across visits (t =
-1.00, p = 0.317). Collectively, we found that the pat-
tern of atrophy progression in PD is spatially distributed
within discrete brain systems and reflects underlying bi-
ology including astrocyte cellular architecture and neu-
rotransmitter systems.

Structural and functional network connectivity constrains
cortical atrophy progression

Using a network spreading approach (Fig. 4a; [89]),
we tested the relationship between the atrophy rate mea-
sured in each node and the mean atrophy rate across
all structurally and functionally connected neighbours.
We found positive correlations between node and neigh-
bourhood atrophy rates (Fig. 4b), suggesting regions
with greater atrophy rates are themselves connected to
neighbourhoods with overall greater atrophy rates. This
was the case whether connectivity was defined struc-
turally (r = 0.470, pspin = 0.018; Fig. 4b left) or function-
ally (r = 0.425, pspin = 0.049; Fig. 4b right). Importantly,
these results were robust to different parcellation reso-
lutions and when tested against spatial autocorrelation-
preserving null models (Fig. S3).
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Figure 2: Atrophy-clinical progression relationship. (a) Brain loadings (i.e., bootstrap ratios) associated with the
first significant latent variable from a partial least squares analysis between individual patient atrophy rates and
clinical variable progression. Bluer regions represent more positive contributions to the expression of the atrophy-
clinical latent variable. (b) Scatter plot of the correlation between brain loadings and atrophy rates. Regions with
more positive loadings on the latent variable corresponded to regions with greater atrophy rates. (c) Clinical variable
loadings associated with the first significant latent variable. Blue boxes indicate clinical variables that significantly
contributed to the latent variable. Error bars represent 95% confidence intervals. Details on each clinical variable can
be found in Table 1.

We also considered node-neighbour relationships
when networks were composed of connected versus not-
connected neighbours. Fisher’s z tests revealed that the
magnitudes of correlations with connected neighbours
were significantly greater than those for not-connected
neighbours, whether defined structurally (z = 1.997, p
= 0.046) or functionally (z = 2.427, p = 0.015; Fig. 4c).
Node-neighbour correlations for structurally and func-
tionally connected neighbours were significantly greater
than not-connected neighbours across parcellation reso-
lutions, except for functional connectivity at the highest
spatial scale (i.e., 1000 regions; Fig. S3) that did not
reach statistical significance. Taken together, we demon-
strate the influence of network architecture in shaping
the pattern of cortical atrophy progression in PD.

Genes related to atrophy progression are enriched for
mitochondrial and metabolic processes

PLS analysis was used to relate regional gene expres-
sion to the atrophy progression pattern in PD. The first
(i.e., PLS1) and second (i.e., PLS2) significant latent vari-
ables explained 30.4% (pspin = 0.027) and 26.8% (pspin =
0.028) of the observed co-variance, respectively. Atrophy
rates were positively correlated with brain weights that
contributed to PLS1 (r = 0.540, pspin = 0.012; Fig. 5a-b)
and PLS2 (r = 0.519, pspin < 0.001; Fig. 5d-e). In regions
with greater atrophy rates, those genes that positively
weighted on the latent variables were more expressed
whereas those genes that negatively weighted on the la-
tent variables were less expressed. Next, genes were
ranked in order of their bootstrap ratios separately for
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Figure 3: Distribution of cortical atrophy progression within different brain systems. (a) Box plots of mean
atrophy rates within intrinsic resting networks (vis = visual, sm = sensorimotor, da = dorsal attention, va = ventral
attention, lim = limbic, fp = frontoparietal, dmn = default mode) and (b) cytoarchitectonic classes (pm = primary
motor, ac/ac2 = association 1/2, pss = primary/secondary sensory, ps = primary sensory, lb = limbic, ic = insular.
(c) Box plot of correlations between regional atrophy rates and cell type distributions (astro = astrocytes, endo =
endothelial cells, ex/in = excitatory and inhibitory neurons, micro = microglia, oligo = oligodendrocytes, opc =
oligodendrocyte precursors). (d) Boxplot of correlations between regional atrophy rates and 19 different neurochem-
ical maps: acetylcholine (↵4�2, M1, VAChT), cannabinoid (CB1), dopamine (D1, D2, DAT), GABA (GABAA/BZ , his-
tamine (H3), glutamate (mGluR5, NMDA), norepinephrine (NET), opioid (MOR), and serotonin (5-HT1A, 5-HT1B ,
5-HT2A, 5-HT4, 5-HT6, 5-HTT). Grey boxes denote significant means or correlations when tested against spatial
autocorrelation-preserving null models (pspin < 0.05).

each latent variable and examined for their biological rel-
evance using GSEA. The most positively weighted genes
(i.e., genes more expressed in regions with greater atro-
phy rates) were enriched for processes related mitochon-
drial and metabolic function (see Table S1 and S2). For
genes positively associated with PLS1, the most enriched
terms included “mitochondrial RNA metabolic process”
(normalized enrichment score = 1.951, pFDR = 0.037;
Fig. 5c) and “mitochondrial gene expression” (normal-
ized enrichment score = 1.889, pFDR = 0.046; Fig. 5c).
For genes positively related to PLS2, regions with greater
atrophy rates had greater expression of genes involved in
the “NADH dehydrogenase complex assembly” (normal-
ized enrichment score = 1.967, pFDR = 0.032; Fig. 5f)
and “mitochondrial gene expression” (normalized enrich-
ment score = 1.949, pFDR = 0.024; Fig. 5f). Negatively
weighted genes associated with either latent variable

was not found to be significantly enriched for specific bi-
ological processes. In summary, genes more expressed in
regions with greater atrophy rates in PD are associated
with mitochondria and energy metabolism.

DISCUSSION

The present study aimed to characterize and better un-
derstand the progression of cortical atrophy in early PD.
We found that cortical atrophy progresses within mostly
posterior and temporal regions as well as superior frontal
cortex over 4 years. We also found the progression of
cortical atrophy occurred in association with the clinical
progression of motor and non-motor features, and CSF
tau and NfL levels. Moreover, we demonstrated that cor-
tical atrophy progression in PD is underpinned by spe-
cific connectivity and gene expression features. Specifi-
cally, we showed that network architecture significantly
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Figure 4: Network spreading models of cortical atrophy progression. (a) Schematic of network spreading model.
Reference structural and functional connectivity networks derived from a separate cohort of healthy subjects and
the atrophy rate map generated from Parkinson’s disease patients were used to compute neighbourhood atrophy
rates—the average atrophy rate across anatomically connected neighbours weighted by structural or functional con-
nectivity strength—for each region or node. (b) Scatter plots of the relationships between node versus neighbourhood
atrophy rates for structurally (left) and functionally (right) connected neighbours. (c) Box plots comparing correlation
coefficients (r) for node-neighbourhood relationships from networks composed of connected versus not-connected
neighbours. Grey boxes indicate statistical significance against spatial autocorrelation-preserving null models (pspin <
0.05). Fisher’s z tests compared connected versus not-connected r values.

constrained the progression of cortical atrophy and that
this pattern overlapped with motor network and cytoar-
chitectonic classes, astrocyte cellular composition, and
several neurochemical distributions. In addition, cortical
atrophy progression was related to gene expression pro-
files enriched for mitochondrial and metabolic functions.
Taken together, our results shed light on the global net-
work and local features that shape disease progression in
PD.

Cortical atrophy and clinical outcome progression

We observed progression of cortical atrophy in PD
within posterior, temporal, and superior frontal cortices.
Cortical thickness is thought to represent the volume of
neuropil—the axons, dendrites, and synapses within cor-
tical columns—and therefore cortical thinning likely re-
flects the loss of neuropil and synaptic density [102].
The observed pattern was largely consistent with that
found in case-control [51, 73, 98, 99] and longitudinal
[2, 60, 96, 97, 107] studies of PD. Along with regional
atrophy progression, worsening clinical outcomes were
also found in several motor (i.e., HY stage, UPDRS-II,

UPDRS-III), non-motor (i.e., UPDRS-I, RBDSQ, SCOPA-
AUT), and CSF biomarker (i.e., beta-amyloid, p-tau, t-
tau, NfL) measures. Worsening motor symptoms and
autonomic dysfunction are expected with advancing dis-
ease [26, 112]. Although measures of verbal fluency
were found to improve with time, this likely reflects prac-
tice or medication effects.

A multivariate analysis identified a single latent vari-
able that best explained the covariance between the pro-
gressions of cortical atrophy and clinical outcomes in
this PD cohort. The clinical changes that significantly
contributed to this latent variable were largely non-
motor (i.e., visualspatial perception, psychomotor slow-
ing, compulsive-impulsive behaviours, autonomic dys-
function) and CSF biomarker (i.e., NfL) measures. No-
tably, changes in motor symptom measures did not cor-
relate with atrophy progression in this analysis despite
a clear progression of these scores in our linear mixed
effects models. This might owe to the fact that our anal-
ysis was restricted to atrophy within the cortex, whereas
motor symptoms are almost entirely due to subcorti-
cal effects of the disease, especially loss of dopamine
signalling in the putamen [49] Examining the atrophy-
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Figure 5: Relationship between regional atrophy rates and gene expression profiles. Brain loadings for the (a)
first and (d) second significant latent variables (i.e., PLS1 and PLS2, respectively) from a partial least squares analysis
relating regional atrophy rates to gene expression profiles derived from the Allen Human Brain Atlas. Scatter plots
of the relationship between (b) PLS1 and (e) PLS2 brain loadings and regional atrophy rates. Brain regions that
contributed more positively to their respective latent variables and expressed more positively weighted genes also had
greater atrophy rates. Enriched biological processes genes expression profiles associated with (c) PLS1 and (f) PLS2.
More positive enrichment scores were associated with patterns of greater atrophy rates. Darker blue and red bars
indicate statistically significant enrichment scores (pFDR < 0.05).

clinical progression relationship in subcortical regions
might reveal an association with motor symptoms. In-
deed, a previous PLS analysis performed on whole-brain
atrophy and clinical data in de novo PD patients from
the PPMI at baseline uncovered a clinical phenotype that
included both motor and non-motor features associated
with diffuse tissue loss [110]. Further, although de novo
PD patients were not yet treated with medications at the
baseline visit, they are prescribed medications increas-
ingly, which could improve their motor symptoms even
as the disease worsens.

We observed longitudinal changes in several CSF
biomarkers, including decreases in tau (total tau and
p-tau) and beta-amyloid but increases in NfL levels.
Although both CSF tau and beta-amyloid are typi-
cally markers of Alzheimer’s disease, many PD patients
demonstrate co-pathologies that correlate with cognitive
decline and reduced survival [43]. Longitudinal mod-
eling of these CSF biomarkers in PD is limited, how-
ever a recent study performed on the PPMI cohort found
lower levels of p-tau and beta-amyloid in PD patients
compared to healthy controls [42], a trend with which
our results are in line. Lastly, there was a noted ele-

vation in NfL concentrations in CSF over time. Neu-
rofilaments are cytoskeletal components of myelinated
axons that are released following axonal degeneration
[70]. Of the several subclasses of neurofilaments, NfL
is the most thoroughly investigated as a biomarker of
PD progression [33, 46]. Studies have shown that NfL
levels in blood and CSF are significantly elevated in PD
patients compared to healthy controls, and baseline NfL
levels are predictive of motor and cognitive progression
in PD [1, 9, 68, 108]. Notably, post-mortem measures of
NfL immunoreactivity correlated with MRI-derived cor-
tical thinning in PD patients [30]. Here we add to this
literature by showing that progressive increases in NfL
covary with regional cortical atrophy rates.

Distribution of cortical atrophy progression

The atrophy progression pattern was found to be lo-
calized to specific brain systems. Relatively greater at-
rophy rates were observed in sensorimotor network and
primary motor cortex, whereas relatively lower atrophy
rates were found in ventral attention network. Motor
and sensory areas of the cortex are primarily connected
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to the putamen, which is severely dopamine-depleted in
PD [48]. Previous work has shown that cortical thin-
ning is determined by connectivity to a subcortical “dis-
ease reservoir” in PD, suggesting a potential pathway by
which PD pathology originating in subcortex might dom-
inate specific regions or networks of neocortex [107].

Additionally, regions with higher expression of astro-
cytes corresponded to regions with lower atrophy rates.
Whether the role of astrocytes in PD is deleterious or pro-
tective has yet to be settled [91]. For example, some
evidence suggests that alpha-synuclein aggregates read-
ily exchanged between neurons and astrocytes produce
an inflammatory response and lead to neuronal death if
transferred from astrocytes to neurons [20, 41]. In con-
trast, others have shown that astrocytes may take up and
degrade misfolded alpha-synuclein more efficiently than
neurons [55]. This neuroprotective function seems in
line with our observation of relatively less atrophy pro-
gression in astrocyte-rich regions, although more clarifi-
cation is needed.

Finally, regions with higher atrophy rates overlapped
areas with relatively lower distribution of several neuro-
chemical systems including serotonin (5-HTT), cannabi-
noid (CB1), dopamine (D1, DAT), histamine (H3), glu-
tamate (mGluR5), and opioid (MOR). The involvement
of these various transmitters and receptors in PD pathol-
ogy has been described previously and mapped to largely
frontal and striatal regions [5, 13, 18, 75, 81]. Indeed,
visual inspection of the cortical topography of these neu-
rochemical maps (see Fig. S2) reveals their concentra-
tion in ventral frontal and limbic cortices, where we ob-
served the lowest atrophy rates. Although we saw a neg-
ative association between atrophy rates and D1/DAT con-
centrations (i.e., greater atrophy in regions with lower
concentrations of dopamine receptor and transporter),
note that our analysis was restricted to the cortical sur-
face whereas dopamine deficiency caused by PD occurs
primarily in basal ganglia [49]. Nonetheless, these re-
sults reveal interesting associations between PD-related
cortical atrophy and neurochemical mechanisms that
warrant further exploration.

Network architecture shapes cortical atrophy progression

There is increasing evidence of a network spread-
ing process of atrophy in multiple neurodegenera-
tive diseases and psychiatric disorders, including PD,
Alzheimer’s disease, frontotemporal dementia, amy-
otrophic lateral sclerosis, and schizophrenia [29, 67, 71,
76, 80, 85, 88, 89, 96, 107, 115]. Although these dis-
eases have distinct aetiologies, the fact that neurodegen-
eration follows large-scale brain networks raises the pos-
sibility of similar pathophysiological mechanisms. One
hypothesis posits that neurodegenerative diseases spread
through the cell-to-cell propagation of toxic agents in a
prion-like manner [45, 105]. In PD, that agent is a mis-
folded isoform of alpha-synuclein spreading through the
connectome [31, 45, 105].

We found evidence that cortical atrophy progression
in PD is shaped by structural and functional networks.
Regions with greater atrophy rates were more likely
to be connected to regions with greater atrophy rates
themselves. Intrinsic anatomical and functional con-
nectivity was important for this model, as networks
composed of not-connected nodes disrupted this region-
neighbourhood relationship. Critically, we ensured our
results were independent of spatial autocorrelation and
were replicable across spatial scales. These findings
replicate and extend previous work in support of a net-
work spreading model in both prodromal [78] and in-
cidental PD [10, 71, 80, 96, 107, 111]. Zeighami et
al.[111] first showed in /emphde novo PD patients that
brain atrophy measured with deformation-based mor-
phometry was associated with connectivity to the sub-
stantia nigra, a disease epicenter in PD. In a more re-
cent study, Tremblay et al. [96] found that struc-
tural and functional connectivity continued to constrain
deformation-based atrophy progression in PD patients
followed longitudinally. Similarly, Yau et al. [107] re-
ported that cortical thinning in /emphde novo PD over
a 1-year period was correlated with connectivity to a
subcortical “disease reservoir”. We build on these find-
ings here by demonstrating the role of connectivity in
the progression of cortical atrophy over a longer 4-year
duration.

Alternatively, other pathogenic mechanisms would
also follow the connectome. Connected areas tend to
be similar in terms of cellular composition [106], neu-
roreceptor profiles [38], and gene expression [7]. Thus,
a pathogenic process may target connected regions for
reasons other than their connectivity. Highly connected
hub regions in the brain tend to be targeted in almost
all neurological diseases [22], possibly because of their
precarious energy needs. These regions also tend to be
inter-connected [100]. Indeed, we previously showed
that atrophy patterns in the PPMI dataset preferentially
target hub regions [111]. Nonetheless, many animal ex-
periments confirm that pathogenic alpha-synuclein does
propagate via anatomical connections [56, 65, 69]. Sev-
eral human imaging studies, including this one, also sup-
port the model [59, 71, 80, 96, 107, 111].

Atrophy progression-related genes are enriched for
mitochondrial and metabolic function

Cortical atrophy progression was associated with
gene expression profiles enriched for mitochondrial
and metabolic function. Mitochondrial dysfunction
was first implicated in PD based on the observation
that exposure to the drug 1-methyl-4-phenyl-1,2,3,4-
tetrahydropyridine (MPTP) induced the rapid onset of
parkinsonism and degeneration in the substantia nigra of
humans [52, 53]. Further inspection revealed this toxic
effect was mediated by the inhibition of complex I of the
mitochondrial electron transport chain. But even in cases
of sporadic PD, reductions in complex I activity within
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the substantia nigra as well as in the cortex and periph-
ery have been reported [34, 72, 93]. Interestingly, we
identified NADH dehydrogenase complex as one of the
most enriched terms in our GSEA. Specific genetic muta-
tions in PD-related genes such as PINK and Parkin have
also been implicated in defective mitochondrial func-
tion and regulation through impaired mitophagy of dam-
aged mitochondria [14, 21, 58, 114]. Impaired mito-
chondria produce less cellular energy, but more reactive
oxygen species linked to oxidative stress. The accumu-
lation of dysfunctional mitochondria may contribute to
regional vulnerability to PD pathology. Moreover, mito-
chondrial failure and accumulation of misfolded alpha-
synuclein may promote each other [82]. Our results add
to this view by showing that cortical areas with more
mitochondria-related gene expression are especially vul-
nerable to atrophy progression in PD. We also repli-
cated findings from a previous study in prodromal PD
patients that showed cortical atrophy-related genes were
enriched for mitochondrial function [78].

Limitations

We examined de novo PD patients followed longi-
tudinally over a 4-year duration. This within-subject,
multiple time point design afforded us both control of
between-subject variability due to disease heterogene-
ity and a broader view of disease progression. Despite
these advantages, this approach presents a few chal-
lenges. First, not all PD patients had MRI data available
at all four visits due to either scans failing quality control
for a subset of time points or because of attrition that is
common among longitudinal patient studies. We there-
fore included only those individuals with data available
at two or more time points and employed linear mixed
effects modeling, which is robust to data with irregular
timing and subject drop-out [11]. Next, although we ex-
amined PD patients over more frequent visits and across
a longer span than most previous studies, still our results
only reveal progression during a limited window of the
entire PD course. Modeling repeated visits over a longer
duration would allow for a more comprehensive estima-
tion of disease trajectories. This approach might specif-
ically better capture cortical changes and accompanying
cognitive deficits presumed to be most pronounced later
in the disease course.

Cortical thinning was used as a proxy for PD pathol-
ogy. At present, direct measures of alpha-synuclein dis-
tribution in PD patients in vivo are not possible as there

are no validated PET radiotracers for this protein. Such
a tracer would allow for more accurate study of disease
spread, as has been demonstrated in the case of beta-
amyloid and tauopathies such as Alzheimer’s disease and
frontotemporal dementia [39, 103]. Still, brain atrophy
measured with MRI can arguably be used as an indirect
surrogate of alpha-synuclein pathology in the brain.

The PPMI dataset consists of clinical and imaging data
contributed from multiple centres and scanners, which
might introduce unwanted heterogeneity [37]. However,
the PPMI has strict and standardized protocols for data
acquisition [61] and the CIVET pipeline used for analyz-
ing cortical thickness in the present study was developed
and validated to deal with such multi-centre datasets
[23]. Further, we include scanning site as a covariate in
our analyses of cortical atrophy and clinical progression.

Conclusion

In summary, the present study reveals a distinct pat-
tern of cortical atrophy progression across the early stage
of PD. This pattern appears to be shaped by structural
and functional network architecture as well as regional
differences in cellular composition, neuroreceptor distri-
bution, and gene expression. Notably, the gene expres-
sion profiles related to atrophy progression are associ-
ated with mitochondrial and metabolic functions. These
results demonstrate how both global network and local
vulnerability factors shape the progression of cortical at-
rophy in PD.
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