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Abstract

Background

Daily monitoring of stress is a critical component of maintaining optimal physical and
mental health. Physiological signals and contextual information have recently emerged
as promising indicators for detecting instances of heightened stress. Nonetheless,
developing a real-time monitoring system that utilizes both physiological and contextual
data to anticipate stress levels in everyday settings while also gathering stress labels
from participants represents a significant challenge.

Objective

We present a monitoring system that objectively tracks daily stress levels by utilizing
both physiological and contextual data in a daily-life environment. Additionally, we
have integrated a smart labeling approach to optimize the ecological momentary
assessment (EMA) collection, which is required for building machine learning models for
stress detection. We propose a three-tier Internet-of-Things-based system architecture
to address the challenges.

Methods

A group of university students (n=11) consisting of both males (n=4) and females
(n=7) with ages ranging from 18 to 37 years (Mean = 22.91, SD = 5.05) were recruited
from the University of California, Irvine. During a period of two weeks, the students
wore a smartwatch that continuously monitored their physiology and activity levels. A
context-logging application was also installed on their smartphone. They were asked to
respond to several EMAs daily through a smart EMA query system. We employed three
different machine learning algorithms to evaluate the performance of our system. The
mean decrease impurity approach was employed to identify the most significant features.
The k-nearest neighbor imputation technique was used to fill out the missing contextual
features.
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Results

F1-score is the performance metric used in our study. We utilized a cross-validation
technique to accurately estimate the performance of our stress models. We achieved the
F1-score of 70% with a Random Forest classifier using both PPG and contextual data,
which is considered an acceptable score in models built for everyday settings. Whereas
using PPG data alone, the highest F1-score achieved is approximately 56%, emphasizing
the significance of incorporating both PPG and contextual data in stress detection tasks.

Conclusion

We proposed a system for monitoring daily-life stress using both physiological and
smartphone data. The system includes a smart query module to capture high-quality
labels. This is the first system to employ both physiology and context data for stress
monitoring and to include a smart query system for capturing frequent self-reported
data throughout the day.

Introduction 1

Based on recent reports, a remarkable 70% of individuals in the United States have 2

encountered at least one symptom of stress within a given month [1]. Long-term stress 3

can lead to a compromised immune system, cancer, cardiovascular disease, depression, 4

diabetes, and substance addiction, among other serious effects [1]. In light of these 5

consequences, the routine monitoring of stress levels has become increasingly essential. 6

Thus, developing dependable techniques for promptly detecting human stress is 7

paramount. 8

The utilization of physiological signals as a modality for identifying stress has been 9

extensively explored in the literature [2, 3]. Among the physiological signals, the 10

photoplethysmograph (PPG) signal is considered a valuable information source for 11

stress detection [4]. This signal is influenced by the cardiac, vascular, and autonomic 12

nervous systems, which are all known to be impacted by stress [5]. With the rapid 13

development of wearable technologies, PPG signals can now be conveniently monitored 14

in daily life settings using cost-effective wearable devices [2]. Moreover, the 15

advancement of context-logging mobile applications has furnished a mechanism for 16

continuously monitoring and tracking a user’s contextual information, which 17

encompasses location, activities, weather, and other pertinent factors, in real-time. 18

Existing research has already illustrated the importance of this contextual information 19

in comprehending and detecting stressful events experienced by individuals [6]. 20

Real-time monitoring of physiological signals and contextual data presents a 21

formidable challenge. The acquisition of physiological signals via smartwatches and 22

wearable devices is particularly prone to motion artifact noise [7], necessitating 23

extensive filtering and processing to enable their use in stress detection algorithms 24

within daily life settings. Moreover, developing a daily life stress monitoring system 25

mandates access to real-time stress level labels from participants, a task that poses 26

several challenges [8]. The timing of label querying is critical, requiring careful selection 27

of moments when participants are not engaged in activities such as sleeping, studying, 28

or working, to ensure optimal participation and reliable labels. Additionally, capturing 29

the moments most conducive to experiencing stressful situations is crucial [8]. 30

Notwithstanding these obstacles, designing a robust and accurate system that captures 31

both physiological and contextual information in real-time while querying labels from 32

participants is an even greater challenge. 33

In this study, we present a context-aware daily life stress monitoring system that 34

leverages physiological and contextual data and incorporates a smart label querying 35
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method. The system utilizes a publicly accessible life-logging mobile application to 36

gather real-time contextual data from participants. The task of simultaneously 37

collecting both contextual information and physiological signals while querying for 38

stress labels in daily life presents significant challenges. To address these challenges, we 39

propose a three-tier Internet of Things (IoT) based system architecture for our real-time 40

monitoring system. In summary, the key contributions of this paper are as follows: 41

• Propose a three-tier IoT-based system architecture to efficiently collect and record 42

both physiological and contextual data alongside labels throughout the day. 43

• Implement a smart EMA triggering-based system to capture sufficient and 44

high-quality labels multiple times daily. 45

• Investigate the impact of personalization on stress detection by examining how 46

the performance of our algorithm improves with more subject-specific data 47

available in the training phase. 48

Related Works 49

This section presents an overview of the related works as summarized in Table 1. The 50

majority of the existing research works in stress detection are conducted in laboratory 51

settings or controlled environments [9–11]. In these studies, participants are typically 52

required to wear wearable devices while engaging in a sequence of experimental tasks, 53

such as viewing a series of images or videos or being exposed to stressful activities. 54

During the study, various kinds of bio-signals, such as PPG, Electrocardiogram (ECG), 55

Electrodermal Activity (EDA), and Electroencephalogram (EEG) are recorded and 56

employed for building models for stress detection. Despite the remarkable performance 57

obtained by these controlled experimental methods, such algorithms are not feasible for 58

usage in real-world stress detection systems. The data gathered in daily life is 59

susceptible to contextual confounders and motion artifact noise resulting from 60

movements and routine activities. Moreover, the type of stress encountered in daily life 61

scenarios can substantially differ from that induced in the controlled laboratory 62

setting [8]. 63

Recent advancements in stress detection methods have involved using physiological 64

signals collected in real-world settings [12–16]. This is achieved through the use of 65

wearable devices, such as smartwatches or smart wristbands, which continuously collect 66

physiological data from participants. Multiple questionnaires are sent randomly 67

throughout the day to gather information on stress levels. Finally, machine learning 68

techniques and statistical algorithms are applied to the collected data to build a stress 69

model. A disadvantage of these studies is the absence of contextual information in their 70

stress models, which can result in less reliable stress detection algorithms. The 71

importance of contextual data in stress detection tasks has already been extensively 72

demonstrated in the literature [17]. 73

Can et al. [16] propose an objective stress detection system that uses smart bands 74

and contextual information, such as weather information and activity type (e.g., lecture, 75

presentation, or relaxation). However, one of the major limitations of this study is its 76

semi-controlled setting. In their study, the data was obtained during an eight-day 77

training event, where all the participants followed a predetermined schedule, including 78

designated training days, free days, midterm presentations, and other similar activities. 79

Consequentially, the contextual data captured in this study was captured manually and 80

is limited to the time and date of the predetermined schedule. 81

Only a limited number of studies have investigated the integration of physiological 82

signals and contextual information in a non-controlled, real-world setting [18,19]. 83
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However, the issue with these studies is the infrequency of their survey administration 84

(i.e., once a day), as stress levels can vary greatly throughout the course of a day in 85

response to various daily life events. These models cannot be properly coupled with 86

mHealth-based just-in-time interventions due to their lack of assessing stress 87

instantaneously. Increased frequency of survey administration would improve the 88

likelihood of capturing fine-grained stress-inducing moments. Additionally, these studies 89

lack a smart query system to capture the labels, which can result in more missing labels, 90

such as instances where wearable devices are not being worn or carried. Our work aims 91

to address these shortcomings using an objective and automatic physiological and 92

contextual data collection approach focusing on fine-grained stress detection. 93

Table 1. Related Works

Study EMA Frequency Smart Query Physiology Context Daily Life

Jeong Han et al. [9] N/A ✗ ✓(PPG, ECG, SC) ✗ ✗

Cho et al. [11] N/A ✗ ✓(ECG) ✗ ✗

Wang et al. [17] every 3 months ✗ ✗ ✓ ✓

Yu et al. [12] 10/day ✗ ✓(ECG, SC, ST, Motion) ✗ ✓

Sah et al. [13] 4/day ✗ ✓(PPG, SC, Motion, ST) ✗ ✓

Tazarv et al. [14] distribution based ✓ ✓(PPG) ✗ ✓

Battalio et al. [15] 1/day ✗ ✓(ECG, Motion, Resp) ✗ ✓

Can et al. [16] 1/day ✗ ✓(SC, PPG, ST, Motion) ✗ ✗

Yu et al. [18] 1/day ✗ ✓(SC, ST, Motion) ✓ ✓

Mundnich et al. [19] 1/day ✗ ✓(ECG, Motion) ✓ ✓

This Work 7/day ✓ ✓(PPG, Motion) ✓ ✓

Methods 94

Study 95

Starting in November of 2021, we recruited a sample of college students (n = 11) from 96

the University of California, Irvine, via flyers and faculty outreach. The participants, 97

comprising both male (n = 4) and female (n = 7) populations, ranged in age from 18 to 98

37 years (Mean = 22.91, SD = 5.05). The students were enrolled on a rolling basis at 99

different intervals, depending on their enrollment date, and participated for a total of 2 100

weeks. During the enrollment process, participants review our study information 101

document and are asked afterward if they agree to continue their participation. Consent 102

is obtained verbally and is then documented in an Excel file by the research team 103

member running the participant session. As a component of the enrollment process, 104

students were instructed to download 2 mobile applications (one foreground app to 105

provide EMAs and one background app to perform passive mobile logging) and were 106

equipped with a smartwatch. Throughout the 2-week period, while wearing the 107

smartwatch that continuously measured physiology and activity levels, students were 108

prompted to complete multiple daily EMAs that was triggered by a smart EMA query 109

system. 110

The experimental procedures involving human subjects described in this paper were 111

approved by the Institutional Review Board (IRB) at the University of California, 112

Irvine. 113
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Fig 1. Proposed System Architecture

System Architecture 114

The architecture of our proposed system is shown in Figure 1. The system comprises 115

three primary layers that facilitate the collection of physiological and movement data, 116

capturing contextual data, and querying labels. 117

Sensor Layer 118

This study uses Samsung Galaxy Gear Sport Watches as the wearable device. This 119

smartwatch is equipped with sensors capable of recording PPG (20Hz), accelerometer, 120

and gyroscope (movement) signals. We designed a custom smartwatch application for 121

Samsung Galaxy Gear Sport Watches running on the Tizen operating system to gather 122

these unprocessed PPG and movement signals. The data collected by the watch is 123

transferred to the cloud layer when it is connected to a local Wi-Fi network, and in the 124

absence of such a network, the data is transmitted via Bluetooth to a smartphone. Two 125

services and a user interface (UI) are included in the raw signal acquisition program. 126

The initial service delivers sensor data to the cloud at intervals of two minutes which 127

take place every fifteen minutes. 128

Edge Layer 129

We use the AWARE framework [20] to capture contextual data in everyday settings. 130

AWARE is an open-source mobile instrumentation framework for logging, sharing, and 131

reusing mobile context. AWARE uses smartphone built-in sensors to capture daily life 132

logging information such as phone battery level, weather, location, screen status, etc. In 133
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the event that the Wi-Fi network is inaccessible, an alternative smartphone application 134

installed on the edge is employed to gather the raw PPG signals and accelerometer data 135

from the sensor layer via Bluetooth and then transmit the data to the cloud for storage. 136

To elicit stress level labels from the study participants, a supplementary smartphone 137

application has been developed which employs an EMA to solicit stress level ratings 138

from the participants. 139

Cloud Layer 140

A smart EMA query system is implemented (S-EMA) on the cloud to query labels 141

throughout the day. The followings are the summary of the main rules used by the 142

S-EMA module to trigger EMAs: 143

• Sending EMAs only between 7 AM and midnight. 144

• Sending EMAs only when the user is wearing the watch using the accelerometer 145

data. 146

• Sending EMAs only when the collected data is recent (the watch may record the 147

data without the Internet and sync it later). 148

• It is intended to query labels seven times per day. The frequency of querying 149

labels is adjusted dynamically to ensure that approximately seven labels are 150

captured daily. The waiting period is calculated based on the initial wear time of 151

the watch to achieve this target. 152

The stress levels in the EMAs are listed as “not at all” (1), “a little bit” (2), “some” (3), 153

“a lot” (4), and “extremely” (5). 154

Contextual data collected from the AWARE Framework (at the Edge layer), labels 155

queried through EMAs (the Edge layer), and raw physiological (PPG) and movement 156

(accelerometer, gyroscope, and gravity) signals captured by wearable platforms (the 157

Sensory layer) are sent and stored in the cloud for cleaning, filtering, preprocessing, and 158

being utilized in the predictive models. 159

Preprocessing 160

The PPG signals stored in the cloud layer are collected from wearable devices and hence 161

are prone to noise. To mitigate this issue, a number of preprocessing and filtering 162

techniques are applied to the raw PPG signals in order to prepare them for further 163

analysis. To detect stress as a stimulus in human subjects, a variety of features are 164

extracted from these signals, such as heart rate, heart rate variability, and breathing 165

rate, to name a few. Raw contextual data collected from the AWARE framework are 166

also too broad and non-informative. A feature extraction module is designed with the 167

purpose of transforming the raw contextual logging data into informative contextual 168

life-logging features. These extracted features serve as inputs for our predictive 169

machine-learning models. Data Imputation and Feature Selection are two 170

postprocessing techniques employed to improve our models’ performance. 171

Data Cleaning and Windowing 172

In order to clean the collected PPG data, first, we apply a Butterworth band-pass filter 173

of order 3, with cut-off frequencies at 0.7Hz and 3.5 Hz. Then, a moving average across 174

a 1-second window is used to smooth the data and reduce the artifacts such as body 175

gestures and movements, which are common in everyday settings. These clean PPG 176

signals, alongside contextual data collected from the AWARE framework, are resampled 177
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to 15-minute timing windows. Each of these 15-minute time frames, which consists of 178

2-minute continuous photoplethysmography (PPG) signals and context data collected 179

through the AWARE framework, is then processed by the feature extraction module. 180

Feature Extraction 181

In the feature extraction module, we use the HeartPy library [21] to process the clean 182

PPG signals to extract PPG peaks and PPG-relevant features including heart rate 183

variability. The HeartPy is a Python Heart Rate Analysis Toolkit. The toolkit is 184

designed to handle (noisy) PPG data. Using this library, the following 12 features are 185

extracted from the PPG signals: BPM, IBI, SDNN, SDSD, RMSSD, PNN20, PNN50, 186

HR mad, SD1, SD2, S, and BR. Table 2 outlines the definitions of these features for 187

reference. 188

Table 2. PPG Features

Feature Definition

BPM Beats per minute, Heart Rate
IBI Inter-Beat Interval, the average time interval between two successive heartbeats (NN intervals)
SDNN Standard deviation of NN intervals
SDSD Standard deviation of successive differences between adjacent NNs
RMSSD Root mean square of successive differences between the adjacent NNs
PNN20 The proportion of successive NNs greater than 20ms
PNN50 The proportion of successive NNs greater than 50ms
HR mad Median absolute deviation of NN intervals
SD1 and SD2 Standard deviations the corresponding Poincare plot
S Area of ellipse described by SD1 and SD2
BR The number of breaths per minute (breathing rate)

The raw contextual data captured from AWARE framework are presented in Table 3. 189

These raw contextual data are not immediately usable in our predictive models and 190

thus require further processing. To address this issue, we have implemented a feature 191

extraction module to translate the raw data into numerical features that can be utilized 192

by the models. 193

Table 3. Aware Features

Feature Definition Values Cut-offs

battery adaptor Indicator of power source 0=No source,1=AC,2=Dock,3=USB -
battery level Battery percentage (0:100]% [10,25,50]
speed Movement speed of user Double value in m/s unit [0,1,5]
device off Device not used duration Double value in minutes unit [2,10,20,60,180,540]
device on Device is being used duration Double value in minutes unit [2,10,20]
air pressure The ambient air pressure Double value in mbar/hPa unit [900,1000,1100]
weather temperature Measured temperature Double value in Celsius unit [5,10,20,30]
weather Weather forecast (API) Weather forecast in Text, ex. ’Clear’ -
wind degrees Degree of wind Double value in degree [45,90,135]
wind speed Speed of wind Double value in m/s unit [0,2,5,10]
screen status Status of phone screen 0=off,1=on, 2=locked, 3=unlocked -
location Longitude, Latitude, Altitude Three double values -

In Table 3, the “Values” column details the range, type, and units for each raw 194

feature. The “Cut-offs” column lists the threshold values utilized to convert the raw 195
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features into a more comprehensible and abstract numeric format suitable for usage in 196

the predictive models. For example, the cut-off values for battery level are 10%, 25%, 197

and 50%. Therefore, for battery level (BL) values BL ≤ 10, 10 < BL ≤ 25, 25 < BL 198

≤ 50, and BL > 50, we have respectively assigned the following numerical values: 0, 1, 199

2, 3. For battery adaptor and screen status features, there are no cut-off values, and 200

their raw values are used in the model. For weather we used the following mapping 201

function from text to the numerical values: {’clear’: 0, ’mist’: 1, ’clouds’: 2, ’rain’: 3, 202

’snow’: 4}. In terms of location, since all participants are students at the University of 203

California, Irvine (UCI), we abstracted and categorized their position into four distinct 204

areas at the edge layer to preserve their privacy. These areas are defined as follows: 0: 205

within the UCI recreation center (UCI ARC), 1: within the university premises (for 206

work/study), 2: within UCI housing, and 3: outside of the aforementioned locations. To 207

assign a location to each participant, we established circular boundaries encompassing 208

each of these areas. Once the Longitude, Latitude, and Altitude of the participant were 209

determined, we checked whether their location lay within one of the circular boundaries. 210

If it did, we would assign the corresponding numeric value; otherwise, the outside 211

numeric value (3) would be assigned. 212

Data Labeling 213

The EMA protocol is designed to trigger a maximum of seven times per day and prompt 214

participants to indicate their stress level on a five-point Likert scale: (1) not at all, (2) a 215

little bit, (3) some, (4) a lot, and (5) extremely. The stress level reports, along with the 216

corresponding timestamps, are recorded in the cloud for subsequent analysis. Each 217

15-minute timing window of collected physiological and contextual data is then labeled 218

based on the closest subsequent EMA query. The label distribution is shown in Figure 2. 219
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Fig 2. The distribution of reported stress levels

Data Imputation 220

The contextual features obtained from the AWARE framework are sourced from various 221

sensors integrated within smartphones. As a result, certain 15-minute timing windows 222

may exhibit missing data for some features, which can occur due to differences in the 223

frequency of the sensors or technical limitations of a specific sensor. In order to 224

optimize the construction of efficient machine learning models, it is recommended to 225
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utilize a data imputation technique rather than solely discarding incomplete data. This 226

ensures the utilization of all available features. To this end, we use the k-nearest 227

neighbor’s imputation algorithm [22] in order to compensate for missing contextual 228

values in our data. The method predicts the values of any additional data points using 229

”feature similarity.” In other words, the value given to the new point depends on how 230

much it resembles the points in the training set. Employing a technique that identifies 231

the k-nearest neighbors to the observation with missing data, and subsequently imputes 232

them based on the non-missing values in the vicinity, can be an advantageous approach 233

for predicting absent values. This technique creates a rudimentary mean impute and 234

then utilizes the resulting complete dataset to construct a KDTree. The KDTree is then 235

utilized to compute the nearest neighbors (NN). Following the determination of k-NNs, 236

it calculates their weighted average. This algorithm is deemed to be more accurate than 237

the commonly utilized imputation methods such as mean, median, and mode, as it 238

incorporates the similarity between the features into consideration. 239

Stress Detection 240

We evaluate the efficacy of our proposed stress detection system through binary 241

classification. In this classification, instances of “no stress” (represented by a stress level 242

of 1) are assigned a value of 0, while instances of “a little bit,” “some,” “a lot,” and 243

“extremely” (represented by stress levels greater than or equal to 2) are assigned a value 244

of 1. 245

The main reason for classifying the samples into “stress” and “no stress” is to have a 246

more balanced distribution of labels since some classes such as “extremely” and “a lot” 247

are rare. As shown in Figure 2, with this categorization, there will be 288 samples with 248

label 0 (“no stress”) and 303 samples with label 1 “stress”. 249

Machine Learning Algorithms 250

To build a stress detection algorithm, we used machine learning-based methods. Three 251

classification techniques were employed, namely the K-Nearest-Neighbor [23] with k 252

values ranging from 1 to 20, Random Forest [24] with a depth range of 1 to 10, and the 253

XGBoost classifier [25]. The K-Nearest-Neighbor technique predicts the outcome based 254

on a majority vote using the k number of closest data points. The Random Forest 255

classifier is an ensemble learning approach that employs averaging to increase predictive 256

accuracy and reduce overfitting. It fits a number of decision tree classifiers to different 257

subsamples of the dataset. The XGBoost is an efficacious open-source implementation 258

of the gradient-boosted trees algorithm. Gradient boosting is a supervised learning 259

process that combines the predictions of a number of weaker, simpler models to predict 260

a target variable properly. 261

Feature Selection 262

In this work, feature selection constitutes a pivotal stage, and its inclusion can 263

significantly enhance the performance of our model. This is largely due to the inherent 264

constraints associated with the AWARE features. Specifically, some features may 265

exhibit consistent values over time, thereby rendering them less reliable and less critical 266

for classification. Additionally, certain features may present significant quantities of 267

missing data due to the challenges encountered in the collection of contextual data, such 268

as sensor malfunction. Furthermore, the filtering and cleaning of the PPG signals, 269

necessary to eliminate motion artifact noise, may result in the loss of critical 270

information from the signals. As a consequence, the extraction of features from PPG 271

signals may be rendered less dependable. It is, therefore, imperative to identify and 272
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eliminate these aforementioned features from the model to mitigate their adverse effects 273

on the model’s efficacy. 274

Given that a tree-based machine learning classification algorithm is employed in our 275

prediction models, we have elected to adopt a tree-based feature selection algorithm. 276

Random forest classifiers offer the mean decrease impurity and mean decrease accuracy 277

feature selection approaches. In this study, we chose features using a mean decrease 278

impurity technique. Gini importance is another name for mean decrease impurity. 279

Random forest uses numerous different decision trees. Every node in the decision tree 280

represents a condition on one of the qualities, and it is a model of decisions that 281

resembles a tree. These nodes divide the data into two sets, with the goal of having the 282

data with the same labels end up in the same set in the best case. The criterion used to 283

determine the best condition for each node is impurity. The total decrease in node 284

impurity averaged over all ensemble trees is what is meant by ”mean decrease impurity” 285

for each feature. This metric is used to order the features. 286

Performance Metrics 287

In order to evaluate the performance of our stress monitoring system, we use F1-score
as a quality metric. The F1-score is a measurement of a test’s accuracy used in
statistical analyses of binary categorization. It is derived from the test’s precision, and
recall, where precision is the proportion of ”true positive” results to ”all positive
results,” including those incorrectly identified as positive, and recall is the proportion of
”true positive” results to ”all samples that should have been identified as positive.” In
diagnostic binary classification, recall is also referred to as sensitivity, while precision is
also referred to as positive predictive value. The F1-score is calculated as the weighted
average of precision and recall:

F1 = 2× precision× recall

precision + recall

Results 288

In our research, a cross-validation technique [26] was utilized to evaluate the 289

performance of our classification models. Cross-validation is a widely employed 290

algorithm for accurately estimating the performance of a machine-learning model on 291

unknown data. The process involves training a model using different subsets of the data 292

and then testing the average accuracy of the remaining data. To assess the effectiveness 293

of our research findings, we employed a 5-fold cross-validation method. To ensure that 294

there is no overlap of user data in the train and test splits, the splits were created based 295

on user IDs. 296

In order to ensure objectivity and prevent any potential biases, we adopted a fresh 297

start approach for each iteration of the stress detection model. We disregarded any 298

prior knowledge or information from previous stress models or the data from the current 299

test users. The ultimate performance of the model was computed by calculating the 300

mean of the individual stress models’ performances generated. 301

The summary of the performance achieved for our stress assessment algorithm 302

utilizing solely PPG data with a 5-fold cross-validation technique is presented in Table 303

4. The table shows that KNN with k=7 exhibited the best performance with an 304

F1-score of 56. However, the result of 56 is not promising for binary classification. 305

As a subsequent measure, we resolved to augment our model with contextual 306

information to enhance its performance. The results of the stress assessment algorithm 307

that incorporates both PPG and contextual data are summarized in Table 5. This 308

assessment was carried out using a 5-fold cross-validation technique. According to the 309

April 20, 2023 10/16

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 24, 2023. ; https://doi.org/10.1101/2023.04.20.23288181doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.20.23288181
http://creativecommons.org/licenses/by/4.0/


Table 4. Validation accuracy of our stress assessment algorithm using only PPG data

Classifiers F1 Selected Features

Random Forest (depth=9) 52 SD1, IBI, S, SD2, BPM, SDSD
KNN (k=7) 56 SD1, IBI, S, SD2, BPM, SDSD
XGBoost 51 S, SD2, BPM, SDSD

table, the Random Forest model with a depth of 5, employing the top five features 310

chosen by the GINI index algorithm, attained the best performance. This outcome 311

indicates a 14% increase in performance, underscoring the noteworthy role of contextual 312

data in stress detection techniques. 313

Table 5. Validation accuracy of our stress assessment algorithm using both PPG and contextual data

Classifiers F1 Selected Contextual Features Selected PPG Features

Random Forest (d=3) 70 weather, wind speed, device off, location BPM
KNN (k=9) 62 weather, wind speed, device off, location, speed BPM, S, SD2, SDSD, SDNN, BR
XGBoost 64 weather, wind speed, device off, location, speed BPM, S, SD2, SDSD, SDNN, BR, IBI

The most important contextual features, as determined by our analysis, are weather, 314

wind speed, device off, and location. Regarding the PPG signal, beat per minute 315

(BPM) was identified as the most relevant feature for stress detection. However, the 316

performance of the KNN and XGBoost classifiers was found to be lower. For these two 317

classifiers, the top 11 and 12 features were selected, respectively. 318

Explainability of the Model 319

This section employs the stress detection model with the most optimal performance, 320

which is the Random Forest model detailed in Table 5. This model employs the five 321

most important features, namely bpm, weather, wind speed, device off, and location, for 322

the predictions. 323

To explain how our machine learning model predicts stress in terms of extracted 324

features, we use the SHAP method [27]. SHAP (SHapley Additive exPlanations) is a 325

game theoretic approach to explain the output of any machine learning model. It 326

utilizes the traditional Shapley values from game theory and their related extensions to 327

correlate optimal credit allocation with local explanations. 328

The fundamental concept of Shapley value-based interpretations of machine learning 329

models is to allocate credit for a model’s output among its input features. While 330

computing SHAP values can be quite intricate, as they are generally NP-hard, this is 331

not the case for linear models which are more straightforward. In such cases, we can 332

extract the SHAP values directly from a partial dependence plot. Having a prediction 333

f(xi), the SHAP value for a particular feature xi is the difference between the 334

anticipated model output and the partial dependence plot at the feature’s value xi. 335

We apply SHAP method to our proposed stress detection model with the best 336

performance, which is the Random Forest model presented in Table 5. Figure 3 shows 337

the bar plot providing the absolute SHAP values calculated for each feature. This bar 338

plot takes the mean absolute value of each feature over all the instances (rows) of the 339

dataset (test data). According to this Figure, the BPM and location have the lowest 340

impact on the model compared to the other features. The device off feature, which 341

denotes the duration the phone is not in use, is a contextual feature that has the 342

greatest impact on the model’s outcome. Subsequently, the weather and wind speed 343

features exhibit the highest influence on the model output, with a mean absolute SHAP 344

value of approximately 0.15. 345
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Fig 3. SHAP mean absolute values

To observe the impact of each feature on the model’s output based on the feature 346

values, we employ the beeswarm plot. Figure 4 presents a beeswarm plot that 347

summarizes the complete distribution of SHAP values for each feature. Utilizing SHAP 348

values, this plot showcases the effects of each feature on the model output. Features are 349

sorted by the total sum of SHAP value magnitudes over all samples. The color of the 350

plot demonstrates the feature value, with red indicating high and blue indicating low. 351

This analysis shows that a high value for the device off feature (more time the device is 352

not in use) results in a lower predicted stress value. As expected, a higher BPM 353

increases the predicted stress value. For the weather feature, our findings suggest that 354

when the weather condition is in the mid-range, such as mist, clouds, or rain, it 355

increases the probability of stress, whereas when the weather condition is clear, it 356

reduces the likelihood of stress. Furthermore, higher wind speed also increases the 357

predicted stress value. 358

One notable finding that has been made here is that a lower value for the location 359

feature indicates a higher predicted stress level while higher values indicate lower 360

predicted stress levels. According to our designated ranges for the location feature, a 361

lower value corresponds to the presence inside the university premises. On the other 362

hand, higher values of the location feature correspond to UCI housing or an outdoor 363

location, which results in decreased predicted stress levels. This observation suggests 364

that the location of an individual can play a significant role in their stress levels, with 365

certain locations associated with higher levels of stress. 366

Personalization 367

In order to evaluate the impact of personalization on our stress detection algorithm, we 368

conducted an experiment using data from three subjects with substantial amounts of 369

data (S111, S912, and S731). To achieve this, we trained our model on data from all 370

other subjects in the first stage, and then tested it on half of the data from one of the 371

selected subjects (e.g., S111). In the second stage, we customized the model using the 372

second half of the S111 data for training (in addition to data from other subjects) and 373

the first half of the S111 data for testing. We utilized the Random Forest classifier to 374

demonstrate the performance changes. Table 6 shows the results, indicating that 375

personalization improves the prediction performance by approximately 10%. All the 376

extracted PPG and contextual features were used in our models for this experiment. 377
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Fig 4. Feature impacts on the model output

Table 6. F1-score before and after personalization

User ID F1 (Before) F1 (After) Selected Features

S111 74.1 81.0 Random Forest (depth=5)
S912 76.0 83.0 Random Forest (depth=5)
S731 36.7 47.1 Random Forest (depth=19)

Discussion 378

Capturing real-time features and signals while collecting labels from participants in 379

daily life is challenging. We propose a real-time monitoring system using a three-level 380

architecture. It includes a sensor layer with a Samsung Gear Sport watch 2, an edge 381

layer with mobile apps using the AWARE framework, and a cloud layer to store data 382

securely in a database. 383

Our real-time multi-tier system architecture was able to achieve an F1-score of 70% 384

for the task of stress detection. In addition, we have shown that personalization has a 385

positive impact on our stress detection models, resulting in approximately a 10% 386

improvement. This observation suggests that having a personalized model for the 387

participants could result in improved performance for stress prediction models. 388

Despite the successful implementation of a multi-tier system, one limitation of our 389

work is the occasional absence of contextual data for certain timing windows. The 390

contextual data is captured by the AWARE framework through different phone sensors, 391

services, and APIs. Therefore, the limitations and potential inaccuracies of these sensors, 392

services, and APIs, may result in missing features for some of the captured context data. 393

The second limitation of our research is associated with our label query system. 394

Specifically, our labeling system functions on a time-event paradigm, wherein it solicits 395

EMAs from study participants at pre-determined intervals of T hours. As a result, there 396

exists a possibility that our system may not trigger an EMA request during instances 397

when an individual is undergoing stress. Conversely, the system may initiate an EMA 398

during moments when participants are resting or occupied with work, leading to an 399

unsatisfactory experience and subsequently, an increase in missing EMA submissions. In 400

future work, we intend to implement a smarter query system to overcome the mentioned 401

challenges with the purpose of (1) accurately identifying the time frames during which 402
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the participant experiences stress and (2) not resting or engaged in work or activities. 403

To efficiently identify these timing windows, it is imperative to establish a real-time 404

data processing system in the cloud, which can receive and process data from the edge 405

layer in real-time. By utilizing the processed physiological signals and contextual 406

features, it becomes possible to detect circumstances that may result in stressful timing 407

windows. The accelerometer signals obtained from the Samsung Gear Sport Watch can 408

be utilized to construct a machine-learning approach for identifying various daily 409

activities, such as sleeping, walking, and sitting. Daily-life activities alongside context 410

features such as location could help us to build a smart high-level context recognition 411

system detecting the most efficient timing windows to send the EMAs. 412

Conclusion 413

In this work, we proposed a context-aware daily-life stress monitoring system using 414

physiological and smartphone data. A smart query module, which uses accelerometer 415

signals collected from a watch, is implemented in order to capture sufficient and 416

high-quality labels. To the best of our knowledge, this is the first work presenting a 417

daily-life stress monitoring system employing both physiology and context data with a 418

smart query system to capture a sufficient number of EMAs throughout the day. 419

According to our results, we were able to achieve an F1-score of up to 70% using a 420

Random Forest classifier. 421
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