The Epidemiological and Economic Burden of Diabetes in Ghana: A Scoping Review to Inform Health Technology Assessment

4										
6	Mohamed Gad ^{1Ω} , Joseph Kazibwe ^{1Ω} , Emmanuella Abassah-Konadu ² , Ivy									
7	Amankwah ² , Richmond Owusu ³ , Godwin Gulbi ³ , Sergio Torres-Rueda ¹ , Brian Asare ² , Anna Vassall ¹ , Francis Ruiz ¹									
8	Asare ² , Anna Vassall ¹ , Francis Ruiz ¹									
9										
10										
11										
12										
13 14	Affiliations									
15	Anniadona									
16	1. Department of Global Health and Development, London School of Hygiene									
17	and Tropical Medicine (LSHTM), London, United Kingdom									
18	2. Pharmacy Directorate, Ministry of Health, Accra, Ghana									
19	3. School of Public Health, University of Ghana, Accra, Ghana									
20										
21										
22	Ω - Joint first authors									
23										
24	Corresponding author:									
25										
26	Joseph Kazibwe									
27	Global Health and Development									
28	London School of Hygiene and Tropical Medicine									
29	Joseph.kazibwe@lshtm.ac.uk									
30										
31										
32										
33										
34										
35										
36										
3/										
38										
39 40	Kauwarda, Diabataa, Burdan, Comarbiditiaa, Chana, Haalth Taabaalagu									
40	Accomment									
41	Assessment									
42 12										
+3 //										
45 45										
46										
47										
48	NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.									

49 50

51 Abstract

52 Introduction

53 Diabetes remains one of the four major causes of morbidity and mortality globally 54 among non-communicable diseases (NCDs. It is predicted to increase in sub–Saharan 55 Africa by over 50% by 2045. The aim of this study is to identify, map and estimate the 56 burden of diabetes in Ghana, which is essential for optimising NCD country policy and 57 understanding existing knowledge gaps to guide future research in this area.

58

59 *Methods*

We followed the Arksey and O'Malley framework for scoping reviews. We searched electronic databases including Medline, Embase, Web of Science, Scopus, Cochrane and African Index Medicus following a systematic search strategy. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews was followed when reporting the results.

65

66 *Results*

A total of 36 studies were found to fulfil the inclusion criteria. The reported prevalence of diabetes at national level in Ghana ranged between 2.80% – 3.95%. At the regional level, the Western region reported the highest prevalence of diabetes: 39.80%, followed by Ashanti region (25.20%) and Central region at 24.60%. The prevalence of diabetes was generally higher in women in comparison to men. Urban areas were found to have a higher prevalence of diabetes than rural areas. The mean annual financial cost of managing one diabetic case at the outpatient clinic was estimated at

GHS 540.35 (2021 US \$194.09). There was a paucity of evidence on the overall
economic burden and the regional prevalence burden.

76

77 Conclusion

Ghana is faced with a considerable burden of diabetes which varies by region and
setting (urban/rural). There is an urgent need for effective and efficient interventions
to prevent the anticipated elevation in burden of disease through the utilisation of
existing evidence and proven priority-setting tools like Health Technology Assessment
(HTA).

- 84
- 85
- 86

87 Introduction

88 Diabetes is one of the top four non-communicable diseases (NCDs) in terms of 89 mortality globally¹. Approximately 537 million people between the ages of 20-79 years 90 are living with diabetes globally of which over 75% live in low- and middle-income 91 countries (LMICs). Of those living with diabetes nearly half are unaware of their 92 diagnosis². Diabetes exerts tremendous pressure on the resources available for 93 health; treatment and management of diabetes account for over 10% of the total health expenditure among adults globally³. The prevalence of diabetes is expected to 94 95 increase globally to 783 million by 2045².

96

97

As of 2021, there were approximately 24 million people with diabetes in sub-Saharan Africa (SSA) and the number is projected to increase by 134% by 2045. ³. The prevalence of diabetes in the region stands at approximately 4.5% among those aged between 20-79 years. In 2021 alone, over 306,000 people under 60-years of age died due to diabetes in SSA³. It is estimated that each person with diabetes incurs approximately USD 547 per year on healthcare (both patient and health system direct costs) in SSA as of 2021.

105

Most cases of diabetes can be classified into two types: Type 1 diabetes (T1D) is most common in children and results from the destruction of insulin-producing beta cells, mostly by autoimmune mechanisms⁴. Type 2 diabetes (T2D) is a metabolic disorder characterised by insulin resistance and relative insulin deficiency and, although it can occur at any age, it is most common among adults⁵. T2D is linked to physical inactivity

and an unhealthy diet, and accounts for approximately 90% of all diabetes casesglobally⁶.

113

114 While regional estimates are available to support policy making, there is a need to 115 understand the country-specific disease burdens (national and sub-national) to inform 116 target policy at a local level that yields effective and economically efficient impact. 117 Unfortunately, existing estimates of country-specific diabetes burden are sparse in low 118 and lower middle-income settings, especially in SSA. This makes it difficult to identity 119 and implement appropriate targeted interventions that are feasible and affordable by 120 a given country considering the existing financial constraints of the health budgets. 121 Countries in SSA are starting to adopt health technology assessment (HTA) as a decision-making aid to identify and implement appropriate interventions while 122 123 maximizing value for money. Figure 1 illustrates the main steps involved in HTA 124 processes as adapted from Siegfried et al.⁷

125

126

127

128 Figure 1: The HTA process

129

HTA can be defined as a multidisciplinary process that uses explicit methods, often involving cost-effectiveness analysis, to determine the value of a health technology at different points in its lifecycle⁸. The HTA process typically starts with identifying relevant alternatives linked to a policy need (defining the decision space). This is then followed by the gathering and synthesis of various sources of evidence to arrive at an understanding of the relative value for money of the alternatives (the analysis or assessment step). There is then an appraisal of that evidence involving some form of

deliberative process against decision criteria, leading to the development of recommendations and the subsequent implementation of preferred options. Information gathered from implementation can be used to inform a future HTA. An important input into the conduct of HTA includes having credible estimates of disease burden, which will be important in informing key parameters in any cost-effectiveness model⁹.

143

Ghana has adopted the use of HTA to inform decision making within the health sector¹⁰. This commitment to evidence-informed priority setting has included the development and implementation of an HTA process guide, officially launched in December 2022¹¹. The Ghana Ministry of Health has indicated an interest in using HTA to inform decision making in diabetes management and prevention. Such an approach requires up-to date information about the current epidemiological and economic burden of diabetes in the country, which is currently unavailable¹².

151

To address this need, our study aims to undertake a scoping review of the peerreviewed literature to identify, map and estimate the burden of diabetes in Ghana, in terms of epidemiological distribution, health outcomes and economic consequences. It is anticipated this work will support optimising current NCD country policy, especially in relation to priority setting, as well inform the parameterisation of model-based analyses and highlight existing knowledge gaps to guide future research in this area.

- 158
- 159
- 160
- 161 Methods

162 Study design

163 We followed the Arksey and O'Malley framework for scoping reviews¹³. The framework consists of five stages which were followed: (i) identifying the research 164 question; (ii) identifying relevant studies; (iii) selecting appropriate studies; (iv) charting 165 166 and collating the data, and (v) summarising and reporting the results. The detailed 167 search protocol is available in Appendix 1. A study protocol is available although not 168 registered. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) was followed when reporting the 169 We examined the following aspects of burden: (1) epidemiological 170 results¹⁴. 171 distribution (incidence, prevalence, demographic distribution), (2) impact on health 172 outcomes (comorbidity or complications, health effects in disability adjusted life years (DALYs), guality adjusted life years (QALYs), mortality among others), and (3) 173 174 economic consequences (cost of care, loss of productivity, or out of pocket expenditure). 175

176

177 Eligibility criteria and study selection

A study was considered eligible for inclusion if it was published in a peer-reviewed journal and reported burden of disease in Ghana reflecting at least one of the three dimensions highlighted above. To ensure relevance, we only included studies published after 2009. All study designs were considered for inclusion without restrictions. There were also no restrictions on population, age or sex. Literature reporting only the qualitative experience of diabetic patients, and those assessing the relationship between socioeconomic status (SES), gender, and diabetes as a health 185 outcome were excluded. Studies published in languages other than English were also

186 excluded.

187

188

189 Information Sources

190 We searched the following electronic databases: Medline, Embase, Web of Science,

191 Scopus, Cochrane and African Index Medicus. The databases were searched on 4th

192 April 2021 following a systematic search strategy and a second search was done on

193 11th April 2023 to find all new articles that were published since the previous search.

194

195 Search strategy

We used two broad key terms ('Ghana' and 'diabetes') as well as similar derivatives, to identify the literature on the burden of disease. Search strings were tailored to the different databases (appendix 1).

199

200 Selection process

The retrieved articles from the search were listed and uploaded to Covidence software¹⁵ which was used to identify and remove duplicates, carry out the screening process and full-text review. A standard process of screening articles by title and abstract, followed by full-text reading was followed to assess eligibility to be included in this study. These steps were conducted by two independent researchers (MG & JK). Any discrepancies in the assessment decision were discussed and resolved by reaching a consensus between the two researchers.

209 Data charting

210 A data extraction sheet was used to extract relevant information from included studies 211 to allow us to map and highlight the main results and categorize findings in relation to 212 the research question. Information extracted included: author name, publication year. 213 form of diabetes burden being reported (such as prevalence, incidence, economic, 214 etc), study design, target population, geographical region, setting (urban or rural), and 215 main findings. 216 Our charting approach allowed us to interpret data from included studies according to 217 the forms of diabetes burden which we henceforth refer to as themes. The extracted 218 data was grouped under three themes (epidemiological, health outcomes, economic). 219 220 We used simple visualisation and basic descriptive analytical techniques to summarise

and report the scoping review findings.

222

223 Synthesis of results

We organised extracted data quantitatively following the themes. We produced tables and charts in relation to the following: the distribution of studies geographically and per type of burden, target groups; the research methods adopted, and health outcome measures used.

228

- 229
- 230 231

- 233
- 234
- 235 **Results**

The electronic database search yielded 1103 records after deduplication. Figure 2 below shows the PRISMA flowchart.

238

239 Figure 2: PRISMA flow chart

- 240
- 241
- 242

243 Study characteristics

A total of 36 studies fulfilled the inclusion criteria. Table 1 shows the characteristics of the included studies. All studies were observational studies with a majority having a cross-sectional design (n=30); there were four longitudinal studies^{16–19} and two case control studies^{20,21}. The longitudinal studies were based on either panel data or cohort study data.

249

All studies included adults (persons aged 18 and above) as their target population. Three studies focused on people above the age of 50 years^{22–24}. Forms of burden reported in the studies were prevalence (n=16), complications and comorbidity (n=17), incidence (n=2)^{18,19}, economic (n=1)²⁵ and mortality (n=1)¹⁷. All studies either reported on T2D or diabetes in general (without specifying the type).

255

Notably, most of the extracted studies were carried out in Ashanti region (n=14), followed by Volta (n=4)²⁶⁻²⁹, Greater Accra (n=3)³⁰⁻³², Central (n=1)³³, Northern (n=1)³⁴ and Brong Ahafo (n=1)³⁵. Four studies were carried out in more than one region while five studies took a whole country perspective^{22-24,36,37}. No study was carried out that specifically focused on the following regions: Upper East, Upper West, Western, and Eastern.

262

264 Table 1: Table of study characteristics

Author	Public ation year	Study design	Target population	Form of the Burden	Specific burden	Region
Gatimu et al. ²²	2016	Cross- sectional	Adults 50 years and above	Prevalence	Prevalence of diabetes and risk factors	National
Bawah et al. ²⁶	2019	Cross- sectional	Adults 30 years and above	Prevalence	Prevalence of T2D and pre-diabetes	Volta region
Kojo Anderson ³⁸	2017	Cross- sectional	Adults 18 years and above	Prevalence	Prevalence of T2D	Western Region, Central Region
Vuvor et al ³⁰	2011	Cross- sectional	Adults 36 years and above	Prevalence	Prevalence of diabetes and risk factors	Greater Accra
Chilunga et al ³⁹	2019	Cross sectional	Adults 25 -70 years with BMI<25kg/m2	Prevalence	Prevalence of T2D	Ashanti region
Gato et al ³³	2017	Cross- sectional	Adults 18 years and above	Prevalence	Prevalence of diabetes	Central Region
Yorke et al ²³	2020	Cross- sectional	Adults 50 years and above	Prevalence	Prevalence of diabetes	National
Agyemang et al ⁴⁰	2016	Cross sectional	Adults 25 -70 years	Prevalence	Prevalence of T2D and Obesity	Ashanti region
Tyrovolas et al ³⁶	2015	Cross- sectional	Adults 18 years and above	Prevalence	Prevalence of diabetes	National
Annani- Akollor et al ⁴¹	2019	Cross- sectional	Adults 18 years and above	Complicatio ns	Complications of T2D: Macrovascular, microvascular, neuropathy, nephropathy, retinopathy, sexual dysfunction, DKA, hypoglycemia	Ashanti region
Hayfron- Benjamin et al ³⁷	2019	Cross- sectional	Adults above 25 years with T2D	Complicatio ns	Complications of T2D: Macrovascular, microvascular, coronary artery disease, nephropathy, retinopathy, PAD, stroke	National
Nsiah et al ⁴²	2015	Cross- sectional	Adults 20 - 80 years with T2D	Complicatio ns	Prevalence of comorbidities and risk factors (Metabolic Syndrome, hypertension, dyslipidemia)	Ashanti region
Mogre et al ³⁴	2014	Cross- sectional	Adults 18 years and above with T2D	Comorbiditi es	Prevalence of MetS among diabetic patients	Northern region

Agyemang- Yeboah et al ⁴³	2019	Cross- sectional	Patients with diabetes	Comorbiditi es	Prevalence of MetS among diabetic patients	Ashanti Region
Antwi- Bafour et al ²⁰	2016	case- control	Patients with T2D	Comorbiditi es	Prevalence of anaemia among diabetics	Not mentioned
Akpalu et al ³¹	2018	Cross- sectional	Adults 30 -65 years with T2D	Comorbiditi es	Prevalence of depression among T2D patients	Greater Accra
Sarfo et al ¹⁶	2018	Longitudi nal (Cohort)	Adults 18 years and above	Comorbiditi es	Prevalence of stroke among diabetics	Eastern, Ashanti, Northern Regions
Osei- Yeboah et al ²⁷	2017	Cross- sectional	Patients with T2D	Comorbiditi es	Prevalence of MetS among diabetic patients	Volta region
Opare-Addo et al ⁴⁴	2020	Cross- sectional	Adults 18 years and above	Comorbiditi es	Prevalence of hypertension among diabetics	Ashanti region
Sarfo- Kantanka et al ¹⁷	2016	Longitudi nal (panel)	Patients with T2D admitted to hospital	Mortality	Mortality trend for 31 years	Ashanti region
Lartey & Aikins ⁴⁵	2018	Cross- sectional	Patients with diabetes attending Diabetic clinic	Comorbiditi es	Prevalence of visual impairment among diabetics	Ashanti region
Nimako et al ³²	2013	Cross- sectional	Patients with T2D attending General Hospital	Prevalence and comorbiditi es	Prevalence of diabetes and hypertension	Greater Accra Region
Atosona & Larbie ⁴⁶	2019	Cross- sectional	Patients with T2D at the outpatient clinic	Complicatio ns	Prevalence of diabetic foot	Greater Accra, Ashanti, and Northern regions
Sarfo- Kantanka et al ¹⁸	2019	Longitudi nal (Cohort)	Patients with T2D at the diabetes clinic	Incidence	Incidence rate of diabetes-related LLA	Ashanti region
Sarfo- Kantanka et al ¹⁹	2018	Longitudi nal (panel)	Patients with T2D at the diabetes clinic	Incidence	Trend of incidence and predictors of diabetic foot	Ashanti region
Quaye et al ²⁵	2015	Cross- sectional	Patients with diabetes	Economic	Annual costs	Greater Accra, Ashanti, Eastern Regions
Tarekegne et al ²⁴	2018	Cross- sectional	Adults 50 years or above	Prevalence	Prevalence of DM	National
Cook-Huynh et al ⁴⁷	2012	Cross- sectional	Adults 18 years or above	Prevalence	Prevalence of DM	Ashanti region
Sarfo- Kantanka et al ⁴⁸	2014	Cross- sectional	Adults 18 years or above	Prevalence	Prevalence of DM	Ashanti region
Agbogli et al ⁴⁹	2017	Cross- sectional	Adults 18 years or above	Prevalence	Prevalence of DM	Ashanti region
Quaicoe et al ²¹	2017	case- control	Adults aged 18-64+ years	Prevalence	Prevalence of DM	Ashanti region

Odame Anto et al ⁵⁰	2021	Cross- sectional	Adults aged 30 years or above	Complicatio ns	Prevalence of MetS among diabetic patients	Ashanti region
Abagre et al ³⁵	2022	Cross- sectional	Adults aged 30-79 years old	Complicatio ns	Prevalence of MetS among diabetic patients	Brong-Ahafo region
Abu et al ⁵¹	2022	Cross- sectional	Adults aged 38-85 years old	Complicatio ns	Prevalence of dry eye disease among T2D patients	Central region
Tuglo et al ²⁸	2022	Cross- sectional	Adults	Complicatio ns	Prevalence of diabetic ulcers	Volta region
Ellahi et al ²⁹	2022	Cross- sectional	Adults 18 years or above	Prevalence	Prevalence of DM	Volta region

265

266

267 **Publication trend**

268 The number of publications by year (figure 3) broadly shows an increasing trend

between 2009 and 2019 and a dip after 2019. Most articles were published in 2019

- 270 (n=7) before a decline in 2020.
- 271 Figure 3: Number of studies/publications per year
- 272

273 Forms of the burden of diabetes (themes) in Ghana

Our charting analysis mapped the studies across three main themes: epidemiological, health outcomes, and economic. The epidemiological theme included prevalence of diabetes (n=16) and incidence (n=2). The health outcomes theme (n=17) was comprised of studies reporting on complications (n=6), comorbidities (n=10) and mortality (n=1). Finally, the economic theme (n=1) included costs of diabetes services. Some studies reported both the prevalence of diabetes and comorbidities (n=1). Figure 4 demonstrates the percentage of included studies by theme.

281

282 Figure 4: Percentage of included studies by form of burden (theme)

283

285 Frequency of theme by region

286	The Ashanti and Greater Accra regions were the most frequently targeted regions
287	across all studies, with reported studies covering all the three themes. We found data
288	on both prevalence and outcomes in the Volta and Central regions. The Western
289	region had only prevalence data reported while Brong-Ahafo and Northern regions
290	had studies that reported on health outcomes only. No data was found for the
291	remaining regions. Five studies were conducted using a nationally representative
292	sample. Figure 5 shows the frequency of themes by region from all included studies
293	(including single and multi-region studies).
294	
295 296 297 298	Figure 5: Frequency of burden of disease themes reported by region
299 300 301 302 303	
304	1) Epidemiological burden
305	The reported prevalence of diabetes at national level in Ghana ranged between
306	$2.80\%^{23,24} - 3.95\%^{22}$. At sub-national levels, the Western region reported the highest
307	prevalence of diabetes: 39.80% among those 18 years and older38. The second
308	highest prevalence of diabetes (25.20%) was reported in Ashanti region ⁴⁸ followed by
309	24.60% in the Central region ³⁸ .
310	
311	In the national studies, the prevalence of diabetes was generally higher in women in
312	comparison to men ^{22,24,36} . Regionally, the prevalence of diabetes was also notably

- higher in females compared to males, with the exception of the Ashanti region^{26,30,48,49}.
- 314 Urban areas had a higher prevalence than rural areas^{22–24,39,40}.
- 315
- 316 Prevalence studies only covered five of the ten administrative regions: Ashanti (n=6),
- Volta (n=3), Central (n=2), Greater Accra (n=2), and Western (n=1) regions. There
- 318 were four national-level studies. The majority of prevalence studies were focused on
- adults aged 18 years old and above (n=7), followed by adults 50 years and above
- 320 (n=4). Table 2 shows the summary of studies that reported the prevalence of diabetes
- in Ghana.
- 322 323

Table 2: Summary of findings of studies reporting the prevalence of diabetes in Ghana

Author and	nd Begion Age groups Sample Diagnostic			Preval	ence % (9	5% CI)			
Year	negion	Age groups	size	size criteria		Male	Female	Urban	Rural
Tyrovolas et al.		Adults 50 years			3.9 (2.4				
2015 ³⁶	National	or above	52,946	Self-reported	- 6.2)	NR	NR	NR	NR
Cotimu at al					4.0 /0.4	1.7	00/17	6.2	2.3
2016 ²²	National	Adults 50 years	1 080	Self-reported	4.0 (3.4	(1.3-	2.2 (1.7	(4.8 -	(1./-
Tarekegne et al	National	Adults 50 years	4,003	Sell-reported	- 4.0)	2.5)	- 2.0)	0.0)	0.0)
2018	National	or above	4,289	Self-reported	2.8	2.5	3.3	4.7	1.5
Yorke et al.		Adults 50 years	,	•	2.8 (2.0				
2020 ²³	National	or above	3,350	Self-reported	- 3·9)	2.8	2.8	4.4	1.3
									7.7
Cook-Huynh et	A . I	Adults 18 years	000	WHO diagnostic					(5.0-
al. 2012*/	Asnanti	or above	326	Criteria	NR	NR	NR	NK	11.0)
				criteria (fasting					
Sarfo-Kantanka		Adults 18 years		blood glucose					
et al. 2014 ⁴⁸	Ashanti	or above	1,292	only)	25.2	25.7	24.4	NR	NR
Agyemang et al.		Adults aged 25-		WHO diagnostic					
2016 ⁴⁰	Ashanti	70 years old	820	criteria	NR	NR	NR	8.3	5.7
				WHO diagnostic					
Aaboali et al		Adulto 19 vooro		criteria (fasting					
2017 ⁴⁹	Ashanti	or above	113	only)	35	59	25	NB	NB
2017	Ashanti		110	Only)	0.0	5.5	2.5		
Chillunga et al.		Adults aged 25-		WHO diagnostic					
2019 ³⁹	Ashanti	70 years old	1,436	criteria	5.7	NR	NR	8.8	3.6
Opare-Addo et	Ashanti	Adults 18 years	604	Colf reported	E 4				
al. 202011	Asnanti	or above	684	Self-reported	5.4	NK	INR	NR	INR
				and FBG					
				determinations					
Vuvor et al.	Greater	Adults aged 36-		(level not					
2011 ³⁰	Accra	95 years old	597	mentioned)	3.9	3.5	4.2	NR	NR
Bawah et al.	Greater								
2019 ²⁶	Accra	NA	130	HBA1C ≥ 6.5%	5.4	NR	NR	NR	NR

				American Diabetes					
Quaicoe et al		Adults aged 18-		Association					
2017 ²¹	Volta	64+ years	226	Criteria 2010	8.6	NR	NR	NR	NR
				American					
				Diabetes					
Bawah et al.		Adults 30 years		Association					
2019 ²⁶	Volta	or above	202	criteria 2010	6.9	6.5	7.1	NR	NR
Ellahi et al.		Adults 18 and		WHO diagnostic					
2022 ²⁹	Volta	above	850	criteria	4.4	NR	NR	NR	NR
Gato et al.		Adults 18-80							
2017 ³³	Central	years	482	Self-reported	8.3	NR	NR	NR	NR
				Fasting Blood					
	Central			Glucose ≥					
Anderson et al.	and	Adults 18 years		126mg/dl (7	24.6 to				
2017 ³⁸	Western	or above	976	mmol/L)	39.8	NR	NR	NR	NR

324325

326

327 328

2) Common complications and comorbidity

NR-Not reported

Seven complications and/or comorbidities were identified in this review (figure 6). Studies on complications and comorbidities were only found for six of the ten administrative regions: Ashanti (n=9), Northern (n=2), Greater Accra (n=2), Volta (n=2), Brong-Ahafo (n=1) and Central (n=1). In addition, a multi-region (sub-national) study combining populations from Greater Accra, Ashanti, and Northern regions (n=1) was identified along with a study that did not specify location (n=1). No study was conducted at the national level for complications and comorbidities of diabetes.

336

The most common complication types reported in the included studies were metabolic syndrome (n=6), followed by macrovascular and/or microvascular complications (n=4) and diabetic foot and/or lower extremity amputation (n=4), hypertension (n=3), anaemia (n=1), depression (n=1) and dry eye disease (n=1). Figure 6 shows the number of studies per region by complication type.

343 *Figure 6: Number of studies per region by complication type*

344

The prevalence of micro and macrovascular complications among people with diabetes varied: coronary artery disease (CAD) ranged between 18.4%³⁷ and 31.8%⁴¹, peripheral arterial disease (PAD) between 11.2%³⁷ and 19%¹⁷, neuropathy between 18.3%¹⁷ and 20.8%⁴¹, nephropathy between 12.5%⁴¹ and 44.70%¹⁷, and retinopathy between 6.5%⁴¹ and 13.7%⁴⁵.

350

351 Six studies assessed the prevalence of metabolic syndrome in diabetic patients in 352 Ghana in the regions of Ashanti, Northern, Volta and Brong-Ahafo. The highest 353 prevalence rate of metabolic syndrome was reported in the Ashanti region, with 354 prevalence ranging between 42%⁵⁰ and 90%⁴³. This was followed by Brong-Ahafo with 68.6%³⁵, the Volta region with 43.8%²⁷, and Northern region with 24%³⁴. The 355 356 prevalence of hypertension among diabetic patients was assessed in three studies 357 that included populations of Ashanti, Northern, and Greater Accra regions. The highest 358 prevalence of hypertension as a complication/ comorbidity of diabetes was reported in 359 the Greater Accra region (36.60%). This was followed by the Northern region (21%), 360 and the Ashanti region (1.61%).

361

Diabetic foot disorders and lower extremity amputation were assessed in four studies. Two longitudinal studies were conducted in Komfo Anokye Teaching Hospital in the Ashanti region reporting a mean incidence of foot disorders and average incidence rate of diabetes related amputations of 8.39% (5.27% males and 3.12% females)¹⁹ and 2.4 (95% Cl:1.84–5.61) per 1000 follow-up years¹⁸ respectively among diabetes patients. The third study was a cross-sectional study that randomly selected patients

from the outpatient diabetes clinics of three tertiary hospitals from Greater Accra, Ashanti, and Northern regions and reported a prevalence of 11% for diabetic foot ulcers and 3% for lower extremity amputations. The fourth study was also cross sectional in Volta region focusing on diabetic foot ulcers²⁸.

372

One study assessed the prevalence of depression among diabetic patients at the National Diabetes Management and Research Centre, Korle Bu Teaching Hospital in Greater Accra region³¹. The study reported that 31% of diabetic patients suffered from depression in 2018. Finally, a case-control study reported that 84.8 % of patients with diabetes had haemoglobin concentrations that were significantly lower than the general population. Table 3 provides a summary of findings stratified by complication type and geographic region in Ghana.

- 380
- 381

Table 3: Summary of studies that reported on the prevalence of complications/comorbidities for
 diabetics in Ghana

Metabolic syndrome								
Region	Author and date	Target populat ion	Context	Sampl e size	Diagnostic criteria	Main results		
Ashanti	Nsiah et al. 2015 ⁴²	Adults aged 20-86 years old	T2D patients attending the Diabetic Centre of the Komfo Anokye Teaching Hospital in Kumasi, Ashanti region	150	NCEP/ATP III	The overall percentage prevalence of MetS was 58%. Males had a lower percentage prevalence of 22.99%, compared to a higher percentage prevalence of 77.01% for females.		
Ashanti	Agyema ng- Yeboah et al. 2019 ⁴³	NA	Diabetic patients attending the Diabetic Clinic of the Komfo Anokye Teaching Hospital (KATH) Kumasi, Ashanti Region	405	NCEP/ATP III	The prevalence of metabolic syndrome observed among the study population was 90.6%. However, the MS condition among female participants (94.1%) was significantly higher than that of their male counterparts (76.5%) with p<0.0001.		

Ashanti	Odame Anto et al 2021 ⁵⁰	Adults 30 years or above	Diabetic patients attending the Diabetic Clinic of the Komfo Anokye Teaching Hospital (KATH) Kumasi, Ashanti Region	241	NCEP/ATP III	The prevalence of metabolic syndrome observed among the study population was 42.7%. Among females, 52.8% (75/142) had MetS
Norther n	Mogres et al. 2014 ³⁴	NA	Patients diagnosed with T2D receiving care from an outpatient clinic of the Tamale Teaching Hospital	200	IDF Consensus	The prevalence of MetS was 24.0% (n=48). The prevalence was higher in women (27.3%, n= 42) compared to men (13.0%, n=6). The commonest occurring components of the MetS included abdominal obesity (77.0%) and elevated FPG (77.0%) denoting uncontrolled diabetes. The prevalence of elevated BP was found to be 44.0%(n=88) and was higher in men (56.5%) than in women (40.3%).
Volta	Osei- Yeboah et al. 2017 ²⁷	Adults aged 25-86 years old	Diabetic patients attending diabetic management clinic at the Ho Municipal Hospital in the Volta Region	162	NCEP-ATP III, the WHO, and the IDF criteria	The overall prevalence of metabolic syndrome among the study population was 43.83%, 63.58%, and 69.14% using the NCEP-ATP III, the WHO, and the IDF criteria, respectively. The most predominant component among the study population was high blood pressure using the NCEP-ATP III (108 (66.67%)) and WHO (102 (62.96)) criteria and abdominal obesity (112 (69.14%)) for IDF criteria. High blood pressure was the most prevalent component among the males while abdominal obesity was the principal component among the females.
Brong- Ahafo	Abagre et al ³⁵	Adults aged 30-79 years old	Diabetic patients enrolled at selected diabetes clinics (Dormaa Presbyterian and Berekum Holy Family Hospitals)	430	NCEP-ATP III, the WHO criteria	The prevalence of MS was 68.6% (95% CI: 64.0–72.8), higher among women (76.3%, 95% CI: 70.6–81.2) than men (58.0%, 95% CI: 35.0–49.4) and in the 50–59-year age group (32.1%)
Diabetic f	oot and or	lower ext	remity amputations			
Region	Author and date	Target populat ion	Context	Sampl e size	Diagnostic criteria	Main results

Ashanti	Sarfo- Kantank a et al. 2018 ¹⁹	NA	Patients enrolled with the diabetes clinic of Komfo Anokye Teaching Hospital, a tertiary hospital in Kumasi.	7,383	Diabetic foot disorders include foot ulcers, PADs, and gangrene	The mean incidence of foot disorders was 8.39% (5.27% males and 3.12% females). An increase in the incidence of diabetic foot ranging from 3.25% in 2005 to 12.57% in 2016, p < 0.001, was determined.
Ashanti	Sarfo- Kantank a et al. 2019 ¹⁸	NA	Patients enrolled with the diabetes clinic of Komfo Anokye Teaching Hospital, a tertiary hospital in Kumasi.	3,143	The global lower extremity amputation study	The average incidence rate of diabetes-related amputation was 2.4 (95% CI:1.84–5.61) per 1000 follow-up years: increasing from 0.6% (95% CI:0.21–2.21) per 1000 follow-up years in 2010 to 10.9% (95% CI:6.22–12.44) per 1000 follow-up years in 2015.
Greater Accra, Ashanti, and Norther n	Atosona et al. 2019 ⁴⁶	NA	Randomly selected patients from the outpatient diabetes clinics of three tertiary hospitals namely: Korle Bu Teaching Hospital, Komfo Anokye Teaching Hospital, and Tamale Teaching Hospital	100	Internationa I Consensus on Diabetic Foot	Among the patients, 11% had diabetic foot ulcers whilst 3% had lower extremity amputations.
Volta	Tuglo et al ²⁸	NA	Diabetic patients attending selected diabetic clinics (Ho Teaching Hospital, Ho Municipal Hospital, Hohoe Municipal Hospital, and Margret Marquart Catholic Hospital)	473	Not mentioned	Foot ulcers were observed in 41(8.7%) diabetic patients
Hyperten	sion	Townst				
Region	and date	populat ion	Context	Sampl e size	Diagnostic criteria	Main results
Ashanti	Opare- Addo et al. 2020 ⁴⁴	Adults 18 years or above	Rural districts in the Ashanti region of Ghana (Amansie West and Offinso North, Asante Akim South and Ahafo Ano South)	684	NA	The prevalence of hypertension was 111 (16.23%). Diabetes was prevalent in 37 (5.41%) of the study participants; thus, the prevalence of hypertension and diabetes was 137 (20.02%). The prevalence of diabetes and hypertension as a comorbidity was 11 (1.61%).

Greater Accra	Nimako et al. 2018 ³²	Adults 18 years or above	Patients attending Tema General Hospital (TGH) in the Greater Accra Region	1,527	NA	The prevalence of multimorbidity was 38.8%, and around half (48.6%) of the patients with multimorbidity were aged between 18–59 years old. The most common combination of conditions was hypertension and diabetes mellitus (36.6%), hypertension and musculoskeletal conditions (19.9%), and hypertension and other cardiovascular conditions (11.4%).
Norther n	Mogre et al. 2014 ³⁴	NA	Previously diagnosed diabetes mellitus patients attending a diabetic clinic at the Tamale Teaching Hospital	100		In general, 7.0% of the participants were underweight and 32.0% were overweight or obese. 21% of the studied participants were hypertensive. Prevalence of hyperglycaemia was higher among patients aged ≤40 years (88.9% vs. 75.8%)
Micro and	l Macro va	scular con	nplications of DM			
Region	Author and date	Target populat ion	Context	Sampl e size	Diagnostic criteria	Main results
	Sarfo- Kantank		Diabetes admissions at			Two thousand three hundred and ninety-two (21.0%) diabetic admissions were due to end-organ complications. Of these, 503 (18.7%) had peripheral vascular diseases, 377(14.0%) had coronary
Ashanti	a et al. 2016 ¹⁷	NA	Komfo Anokye Teaching Hospital (KATH) in Kumasi	11,414	NA	artery diseases, peripheral neuropathic ulcers (26.4%), 529 nephropathies (18.3%), 282 (10.5%) cerebrovascular diseases. Again 1207(44.8%) had nephropathy and 325(12.0) had peripheral neuropathic ulcers

						representing a 40% decline in a decade.
						The prevalence of
Ashanti	Annani- Akollor et al. 2019 ⁴¹	Adults 18 years or above	Ghanian T2DM adults at Kmofo Anokye Teaching hospital (KATH)	1,600	NA	macrovascular and microvascular complications of T2DM was 31.8% and 35.3% respectively. The prevalence of neuropathy, nephropathy, retinopathy, sexual dysfunction, diabetic ketoacidosis (DKA), and hypoglycemia were 20.8%, 12.5%, 6.5%, 3.8%, 2.0%, and 0.8% respectively. The prevalence of single, double, and multiple complications are 59%, 16.3%, and 1.5%
Ashanti	Hayfron - Benjami n et al. 2019 ³⁷	Adults aged 25-70 years old	Ghanaian adult T2DM population (206 in Ghana) aged >25 years	650	Nephropath y based on report from Joint Committee on Diabetic Nephropath y; PAD based on AHA 2012; coronary artery disease (CAD) was assessed using the WHO Rose angina questionnai re; Retinopath y, possible myocardial infarction, angina, and stroker were based on questionnai re	Microvascular and macrovascular complications rates were higher in non- migrant Ghanaians than in migrant Ghanaians (nephropathy 32.0% vs. 19.8%; PAD 11.2% vs. 3.4%; CAD 18.4% vs. 8.3%; and stroke 14.5% vs. 5.6%), except for self-reported retinopathy (11.0% vs. 21.6%)
Other (De	pression a	and Anaem	na)			
Region	and date	populat	Context	Sampl e size	Diagnostic criteria	Main results

Greater Accra	Akpalu et al. 2018 ³¹	Adults aged 30-65 years old	Patients recruited at the National Diabetes Management and Research Centre, Korle Bu Teaching Hospital, Accra, Ghana	400	Patient Health Questionna ire-9 (PHQ- 9)	The prevalence of depression was 31.3% among T2DM patients. Female gender, being unmarried, frequent intake of alcohol, previous smoking status and insulin use were associated with increased odds of depression, whereas being educated above basic school level was associated with decreased odds of depression.
NA	Antwi- Bafour et al. 2016 ²⁰	NA	50 control and 50 diabetic cases	100	NA	Of the patients with diabetes, 84.8 % had a haemoglobin concentration (incidence) that was significantly less (males 11.16 ± 1.83 and females 10.41 ± 1.49) than the controls (males 14.25 ± 1.78 and females 12.53 ± 1.14).
Dry eye d	Dry eye disease (DED)					
Region	Author and date	Target populat ion	Context	Sampl e size	Diagnostic criteria	Main results
					Diabetes was based on the	

387 3) Economic burden

388 Only one study reported on the economic burden of diabetes, assessing the financial 389 cost of diabetes management (from a provider perspective) in cocoa clinics in Greater Accra, Ashanti, and Eastern regions²⁵. Bottom-up micro costing was used to 390 391 estimate the costs. The mean annual financial cost of managing one diabetic case at 392 the outpatient clinics was estimated at GHS 540.3 (2021 US \$194.09). The costs 393 were broken down between service costs (22%) and direct medical costs (78%). 394 Drug costs accounted for 71% of the direct medical costs. The cost of hospitalization 395 per patient-day at clinics was estimated at GHS 32.78 (2021 US\$ 11.78). The total 396 annual financial cost of diabetes management accounted for 8% of the total annual 397 expenditure of the clinics.

398

399 **Discussion**

400

401 This scoping review reveals that there is paucity of literature on the burden of diabetes 402 in Ghana. We divided the burden into three forms (themes): epidemiological burden 403 (prevalence and incidence of diabetes); health outcomes (mortality, diabetes 404 complications and comorbidity); and economic burden (cost of illness to the patients 405 and health system). Most of the existing Ghana centred literature focuses on the 406 prevalence of diabetes, including its complications and comorbidities. There is sparse 407 data on the economic burden of the disease in Ghana. This review did not find any 408 study that used generic health outcome measures such as DALYs or QALYs to 409 estimate the diabetes burden. The existing literature is skewed towards a few 410 particularly Ashanti, leaving some geographical regions of Ghana without any 411 reporting (including, for example, Upper East, and Upper West regions).

412

413 Out of the identified studies, 36 studies focused on the prevalence of diabetes and 414 associated complications; only one study reported economic-related findings, 415 indicating a need for more costing studies, important also to support the development 416 of economic evaluations. All diabetes studies were either on T2D or referred to 417 diabetes generally without specifying the type. No studies explicitly targeting T1D were 418 found. Our findings suggest important gaps in the Ghanaian scientific literature, and 419 the need for further research to characterise the burden of diabetes in the country.

420

421 The national prevalence of diabetes in Ghana was reported in the studies to be 422 between 2.80% and 3.95%^{22–24}. The reported national prevalence of diabetes (2.8-%) to 3.95%) is below the sub-Saharan Africa regional average of 4.5%³. However, 423 424 studies that reported on prevalence sub-nationally provided substantially higher 425 estimates; for example in Western, Ashanti, and Central regions, diabetes prevalence 426 was reported to be 39.8%³⁸, 25.2%⁴⁸ 24.6%³⁸ respectively. Despite Ghana having 427 seemingly lower levels of prevalence of diabetes at a national level in comparison to 428 the SSA average, there remains an urgent need to put in place interventions to 429 address these regional differences, and stem any further anticipated rise in disease 430 burden³. The within-country regional variations call for a more targeted approach when 431 implementing diabetes interventions.

432

Diabetes in Ghana was found to be more prevalent among women compared to men^{22–24,30}. This is in line with the recently reported prevalence in SSA by International Diabetes Ferderation³ and other studies^{52,53}. Systematic reviews have found that women were more likely to have diabetes [odds ratio1.65 (95% CI 1.43, 1.91)], and

437 less likely to have glycaemic control than men. It has been argued that relative 438 differences in physical activity between men and women may be a factor ⁵². There was 439 an urban-rural divide in the prevalence of diabetes in Ghana where urban areas were 440 reported to have a higher prevalence compared to the rural areas^{22–24,39,40}. This finding 441 is consistent with other studies done in India (prevalence of 15.0% and 19.0% in rural and urban areas respectively in the year 2015-2019)⁵⁴, and Myanmar (prevalence of 442 443 7.1% and 12.1% in rural and urban areas respectively in year 2013/2014)⁵⁵. This has 444 been attributed to differences in dietary habits and levels of physical activity between 445 urban and rural areas.

446

Hypertension and metabolic syndrome were among the most prevalent comorbidities 447 448 of diabetic patients in Ghana. Hypertension prevalence was highest in the Greater 449 Accra region (36.60% of diabetic patients)³². Metabolic syndrome is a cluster of 450 conditions that include combinations of hypertension, central obesity, insulin 451 resistance, or atherogenic dyslipidaemia⁵⁶. The two main risk factors of metabolic 452 syndrome are the increase in consumption of high-calorie, low-fibre fast food and a 453 decrease in physical activity which may be linked to mechanized transportation and a 454 sedentary form of leisure time activities. These are the same established behavioural 455 risk factors for diabetes and obesity that are typically predominant in urban areas. 456 Without treatment, diabetes, high blood pressure, and obesity can damage blood 457 vessels, leading to micro and macrovascular complications, which can occur 458 concurrently. The highest prevalence of metabolic syndrome was reported in the 459 Ashanti region where it was reported to range from 59 to 90% among diabetic 460 patients^{42,43}.

461

462 Our results also align well with the Institute of Health Metrics and Evaluation (IHME) 463 assessment of the trend of disease burden in Ghana. Notably, in the year 2000, 464 diabetes was not within the top 10 disease groups in terms of burden of disease. By 465 2019 diabetes had moved up to eighth position and was linked to more than 2,157 466 DALYs per 100,000 people. Cardiovascular diseases, which are often complications 467 of diabetes and metabolic syndrome, were ranked first in 2019, causing an estimated 6,216 DALYs per 100,000 population⁵⁷. This evidence points to the rapid rise of 468 469 diabetes, cardiovascular diseases and other NCDs, linked with common genetic, 470 metabolic, and behavioural risk factors. The ranking also suggests that there is a 471 gradual receding of communicable diseases in the last 2 decades compared to NCDs. Combined, diabetes and cardiovascular diseases is linked to more than 8,300 DALYs 472 473 per 100,000 people in Ghana, representing a significant proportion (12.6%) of the total 474 disease burden in the country⁵⁷.

475

Literature on the economic burden of diabetes in Ghana is very limited with only one study reporting on the burden. This finding is in line with the study by Hollingworth et al. (2020) that looked at available localised information to support HTA in Ghana noting that there were few accessible data sources for costs and resource utilisation generally⁹. Relatedly, we found a falling off in the number of studies published after 2019, although that may reflect the impact of the COVID-19 pandemic on research and publication choices within the country and globally

483

484 **Policy implications**

485 Our review provides some evidence of the situation in Ghana, and associated 486 information gaps, consistent with studies focused on other African countries⁵⁸. We find that Ghana is faced with a rising prevalence of diabetes and cardiovascular disorders with potentially important regional differences in disease burden. To address this challenge, there is a need to understand the contextual factors driving the rise and the likely causes behind the existing regional variations in the reported burden.

491

492 Unlike communicable diseases, NCDs are usually chronic in nature and exhibit a 493 progressive disease course. A person may develop more than one NCD at a time, 494 fuelling disease progression even further^{59,60}. NCDs constitute a long-term burden not 495 only to the patient and carers, but also to the healthcare system and the economy. 496 Currently, NCDs do not attract as much development assistance funds as 497 communicable diseases such as HIV, tuberculosis and malaria, and Ghana which is 498 currently classed as a middle-income country is no longer eligible for some 499 development assistance grants. Therefore, there is a need for Ghana, as well as 500 countries, to ensure that available domestic resources for health can be used as 501 efficiently as possible to address this growing burden. Typically, this involves 502 operationalising and institutionalising proven priority-setting processes.

503

504 HTA can be applied to both treatments for NCDs, such as insulin analogues for the 505 management of diabetes, and also to interventions that seek to reduce disease 506 prevalence and incidence in the first place. On the latter this could include identifying 507 cost-effective interventions to tackle the common NCD risk factors shared by diabetes 508 and other comorbidities such as cardiovascular diseases, obesity, or metabolic 509 syndrome to reduce the burden of diabetes in the country. This may require stronger 510 prevention approaches⁶¹ targeting high risk individuals or whole populations, which aim to increase physical activity and promote a healthy diet while also monitoring 511

512 obesity levels. This would be especially important in urban communities in Ghana 513 where the burden appears higher than the national average.

514

515 Institutionalising HTA for localised decision making requires that relevant data sources 516 are available, and that may mean developing a strategy to address key informational 517 gaps as part of building any HTA system. There was a scarcity of evidence on the 518 economic burden of diabetes in Ghana, and there were no estimates available of the 519 burden of disease for a number of regions. A key issue is the lack of diabetes incidence 520 data: as previously reported⁹, the Ghana Health and Demographic Surveillance 521 Systems (GHDSS) could potentially be a valuable source of such information, and the 522 Ministry of Health and other stakeholders could consider enhancing their operation in 523 this space, for diabetes as well as other NCDs. It may also mean better leveraging 524 already existing data sources, such as from the National Health Insurance Scheme⁹.

525

526 Limitations

The scoping review did not include an appraisal of the quality of included studies. According to Arksey and O'Malley's (2005) framework, the study quality is not assessed during scoping reviews, but rather in systematic reviews that aim to address specific questions relating to feasibility, appropriateness, meaningfulness or effectiveness of a certain treatment or practice. The exploratory nature of our study about the burden of diabetes made the scoping review methodology suitable.

533

534 The included studies used different diagnostic criteria for diabetes including WHI

535 criteria, American Diabetes Association and self-reporting. Self-reported diabetes

536 can be misleading because some of the people involved in the studies may not have

537 received a diagnosis and thus report as not having the diabetes. This may have

538 underestimated the prevalence of diabetes in the country or region.

539

540 This study has used an older geographical classification system for the administrative 541 regions in Ghana. The sub-national regions of Ghana constitute the first level of 542 subnational government administration within the country. From 1987, Ghana had ten 543 officially established regional boundaries. In 2018, a referendum on the creation of six 544 new regions was held and the overall number were later increased to 16. We used the 545 older system of 10 regions based on the available literature which mostly reported 546 within that classification system. However, we expect that there would be no 547 substantial differences had the newer system been applied, since all new regional divisions stem from the partitioning of regions where no studies were found (e.g. Brong 548 549 Ahafo and Northern regions).

550

551 Conclusion

552

Ghana is faced with a considerable burden of diabetes which varies by geographical 553 554 region and setting (rural/urban). It is urgent to tackle the growing challenge to mitigate 555 the likely enormous burden and cost of the disease. Despite the existing regional 556 variation of the burden of diabetes, there is a paucity of literature in some regions (for 557 example Eastern, Western, Upper East, Upper West, and Brong Ahafo). There is 558 therefore a need for further research to understand the burden (epidemiological, health 559 outcomes and economic) of diabetes in these regions in order to inform the NCD 560 prevention and management policies in the country.

- 562
- 563

564 **Declaration**

565

566 Ethics approval and consent to participate

- 567 The study utilised secondary data/literature that is publicly available and did not use 568 any personal or private data.
- 569

570 **Consent for publication**

- 571 Not applicable
- 572

573 Availability of data and materials

- 574 The extracted data analysed during the current study is available from the
- 575 corresponding author upon reasonable request.
- 576

577 Competing interests

- 578 The authors declare that they have no competing interests
- 579
- 580 Funding
- 581 This study was supported by the International Decision Support Initiative, which is
- 582 funded by the Bill and Melinda Gates Foundation (OPP1202541).
- 507
- 583 584

585 Role of funder

- 586 The funder of the study had no role in study design, data collection, data analysis,
- 587 data interpretation, or writing of the report. Funders supported researcher time and
- 588 other resources (such as computer equipment) needed for completion of the study.
- 589
- 590

591 Authors contributions

- 592 Conceptualisation: MG, JK, FR
- 593 Developing and carrying out search strategy: MG
- 594 Screening of articles: MG, JK
- 595 Data extraction, and quality assessment: MG, JK
- 596 Validation: STR
- 597 Data curation and analysis: MG, JK
- 598 Funding acquisition: FR
- 599 Methodology: MG, JK,
- 600 Project administration: MG, JK, IA, GG, RO, EAK
- 601 Supervision: FR, AV
- 602 Writing original draft: MG, JK,
- 603 writing review & editing: MG, JK, RO, EAK, GG, IA, FR, STR, AV
- 604
- 605 Acknowledgements
- 606 None

607		
607		
608		
609	Defe	
610	Rete	rences World Loolth Organization, Negacine musicable disconce, Martality, Dublished
611	Ι.	World Health Organization. Noncommunicable diseases: Mortality. Published
612		2022. Accessed December 28, 2022.
613		nttps://www.wno.int/data/gno/data/tnemes/topics/topic-details/GHU/ncd-
614	0	mortality
615	2.	International Diabetes Federation. Facts & figures. Published December 9,
616		2021. Accessed December 28, 2022. https://www.idf.org/aboutdiabetes/what-
01/ (10	0	Is-olabeles/lacis-ligures.html
618	3.	International Diabetes Federation. IDF Diabetes Atlas / Tenth Edition.; 2021.
619	4	Accessed December 29, 2022. https://diabetesatias.org/
620	4.	World Health Organization. ICD-11 for Mortality and Morbiolity Statistics: 5A10
621		Type 1 diabetes mellitus. Published February 2022. Accessed December 28,
622		2022. https://icd.who.int/browsei1//-
623	_	m/en#nttp%3A%2F%2Fld.wno.int%2Flcd%2Fentity%2F1651053999
624	5.	World Health Organization. ICD-11 for Mortality and Morbiolity Statistics: 5A11
625		Type 2 diabetes mellitus. Published February 2022. Accessed December 28,
626		2022. https://icu.who.ini/browseri//-
027	6	International Diabatas Enderation, What is diabatas, Dubliabad, July 7, 2000
028 (20	0.	Assessed December 00, 0000, https://www.idf.org/choutdichetes/what is
629		Accessed December 26, 2022. https://www.iui.org/aboutulabetes/what-is-
03U 621	7	Ciaptried N. Willingen T. Hofmon K. Where from and where to far health
622	7.	Siegineu N, Wikinson T, Hornan K. Where normand where to for health
622		South African Heal Box. Bublished online 2017:41 Accessed March 1, 2022
624		bttps://www.bst.org.zo/publications/South African Health Poviews/4. Where
625		from and where to for boalth technology accomment in South Africa pdf
636	g	O'Rourke B. Oortwijn W. Schuller T. The new definition of health technology
637	0.	assessment: A milestone in international collaboration. Int I Technol Assess
638		Health Care 2020:36(3):187-190 doi:10.1017/S0266462320000215
639	g	Hollingworth SA Downey I Buiz E.L et al. What do we need to know? Data
640	0.	sources to support evidence-based decisions using health technology
641		assessment in Ghana Heal Res Policy Syst 2020:18(1):1-12
642		doi:10.1186/S12961-020-00550-8/TABLES/2
643	10	Ghana Web MOH launches Ghana's strategy for Health Technology
644	10.	Assessment document. Accessed January 18, 2023
645		https://www.ghanaweb.com/GhanaHomePage/NewsArchive/MOH-launches-
646		Ghana-s-strategy-for-Health-Technology-Assessment-document-1324405
647	11	Ghana M of H. Ghana Health Technology Assessment Process Guide : 2022
648	12	Ministry of Health, Ghana National Policy on Non Communicable Diseases
649	12.	Published March 2022 Accessed January 28, 2023
650		https://www.moh.gov.gh/wp-content/uploads/2022/05/Ghana-NCD-Policy-
651		2022 pdf
652	13	Arksey H. O'Malley L. Scoping studies: Towards a methodological framework
653		Int J Soc Res Methodol Theory Pract. 2005;8(1):19-32
654		doi:10.1080/1364557032000119616
655	14.	Tricco AC, Lillie E, Zarin W, et al. PRISMA Extension for Scoping Reviews

656		(PRISMA-ScR): Checklist and Explanation. Ann Intern Med. 2018;169(7):467.
657		doi:10.7326/M18-0850
658	15.	Veritas Health Innovation. Covidence systematic review software. Accessed
659		December 31, 2021. https://www.covidence.org/
660	16.	Sarfo FS, Mobula LM, Plange-Rhule J, Ansong D, Ofori-Adjei D. Incident
661		stroke among Ghanaians with hypertension and diabetes: A multicenter,
662		prospective cohort study. <i>J Neurol Sci</i> . 2018;395:17-24.
663		doi:10.1016/j.jns.2018.09.018
664	17.	Sarfo-Kantanka O, Sarfo FS, Ansah EO, Eghan B, Ayisi-Boateng NK,
665		Acheamfour-Akowuah E. Secular trends in admissions and mortality rates from
666		diabetes mellitus in the central belt of Ghana: A 31-year review. PLoS One.
667		2016;11(11). doi:10.1371/journal.pone.0165905
668	18.	Sarfo-Kantanka O, Sarfo FS, Kyei I, Agyemang C, Mbanya JC. Incidence and
669		determinants of diabetes-related lower limb amputations in Ghana, 2010-2015
670		- A retrospective cohort study. BMC Endocr Disord. 2019;19(1):1-8.
671		doi:10.1186/S12902-019-0353-8/TABLES/3
672	19.	Sarfo-Kantanka O, Kyei I, Mbanya JC, Owusu-Ansah M. Diabetes-related foot
673		disorders among adult Ghanaians. Diabet FOOT \& ANKLE. 2018;9(1).
674		doi:10.1080/2000625X.2018.1511678
675	20.	Antwi-Bafour S, Hammond S, Adjei JK, Kyeremeh R, Martin-Odoom A, Ekem
676		I. A case-control study of prevalence of anemia among patients with type 2
677		diabetes. J Med Case Rep. 2016;10(1):1-8. doi:10.1186/S13256-016-0889-
678		4/TABLES/6
679	21.	Quaicoe P, Takramah W, Axame WK, et al. ASSOCIATED RISK FACTORS
680		OF TYPE 2 DIABETES MELLITUS AMONG ADULTS IN THE HOHOE
681		MUNICIPALITY OF GHANA. Int J of Medical Res Pharm Sci. 2017;4(5):35-48.
682		doi:10.5281/ZENODO.581010
683	22.	Gatimu SM, Milimo BW, Sebastian MS. Prevalence and determinants of
684		diabetes among older adults in Ghana. BMC Public Health. 2016;16(1):1-12.
685		doi:10.1186/s12889-016-3845-8
686	23.	Yorke E, Tetteh J, Boima V, Yawson AE. High BMI: an important health risk
687		factor among older adults in Ghana. Public Health Nutr. 2021;24(14):4522-
688		4529. doi:10.1017/S1368980020003717
689	24.	Tarekegne FE, Padyab M, Schroders J, Williams JS. Sociodemographic and
690		behavioral characteristics associated with self-reported diagnosed diabetes
691		mellitus in adults aged 50+ years in Ghana and South Africa: results from the
692		WHO-SAGE wave 1. BMJ OPEN DIABETES Res \& CARE. 2018;6(1).
693		doi:10.1136/bmjdrc-2017-000449
694	25.	Quaye EA, Amporful EO, Akweongo P, Aikins MK. Analysis of the Financial
695		Cost of Diabetes Mellitus in Four Cocoa Clinics of Ghana. Value Heal Reg
696		<i>issues</i> . 2015;7:49-53. doi:10.1016/J.VHRI.2015.08.005
697	26.	Bawah AT, Ngambire LT, Abaka-Yawson A, Anomah A, Kinanyok S, Tornyi H.
698		A community based prevalence of type 2 diabetes mellitus in the Ho
699		municipality of Ghana. J PUBLIC Heal. 2021;29(2):403-409.
700		doi:10.1007/s10389-019-01144-7
701	27.	Osei-Yeboah J, Owiredu WKBA, Norgbe GK, et al. The Prevalence of
702		Metabolic Syndrome and Its Components among People with Type 2 Diabetes
703		in the Ho Municipality, Ghana: A Cross-Sectional Study. Int J Chronic Dis.
704		2017;2017:1-8. doi:10.1155/2017/8765804

- Tuglo LS, Nyande FK, Agordoh PD, et al. Knowledge and practice of diabetic foot care and the prevalence of diabetic foot ulcers among diabetic patients of selected hospitals in the Volta Region, Ghana. *Int Wound J.* 2022;19(3):601-614. doi:10.1111/IWJ.13656
- Ellahi B, Dikmen D, Seyhan-Erdoğan B, et al. Prevalence, risk factors, and
 self-awareness for hypertension and diabetes: rural–urban and male–female
 dimensions from a cross-sectional study in Ghana. *Int J Diabetes Dev Ctries*.
 Published online November 29, 2022:1-15. doi:10.1007/S13410-022-011419/TABLES/7
- Vuvor F, Steiner-Asiedu M, Armar-Klemesu M, Armah S. Population-based study of diabetic mellitus prevalence and its associated factors in adult
 Ghanaians in the greater Accra region. *Int J Diabetes Dev Ctries*.
- 2011;31(3):149-153. doi:10.1007/s13410-011-0035-1
 31. Akpalu J, Yorke E, Ainuson-Quampah J, Balogun W, Yeboah K. Depression
- Akpaid 5, Forke E, Andson-Quampar 5, Balogur W, Feboar K. Depression
 and glycaemic control among type 2 diabetes patients: a cross-sectional study
 in a tertiary healthcare facility in Ghana. *BMC Psychiatry*. 2018;18.
 doi:10.1186/s12888-018-1933-2
- Nimako BA, Baiden F, Sackey SO, Binka F. Multimorbidity of chronic diseases
 among adult patients presenting to an inner-city clinic in Ghana. *Global Health*.
 2013;9. doi:10.1186/1744-8603-9-61
- 33. Gato WE, Acquah S, Apenteng BA, Opoku ST, Boakye BK. Diabetes in the
 Cape Coast metropolis of Ghana: an assessment of risk factors, nutritional
 practices and lifestyle changes. *Int Health*. 2017;9(5):310-316.
 doi:10.1093/inthealth/ihx028
- 72934.Mogre V, Salifu ZS, Abedandi R. Prevalence, components and associated730demographic and lifestyle factors of the metabolic syndrome in type 2 diabetes731mellitus. J Diabetes Metab Disord. 2014;13(1):80. doi:10.1186/2251-6581-13-73280
- 35. Abagre TA, Bandoh DA, Addo-Lartey AA. Determinants of metabolic syndrome
 among patients attending diabetes clinics in two sub-urban hospitals: Bono
 Region, Ghana. *BMC Cardiovasc Disord*. 2022;22(1):1-13.
- 736 doi:10.1186/S12872-022-02805-4/TABLES/4
- Tyrovolas S, Koyanagi A, Garin N, et al. Diabetes mellitus and its association
 with central obesity and disability among older adults: a global perspective. *Exp Gerontol.* 2015;64:70-77. doi:10.1016/J.EXGER.2015.02.010
- 37. Hayfron-Benjamin C, van den Born B-J, der Zee AH, et al. Microvascular and
 macrovascular complications in type 2 diabetes Ghanaian residents in Ghana
 and Europe: The RODAM study. *J Diabetes Complications*. 2019;33(8):572578. doi:10.1016/j.jdiacomp.2019.04.016
- Anderson AK. Prevalence of Anemia, Overweight/Obesity, and Undiagnosed
 Hypertension and Diabetes among Residents of Selected Communities in
 Ghana. *Int J Chronic Dis.* 2017;2017:1-7. doi:10.1155/2017/7836019
- Chilunga FP, Henneman P, Meeks KAC, et al. Prevalence and determinants of
 type 2 diabetes among lean African migrants and non-migrants: the RODAM
 study. *J Glob Health*. 2019;9(2). doi:10.7189/jogh.09.020426
- Agyemang C, Meeks K, Beune E, et al. Obesity and type 2 diabetes in subSaharan Africans Is the burden in today's Africa similar to African migrants in
 Europe? The RODAM study. *BMC Med.* 2016;14. doi:10.1186/s12916-0160709-0

754 41. Annani-Akollor ME, Addai-Mensah O, Fondjo LA, et al. Predominant 755 Complications of Type 2 Diabetes in Kumasi: A 4-Year Retrospective Cross-756 Sectional Study at a Teaching Hospital in Ghana. Medicina (Kaunas). 757 2019;55(5). doi:10.3390/MEDICINA55050125 758 Nsiah K, Shang VO, Boateng KA, Mensah F. Prevalence of metabolic 42. 759 syndrome in type 2 diabetes mellitus patients. Int J Appl Basic Med Res. 2015;5(2):133. doi:10.4103/2229-516X.157170 760 Agyemang-Yeboah F, Eghan BAJ, Annani-Akollor ME, Togbe E, Donkor S, 761 43. 762 Afranie BO. Evaluation of Metabolic Syndrome and Its Associated Risk Factors 763 in Type 2 Diabetes: A Descriptive Cross-Sectional Study at the Komfo Anokye 764 Teaching Hospital, Kumasi, Ghana. Biomed Res Int. 2019;2019. 765 doi:10.1155/2019/4562904 766 44. Opare-Addo MNA, Osei FA, Buabeng KO, et al. Healthcare services utilisation 767 among patients with hypertension and diabetes in rural Ghana. African J Prim Heal Care Fam Med. 2020;12(1):8. doi:10.4102/PHCFM.V12I1.2114 768 769 Lartey SY, Aikins AK. Visual impairment amongst adult diabetics attending a 45. 770 tertiary outpatient clinic. Ghana Med J. 2018;52(2):84. 771 doi:10.4314/GMJ.V52I2.4 772 Atosona A, Larbie C. Prevalence and Determinants of Diabetic Foot Ulcers 46. 773 and Lower Extremity Amputations in Three Selected Tertiary Hospitals in 774 Ghana. J Diabetes Res. 2019;2019. doi:10.1155/2019/7132861 775 47. Cook-Huynh M, Ansong D, Steckelberg RC, et al. PREVALENCE OF 776 HYPERTENSION AND DIABETES MELLITUS IN ADULTS FROM A RURAL 777 COMMUNITY IN GHANA. Ethn \& Dis. 2012;22(3):347-352. 778 Sarfo-Kantank O, Owusu-Dabo E, Adomako-Boateng F, Eghan B, Dogbe J, 48. 779 Bedu-Addo G. An assessment of prevalence and risk factors for hypertension 780 and diabetes during world diabetes day celebration in Kumasi, Ghana. East Afr 781 J Public Health. 2014;11(2):805-815. doi:10.4314/eajph.v11i2. 782 K AH, R A, E A-D, E M-ME. Prevalence and Risk Factors of Diabetes Mellitus 49. 783 Among the Inhabitants of Kumasi Metropolis, Arch Clin Biomed Res. 1(4):224-784 234. Accessed January 2, 2023. http://www.fotunejournals.com/prevalence-785 and-risk-factors-of-diabetes-mellitus-among-the-inhabitants-of-kumasi-786 metropolis.html Anto EO, Frimpong J, Boadu WIO, et al. Prevalence of Cardiometabolic 787 50. 788 Syndrome and its Association With Body Shape Index and A Body Roundness 789 Index Among Type 2 Diabetes Mellitus Patients: A Hospital-Based Cross-790 Sectional Study in a Ghanaian Population. Front Clin Diabetes Healthc. 791 2022;2:33. doi:10.3389/FCDHC.2021.807201 792 51. Abu EK, Ofori AO, Boadi-Kusi SB, et al. Dry eye disease and meibomian gland 793 dysfunction among a clinical sample of type 2 diabetes patients in Ghana. Afr 794 Health Sci. 2022;22(1):293. doi:10.4314/AHS.V22I1.36 795 Sobers-Grannum N, Murphy MM, Nielsen A, et al. Female Gender Is a Social 52. 796 Determinant of Diabetes in the Caribbean: A Systematic Review and Meta-797 Analysis. PLoS One. 2015;10(5):e0126799. 798 doi:10.1371/JOURNAL.PONE.0126799 Zhang H, Ni J, Yu C, et al. Sex-based differences in diabetes prevalence and 799 53. 800 risk factors: A population-based cross-sectional study among low-income 801 adults in China. Front Endocrinol (Lausanne). 2019;10(SEP):658. 802 doi:10.3389/FENDO.2019.00658/PDF

803 804 805	54.	Ranasinghe P, Jayawardena R, Gamage N, Sivanandam N, Misra A. Prevalence and trends of the diabetes epidemic in urban and rural India: A pooled systematic review and meta-analysis of 1.7 million adults. <i>Ann</i>				
805		<i>Epidemiol.</i> 2021;58:128-148. doi:10.1016/J.ANNEPIDEM.2021.02.016				
807	55.	Aung WP, Htet AS, Bjertness E, Stigum H, Chongsuvivatwong V, Kjøllesdal				
808		MKR. Urban-rural differences in the prevalence of diabetes mellitus among				
809		25–74 year-old adults of the Yangon Region, Myanmar: two cross-sectional				
810	50	studies. <i>BMJ Open</i> . 2018;8(3):e020406. doi:10.1136/BMJOPEN-2017-020406				
811 812	50.	Model Mech 2009:2(5-6):231-237 doi:10.1242/DMM.001180/-/DC1				
813	57.	IHME. VizHub - GBD Compare. Accessed January 4, 2023.				
814		https://vizhub.healthdata.org/gbd-compare/				
815	58.	Zorron Pu L, de Moura EG, Bernardo WM, et al. Analysis the significant risk				
816		factors on type 2 diabetes perspective of Bangladesh. PLoS ONE [Electronic				
817	50	<i>Resour</i> . 2018;13(1):1. doi:https://dx.doi.org/10.1596/978-1-4648-0518-9				
818	59.	Alsaadon H, Afroz A, Karim A, et al. Hypertension and its related factors				
820		Bandladesh <i>BMC Public Health</i> 2022:22(1):1-10 doi:10.1186/S12889-022-				
821		12509-1/TABLES/2				
822	60.	Tran PB, Kazibwe J, Nikolaidis GF, Linnosmaa I, Rijken M, van Olmen J.				
823		Costs of multimorbidity: a systematic review and meta-analyses. BMC Med.				
824	04	2022;20(1):1-15. doi:10.1186/S12916-022-02427-9/TABLES/1				
825	61.	Zhou X, Siegel KR, Ng BP, et al. Cost-effectiveness of Diabetes Prevention				
820 827		Systematic Beview Diabetes Care 2020:43(7):1593-1616				
828		doi:10.2337/DCl20-0018				
829						
830						
831	Anne	ex				
832 833	Anne	ex 1: Search strings				
834						
835	Web	of Science search				
836	Soor	ch link for Wah of Science				
838	https	://www.webofscience.com/wos/woscc/summary/55ba5b67-9492-4899-a3dd-				
839	8b2fe	e3588006-80f3249d/relevance/1				
840						
841	(TS=	(Ghana)) AND TS=(Diabetes)				
842						
843		Ned search string				
044 845	((yn ("dial	(("gnana"[MeSH Terms] OK "gnana"[All Fields] OK "gnana s"[All Fields]) AND				
846	AND	"mellitus"[All Fields]) OR "diabetes mellitus"[All Fields] OR "diabetes"[All Fields]				
847	OR "	diabetes insipidus"[MeSH Terms] OR ("diabetes"[All Fields] AND "insipidus"[All				
848	Field	s]) OR "diabetes insipidus"[All Fields] OR "diabetic"[All Fields] OR "diabetics"[All				
849	Field	s] OR "diabets"[All Fields])) AND (2021/4/4:2023/4/11[pdat])				
850						

851 Embase search string

- 852 ('ghana'/exp OR ghana) AND ('diabetes mellitus'/exp OR 'diabetes mellitus')
- 853

854 Scopus search string

- 855 (TITLE-ABS-KEY (ghana) AND TITLE-ABS-KEY (diabetes)) AND PUBYEAR >
- 856 2020 AND PUBYEAR < 2024

Figure 1: The HTA process

Adapted from: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. DOI: 10.1136/bmj.n71

Figure 1: Number of studies/publications per year

Figure 1: Percentage of included studies by form of burden (theme)

Figure 1: Frequency of burden of disease themes reported by region

Figure 1: Number of studies per region by complication type