| 1      | Profiling the effect of micronutrient levels on vital cardiac markers                                                                                                                                                                                   |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>3 | Hari Krishnan Krishnamurthy <sup>1</sup> *, Swarnkumar Reddy <sup>2</sup> , Vasanth Jayaraman <sup>1</sup> , Karthik Krishna <sup>1</sup> , Qi Song <sup>2</sup> , Tianhao Wang <sup>1</sup> , Kang Bei <sup>1</sup> , John J. Rajasekaran <sup>1</sup> |
| 4<br>5 | 1 Vibrant Sciences LLC., San Carlos, CA, United States of America, 2 Vibrant America<br>LLC., San Carlos, CA, United States of America                                                                                                                  |
| 6      | Short title: Micronutrients and cardio markers                                                                                                                                                                                                          |
| 7      | Corres: * hari@vibrantsci.com (HKK)                                                                                                                                                                                                                     |
| 8      |                                                                                                                                                                                                                                                         |
| 9      | Corresponding Author:                                                                                                                                                                                                                                   |
| 10     | Hari Krishnan Krishnamurthy                                                                                                                                                                                                                             |
| 11     | Director – Biomedical Engineering                                                                                                                                                                                                                       |
| 12     | Vibrant Sciences LLC                                                                                                                                                                                                                                    |
| 13     | 1021 Howard Avenue                                                                                                                                                                                                                                      |
| 14     | San Carlos, CA 94070                                                                                                                                                                                                                                    |
| 15     | Ph: 5094325707                                                                                                                                                                                                                                          |
| 16     |                                                                                                                                                                                                                                                         |
| 17     |                                                                                                                                                                                                                                                         |
| 18     |                                                                                                                                                                                                                                                         |
| 19     |                                                                                                                                                                                                                                                         |
| 20     |                                                                                                                                                                                                                                                         |
| 21     |                                                                                                                                                                                                                                                         |
| 22     | Number of Tables: 03                                                                                                                                                                                                                                    |
| 23     | Number of Figures: 02                                                                                                                                                                                                                                   |
| 24     | Word count: 3815                                                                                                                                                                                                                                        |
| 25     |                                                                                                                                                                                                                                                         |
| 26     |                                                                                                                                                                                                                                                         |
| 26     |                                                                                                                                                                                                                                                         |
| 27     |                                                                                                                                                                                                                                                         |
|        |                                                                                                                                                                                                                                                         |
| 28     |                                                                                                                                                                                                                                                         |
| 29     |                                                                                                                                                                                                                                                         |
| 23     |                                                                                                                                                                                                                                                         |
|        |                                                                                                                                                                                                                                                         |

30 NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

### 31 Abstract

Cardiovascular diseases (CVD) are among the most preventable chronic disorders accounting 32 for about one-third of general mortality around the globe. Micronutrients have been shown to 33 have a significant impact on cardiovascular health. Micronutrients have been looked at as the 34 35 most adoptable lifestyle choice which could reduce the burden of disease around the world. In this context, it is important to study the levels of micronutrients and see their correlation to 36 cardiac disease biomarkers. The present study, has attempted to investigate the relationship 37 between the diverse class of micronutrients and serum levels of the key lipids and lipoproteins. 38 A retrospective analysis was carried out between the serum levels of micronutrients and vital 39 40 cardiovascular markers. The study was carried out in a group of 358 individuals tested for the Cardio Health and Micronutrients Panel at Vibrant America Clinical Laboratory. The study 41 population was categorized based on the serum concentration of lipids and lipoproteins into 3 42 groups 'Low' 'Normal' and 'High' and the levels of micronutrients were compared among 43 these groups. The results revealed a significant association of several cardiovascular markers 44 with vitamins including Vit D, Vit E, Vit K, and minerals including zinc, iron, calcium, 45 magnesium, and amino acids including leucine, isoleucine, and valine. Quantitative analysis 46 by Pearson's correlation exhibited a negative correlation of asparagine with serum levels of 47 cholesterol and LDL. Amino acids such as cysteine, isoleucine, and valine were found to have 48 a significant negative correlation with HDL. A positive correlation was observed between 49 valine and serum levels of LDL and Apo B. Vitamins such as Vit A, Vit D3, Vit E, and Vit K1 50 were found to have a strong positive correlation with levels of total cholesterol and 51 triglycerides. The study summarizes micronutrients and modulation of several lipid markers 52 which are critical for the management of cardiovascular diseases. Micronutrients such as 53 54 vitamins B1, B3, asparagine, and glutamine have a strong positive association, and fat-soluble vitamins, and BCAA has a strong negative association with cardiovascular health. 55

56

Keywords: micronutrients, cardiovascular diseases, amino acids, lipids, vitamins, branchedchain amino acids

59

60

61

#### 62 Introduction

Micronutrients are the most essential nutrients for a whole range of physiological functioning 63 of a living system. Dietary deficiency of micronutrients leads to pathogenesis, progression, and 64 morbidity in various critical clinical disorders including cardiovascular diseases (CVD) [1]. 65 The pathobiology of CVD remains complex and it is generally regarded to be a result of various 66 genetic predispositions interacting with environmental factors. More than 40% of the CVD are 67 related to nutritional factors and more than 90% of such cases were attributed to preventable 68 69 factors with nutrition as a major determinant [2]. Atherosclerosis and hypertension are the predominant chronic cardiovascular diseases that are profoundly preventable with a multi-70 component strategy including nutrient, diet, and lifestyle interventions [1]. Atherosclerosis, 71 characterized by the chronic inflammation of arteries affecting the function of the heart results 72 73 from the deposition of fats, cholesterol, and other substances on the inner lining of the artery eventually resulting in cardiovascular disease or heart failure [3]. It is estimated that  $\geq 2\%$  of 74 75 the adult population has atherosclerosis which tends to increase up to 10% or higher in people above 70 years and continues to increase with the age of the population [4]. Hypertension is 76 another predominant CVD, which is clinically referred to as a chronic sustained increase in 77 arterial blood pressure. Hypertension is the most widespread CVD with more than 35% of the 78 population affected globally, A report from the World health organization stated this might 79 increase beyond 50% in 2025 [3]. Cardiac disease, being a complex multifunctional etiology, 80 the precise mechanism of pathophysiology remains unclear in both atherosclerosis and 81 hypertension. Atherosclerosis is characterized by the impaired flow of blood and hypertension 82 is characterized by a chronic increase in blood pressure, both these conditions result in 83 abnormal cardiac functioning and vascular damage [5]. 84

Cardiovascular diseases include a wide spectrum of risk factors such as genetic, behavioral, 85 86 and environmental factors. In most cases CVDs commonly result from the interplay of multiple risk factors, common classical risk factors include age, any pre-existing medical illness such 87 88 as diabetes, hypertension, predisposition genetics, or behavioral factors like smoking. Among these risk factors, environmental factors are the most easily modifiable and play a pivotal role 89 90 in cardiovascular health. The environmental factors are the least investigated risk factors and are noted as the most preventable risk factors of CVDs. Environmental factors include the 91 92 intake of micronutrients such as vitamins, minerals, and amino acids. The micronutrients include organic compounds such as Vit A, Vit C, Vit D, Vit E, and Vit K, dietary minerals 93 including calcium, sodium, potassium, magnesium, etc, and trace elements like iron, 94

chromium, copper, selenium, and zinc [6, 7, 8, 9]. Several clinical reports have shown a 95 96 significant correlation between the deficiency of one or more micronutrients and cardiovascular diseases. However, those reports were limited by the diversity of the micronutrients studied. 97 For instance, Rai et al. [10] evaluated the effect of two micronutrients copper and zinc on lipid 98 profiles in healthy adults, and another study by Islam et al. [6] reported that no significant 99 impact was observed by consumption of vitamin D with calcium on serum lipids. The current 100 study aimed to broadly investigate the correlation between cardiovascular markers and the 101 levels of 32 micronutrients. We also attempted to hypothesize the pathophysiology of 102 103 micronutrient deficiency through which the cardio biomarkers could be affected.

104 Material and methods

### 105 Study population

A total of 358 candidates with a mean age of 48±15 years who were tested for cardiovascular panel and micronutrient panel between December 2020 and July 2021 at Vibrant America Clinical Laboratory were included in the study. The study was categorized as a retrospective analysis of observed clinical data and hence was exempted from formal ethical review by Western IRB (work order #1-1098539-1) (Washington USA). The study was conducted in a free-living general population with no clinical indications of abnormalities. The subjects were classified based on the serum levels of lipids and lipoproteins as detailed in Table 1.

#### 113 Cardiovascular Panel

Blood samples were processed for the separation of serum and further analyzed for a 114 cardiovascular panel comprised of lipids (total cholesterol, LDL, HDL, and triglycerides), 115 apolipoproteins (Apo A1, Apo B), and a lipoprotein marker lipoprotein (a). Total cholesterol 116 was measured by the cholesterol dehydrogenase method via the Beckman Coulter AU680 117 analyzer. Serum levels of LDL, HDL, and triglycerides were measured by an enzymatic-118 colorimetric method using the Beckman Coulter AU680 analyzer. Other cardiovascular 119 markers such as Apo A1, Apo B, and Lp (a) were also measured by a particle-enhanced 120 immunoturbidimetric assay via Roche Cobas 6000 c 501 analyzers 121

### 122 Micronutrient Panel

Serum levels of micronutrients were determined using Waters TQ-XS Tandem mass
spectrometer coupled with LCMS, Waters GC-MS, and Perkin Elmer NexION ICP-MS using
standard protocols.

#### 126 Statistical Analysis

127 Clinical data were subjected to retrospective analysis from de-identified subjects using Java for 128 windows version 1.8.161. Non-parametric Mann-Whitney U test was used to compare the 129 micronutrients with normal and altered lipid and lipoprotein concentrations. Pearson's 130 correlation was carried out to analyze the univariant relationship between serum lipids, 131 lipoproteins, and micronutrients with significance set at p<0.05. All statistical analysis was 132 performed using GraphPad Prism Version 7.00 and a descriptive statistic was used to define 133 the continuous variables (mean  $\pm$  SD, median, minimum and maximum).

### 134 **Results**

135 The study group comprised 165 males and 193 females with a mean age group of  $47.9 \pm 15.4$ ,

table 1 shows the descriptive statistics of the lipid and lipoprotein profile of 358 subjects. The
study aimed to evaluate the significant relationship of the wide range of micronutrients
including vitamins, dietary minerals, trace elements, and organic compounds with cholesterol
(total, LDL, HDL), triglycerides as well as apo A, apo B, and Lp (a) levels.

#### 140

Table 1: Serum Lipid, and Lipoprotein levels of candidates

| Cardio marker            | n=358  | Frequency  | Mean ± SD         |
|--------------------------|--------|------------|-------------------|
|                          |        | <b>(n)</b> |                   |
|                          | Male   | 165        | $48.1 \pm 16.6$   |
|                          | Female | 193        | $47.8 \pm 14.4$   |
| Cholesterol              | Low    | -          | -                 |
| $\leq$ 199 mg/dL         | Normal | 296        | $183.3\pm29.9$    |
|                          | High   | 62         | $265.5\pm26.6$    |
| Low-density              | Low    | -          | -                 |
| lipoprotein              | Normal | 212        | $98.3 \pm 21.1$   |
| ≤99 mg/dL                | High   | 146        | $163.8 \pm 27.7$  |
| High-density             | Low    | 36         | 35.1 ± 5.4        |
| lipoprotein              | Normal | 301        | $59.5 \pm 15.6$   |
| $\geq$ 56 mg/dL          | High   | 2          | -                 |
| Triglyceride             | Low    | -          | -                 |
| $\leq 149 \text{ mg/dL}$ | Normal | 323        | 87.6 ± 36.0       |
|                          | High   | 35         | $314.2 \pm 168.4$ |

| Apolipoprotein           | Low    | 47  | $116.8 \pm 17.0$ |
|--------------------------|--------|-----|------------------|
| A1                       | Normal | 311 | $169.0\pm30.4$   |
| $\geq 120 \text{ mg/dL}$ | High   | 2   | -                |
| Apolipoprotein           | Low    | -   | -                |
| В                        | Normal | 270 | $88.9 \pm 18.0$  |
| $\leq 89 \text{ mg/dL}$  | High   | 88  | $144.0 \pm 30.8$ |
| Lipoprotein (a)          | Low    | -   | -                |
| $\geq$ 30 mg/dL          | Normal | 157 | $14.1 \pm 6.4$   |
|                          | High   | 84  | $69.4 \pm 34.9$  |

141

The subjects were classified based on the levels of serum lipids and lipoproteins. In the case of 142 total cholesterol (TC), LDL, triglycerides, and Apo B the subjects were categorized based on 143 lipid concentrations higher than the reference range and subjects within the reference range 144 while in the case of HDL and apo A the subjects were divided into lipid concentrations lower 145 than the reference range and subjects within the reference range. A significant statistical 146 relationship was observed between various micronutrients and serum lipid and lipoprotein 147 concentrations as shown in table 2. An increase in the serum levels of Vit E, Vit D3, and Mg 148 were found to be statistically significant with increased levels of serum cholesterol and LDL. 149 A decrease in serum levels of HDL was significantly affected by the serum levels of Vit D 150 151 25(OH), asparagine, glutamine, and serine. A high level of serum triglycerides is significantly associated with increased levels of various micronutrients including Vit A, Vit D 25(OH), Vit 152 E, Vit K1, and amino acids such as glutamine, serine, isoleucine, valine, and leucine. 153

154

155

Table 2: Significant association of micronutrients with serum lipids and lipoprotein

| CHOLLSTEROL |         |                 |          |                 |          |
|-------------|---------|-----------------|----------|-----------------|----------|
|             | Greater | than Reference  | Within   | range (n=296)   | Р        |
|             | Ra      | inge (n=62)     |          |                 | (p<0.05) |
| Vitamin E   | 16±5.7  | 14.4 (7.9-29.4) | 12.9±4.2 | 11.9 (5.3-30.7) | 0.0001   |
| Vitamin D3  | 1.1±0.2 | 1.1 (0.4-1.7)   | 0.8±0.2  | 0.8 (0.3-1.6)   | 0.0001   |
| Vitamin K1  | 2.1±1.5 | 1.5 (0.1-7.3)   | 1.4±1.3  | 1.2 (0.05-13.9) | 0.0003   |
| Calcium     | 9.8±0.3 | 9.8(9-10.6)     | 9.6±0.4  | 9.6 (8.5-11.2)  | 0.0001   |

CHOLESTEROL

| Magnesium       | 2.2±0.1     | 2.2 (1.9-2.6)      | 2.1±0.1    | 2.1 (1.0-2.6)     | 0.0001   |
|-----------------|-------------|--------------------|------------|-------------------|----------|
| LOW-DENSITY I   | LIPOPROTEI  | IN                 |            |                   |          |
|                 | Greater     | than Reference     | Within     | range (n=212)     | Р        |
|                 | Ra          | nge (n=146)        |            |                   | (p<0.05) |
| Vitamin E       | 14.8±4.8    | 13.6(7.3-29.4)     | 12.3±4.2   | 11.2(5.3-30.7)    | 0.0001   |
| Vitamin D3      | 1.04±0.26   | 1.02(0.44-1.78)    | 0.84±0.81  | 0.81(0.32-1.63)   | 0.0001   |
| Iron            | 108±33.3    | 108.1(35.5-201.8)  | 99.1±41.4  | 91.4(25.3-238.9)  | 0.0024   |
| Magnesium       | 2.23±0.16   | 2.2(1.5-2.66)      | 2.16±0.19  | 2.1(1.0-2.6)      | 0.0002   |
| HIGH-DENSITY    | LIPOPROTE   | IN                 |            |                   |          |
|                 | Less th     | nan Reference      | Within     | range (n=301)     | Р        |
|                 | Ra          | ange (n=36)        |            |                   | (p<0.05) |
| Vitamin D 25 OH | 40.7±24.9   | 33.6(12.4-136)     | 48.3±22.8  | 41.7(8.8-133)     | 0.0091   |
| Asparagine      | 105.6±42.6  | 110.1(34.1-220.6)  | 53.9±11.6  | 52.9(28.1-108.0)  | 0.0001   |
| Glutamine       | 212.5±164.3 | 124.6(61.0-671.4)  | 508.6±80.7 | 510.9(202.2-      | 0.0001   |
|                 |             |                    |            | 752.4)            |          |
| Serine          | 128.0±36.2  | 124.7(61.0-282.9)  | 149.4±34.2 | 145.6(59.6-274.5) | 0.0001   |
| TRIGLYCERIDE    | S           |                    |            |                   |          |
|                 | Greater     | than Reference     | Within     | range (n=323)     | Р        |
|                 | Ra          | ange (n=36)        |            |                   | (p<0.05) |
| Vitamin E       | 20.1±17     | 16.7(8.5-118.7)    | 12.9±4.3   | 11.9(5.3-29.4)    | 0.0001   |
| Vitamin A       | 88.4±27.3   | 82(52.8-151.9)     | 75.8±23.3  | 72.1(34.1-151.5)  | 0.0061   |
| Vitamin K1      | 3.14±2.7    | 2.3(0.22-13.9)     | 1.42±0.99  | 1.22(0.05-7.32)   | 0.0001   |
| Vitamin D25 OH  | 33.9±13.6   | 30.7(15.4-71.2)    | 48.6±23.2  | 41.8(8.8-136)     | 0.0001   |
| Glutamine       | 463.7±107.6 | 472.9(118.7-608.3) | 508.4±78.7 | 507.6(202.2-752)  | 0.0290   |
| Serine          | 136.5±32.8  | 130.6(76.0-198.5)  | 149.6±34.7 | 145.6(59.6-282.9) | 0.0368   |
| Carnitine       | 32.6±16.5   | 31.5(11.6-118.7)   | 26.5±7.2   | 26.6(4.1-50.5)    | 0.0014   |
| Isoleucine      | 84.0±27.5   | 84.2(35.7-142.7)   | 67.1±19.1  | 64.6(24.0-139.7)  | 0.0002   |
| Valine          | 275.0±63.3  | 281.1(175.3-442.4) | 241.7±52.8 | 233.6(134.9-      | 0.0020   |
|                 |             |                    |            | 442.7)            |          |
| Leucine         | 179.9±36.8  | 182.7(113.7-233.5) | 161.7±34.1 | 157.4(79.7-249.2) | 0.0033   |
| APOLIPOPROTE    | EIN A       |                    |            |                   |          |
|                 | Less th     | nan Reference      | Within     | range (n=323)     | Р        |
|                 | Ra          | ange (n=47)        |            |                   | (p<0.05) |

| Vitamin E  | 12.2±4.8  | 10.9(4.0-23.4)   | 13.5±4.7   | 12.4(5.6-30.7)    | 0.0369 |
|------------|-----------|------------------|------------|-------------------|--------|
| Vitamin D3 | 0.84±0.24 | 0.81(0.41-1.5)   | 0.94±0.28  | 0.91(0.32-2.19)   | 0.0198 |
| Asparagine | 51.0±10.6 | 49.4(34.1-79.1)  | 54.5±12.1  | 53.3(28.1-113.0)  | 0.0444 |
| Calcium    | 9.4±0.3   | 9.5(8.7-10.4)    | 9.6±0.39   | 9.6(8.5-11.1)     | 0.0022 |
| Zinc       | 0.69±0.19 | 0.64(0.45-1.50)  | 0.71±0.15  | 0.69(0.39-2.23)   | 0.0315 |
| Iron       | 85.6±36.6 | 78.5(25.3-182.4) | 105.5±38.4 | 101.6(33.2-238.9) | 0.0015 |

| APOLIPOPROTEIN B |                        |                    |                      |                   |          |
|------------------|------------------------|--------------------|----------------------|-------------------|----------|
|                  | Greater than Reference |                    | Within range (n=270) |                   | Р        |
|                  | Ra                     | inge (n=87)        |                      |                   | (p<0.05) |
| Vitamin E        | 16.0±5.5               | 15.3(7.3-29.0)     | 12.5±4.1             | 11.7(4.0-30.7)    | 0.0001   |
| Vitamin A        | 82.4±23.7              | 77.7(34.1-145.8)   | 75.8±24.2            | 72.1(37.1-151.9)  | 0.0096   |
| Vitamin D3       | 0.87±0.24              | 0.83(0.32-1.6)     | 1.09±0.30            | 1.08(0.44-2.19)   | 0.0001   |
| Vitamin K1       | 1.5±1.3                | 1.2(0.05-13.9)     | 1.8±1.4              | 1.4(0.10-7.3)     | 0.0416   |
| Selenium         | 146.4±24.0             | 144.8(93.4-210.8)  | 142.3±30.3           | 139(95.7-360.4)   | 0.0451   |
| Potassium        | 4.5±0.35               | 4.5(3.6-5.6)       | 4.5±0.40             | 4.49(3.1-6.22)    | 0.0377   |
| Calcium          | 9.7±0.3                | 9.7(8.7-10.6)      | 9.6±0.3              | 9.6(8.5-11.1)     | 0.0055   |
| Zinc             | 0.73±0.11              | 0.72(0.39-1.0)     | 0.70±0.17            | 0.68(0.44-2.23)   | 0.0058   |
| Iron             | 109.3±34.2             | 107.7(45.6-201.3)  | 100.8±39.9           | 97.7(25.3-238.9)  | 0.0239   |
| Magnesium        | 2.2±0.1                | 2.2(1.9-2.9)       | 2.1±0.19             | 2.1(1.0-2.6)      | 0.0002   |
| Isoleucine       | 72.7±19.9              | 70.7(34.0-121.4)   | 67.6±20.7            | 64.2(24.0-142.7)  | 0.0138   |
| Valine           | 261.9±55.2             | 262.7(146.5-404.0) | 240.2±54.2           | 232.1(134.9)      | 0.0004   |
| Leucine          | 172±34.8               | 168.8(113.7-248.2) | 160.5±34.2           | 157.4(79.7-249.2) | 0.0138   |
| Serine           | 140.6±33.0             | 135.4(75.0-209.7)  | 151.1±34.7           | 147.2(59.6-282.9) | 0.0189   |

156

Decreased levels of serum Apo A are significantly associated with decreased serum levels of Vit E, Vit D3, asparagine, and minerals such as calcium, zinc, and iron. The elevated levels of Apo B associated with increasing the serum LDL and non-HDL fats are found to be statistically significant with all classes of micronutrients including vitamins, minerals, amino acids, and trace elements.

Quantitative analysis by Pearson's correlation showed serum concentration of cholesterol had a strong positive correlation with serum levels of Vit E (r=0.4086, p<0.0001), Vit D3 (r=0.5125, p<0.001), and Vit K1 (r=0.2334, p<0.0001) The cholesterol levels are also

165 considerably correlated with Vit A and iron (<0.05). The serum levels of cholesterol were 166 found to have a significantly negative correlation with folate and asparagine. LDL was found 167 to have a significant positive correlation with serum levels of Vit E (r=0.3398, p<0.0001) and 168 Vit D3 (r=0.4774, p<0.0001).

Pearson's correlation was carried out to analyze the univariant relationship between serum 169 lipids, lipoproteins, and micronutrients with significance set at p < 0.05. Significant results are 170 shown in Table 3. The directionality of the variation of micronutrients is represented in Fig 2. 171 It was interesting to note the significant association of branched-chain amino acids with several 172 markers in the cardiovascular panel. Increased levels of BCAA (branched-chain amino acids) 173 Leucine, Isoleucine, and Valine showed significant association with decreased levels of HDL 174 and increased levels of triglycerides Fig 1. Increased levels of Valine were shown to have a 175 significant association with increased levels of LDL and Apo B. These associations show the 176 significant association between branched-chain amino acids and lipid dysregulation. 177 178 Additionally, amino acids asparagine and glutamine were found to be inversely correlated with serum LDL. A significant inverse correlation was observed between glutamine and serine with 179 serum levels of Apo B. 180

- 181
- 182

183

a. Leucine, b. Isoleucine, c. Valine

Table 3: Pearson correlation between micronutrients with serum lipids and lipoproteins

Figure 1. Correlation between serum triglycerides with serum BCAA

\_\_\_\_\_r

|                    | r      | р       |
|--------------------|--------|---------|
| CHOLESTEROL        |        |         |
| Vitamin E          | 0.4086 | <0.0001 |
| Vitamin A          | 0.1471 | 0.0053  |
| Vitamin D3         | 0.5125 | <0.0001 |
| Vitamin K1         | 0.2334 | <0.0001 |
| Vitamin B9         | -0.104 | 0.0493  |
| Iron               | 0.1067 | 0.0437  |
| Asparagine         | -0.125 | 0.018   |
| LOW-DENSITY LIPOPE | ROTEIN |         |
| Vitamin D3         | 0.4774 | <0.0001 |
| Iron               | 0.1199 | 0.0233  |
|                    |        |         |

| Asparagine         | -0.1217 | 0.0213  |
|--------------------|---------|---------|
| Glutamine          | -0.1074 | 0.0423  |
| Carnitine          |         |         |
|                    | 0.1446  | 0.0061  |
| Valine             | 0.1471  | 0.0053  |
| HIGH-DENSITY LIPOP | PROTEIN |         |
| Cysteine           | -0.2289 | <0.0001 |
| Isoleucine         | -0.2298 | <0.0001 |
| Valine             | -0.2317 | <0.0001 |
| Leucine            | -0.2405 | <0.0001 |
| TRIGLYCERIDES      |         |         |
| Vitamin E          | 0.3832  | <0.0001 |
| Vitamin A          | 0.2278  | <0.0001 |
| Vitamin B6         | -0.1057 | 0.0457  |
| Vitamin D3         | 0.1342  | 0.011   |
| Vitamin K1         | 0.5732  | <0.0001 |
| Cysteine           | 0.1626  | 0.002   |
| Isoleucine         | 0.2838  | <0.0001 |
| Valine             | 0.2234  | <0.0001 |
| Leucine            | 0.2139  | <0.0001 |
| Arginine           | 0.1363  | 0.0098  |
| APOLIPOPROTEIN B   |         |         |
| Glutamine          | -0.1388 | 0.0086  |
| Serine             | -0.1269 | 0.0165  |
| Valine             | 0.1259  | 0.0173  |
| LIPOPROTEIN (a)    |         |         |
| Vitamin B1         | -0.1818 | 0.0046  |

184

| 185 | Figure 2. Role of micronutrients in regulating serum lipids                                             |
|-----|---------------------------------------------------------------------------------------------------------|
| 186 | Micronutrients in green font reduce the risk by modulating the particular component of the lipid        |
| 187 | panel, Micronutrients in red font increase the risk by modulating the particular component of the lipid |
| 188 | panel                                                                                                   |
| 189 |                                                                                                         |
|     |                                                                                                         |

190 **Discussion** 

Micronutrient deficiency is a major cause of the pathogenesis, progression, mortality, and 191 morbidity in developing various chronic health issues including CVD. It is regarded as a vital 192 component of the socio-economic development of a society and hence effective strategies have 193 been framed to address deficiencies at the population level by adding emphasis on dietary 194 improvement, supplementation, food fortification, and global public health control. 195 Understanding the role of individual micronutrients and proper intake of the essential 196 micronutrients plays a vital role in preventing micronutrient-related diseases. Micronutrient 197 deficiency due to malnutrition can be prevented by the above-mentioned strategies. But in the 198 199 context of the current study, the knowledge on the role of individual micronutrients and timely dietary supplementation of micronutrients plays a crucial role in improving physiological 200 functions [11]. Micronutrients such as vitamins, minerals, and amino acids are known to 201 improve cardiovascular health by regulating the serum levels of lipids and lipoproteins. 202 However, the association of micronutrients with cardiovascular markers remains unclear [12]. 203 The present study details the vital micronutrients with significant association with primary 204 cardiovascular markers such as cholesterol, LDL, HDL, triglycerides, Apo A, Apo B, and 205 Lp(a). The study specifies a wide range of micronutrients which includes 13 vitamins, 9 206 minerals, and 8 amino acids. 207

The results of the present study signify a strong positive correlation with high significance 208 between fat-soluble vitamins Vit A, Vit D3, Vit E, and Vit K1 with cholesterol and 209 triglycerides. Few studies have discussed the association of fat-soluble vitamins with lipid 210 profile, Piran et al. [13] attempted to study the association of fat-soluble vitamins A, E, and D. 211 They reported a correlation only between vitamin E and lipid profile, they also suggested the 212 supplementation of vitamin E for overweight subjects to decrease LDL-C levels. Several 213 substantial shreds of evidence have proved that significant changes in mean serum retinol levels 214 resulting from dietary intake or when supplemented to reduce the risk of cancer alter lipid 215 metabolism by increasing circulating levels of triglycerides and cholesterol. Pastorino et al. 216 [14] have stated retinol-induced liver damage by abnormal elevation of alkaline phosphatase 217 with overconsumption of vitamin A. Several reports have demonstrated the association of 218 vitamin D with serum lipid profiles, a study by Dibada [15] reported an inverse correlation 219 where the supplementation of vitamin D resulted in reducing serum cholesterol, LDL, and 220 triglycerides, but they reported no association between vitamin D and HDL. A randomized trial 221 by Barbarawi et al. [16] observed no association between vitamin D supplementation and 222 reduced risk of major adverse cardiovascular events, myocardial infarction, stroke, etc. In the 223

present result, vitamin D was found to have a positive correlation with cholesterol and 224 triglycerides. As Barbarawi et al. [16] stated the present result also showed no association with 225 serum HDL. At optimal levels of serum concentrations, vitamin D might be beneficial by 226 reducing cholesterol, LDL, and triglycerides. High doses of Vit D supplements result in 227 irregular heartbeat and can also raise blood calcium levels which lead to heart failure (Galior 228 et al., 2018). An increase in Vit E might interfere with blood clotting by inhibiting platelet 229 aggregation and Vitamin K-mediated clotting factors which might lead to hemorrhagic stroke 230 (Natural Medicines Comprehensive Database). Vitamin E below the reference range results in 231 232 acute heart muscle damage. Vitamins B9 (folate) were found to have a negative correlation with cholesterol and Vit D3 was found to have a negative correlation with serum LDL. 233 Interestingly no vitamins exhibited any significant correlation with HDL and Apo A. The 234 current results signify that an overdose of fat-soluble vitamins could result in adverse health 235 effects by modulating serological biomarkers. Water-soluble vitamins tend to accumulate less 236 in tissues as they are readily soluble in water and excreted [18]. Among all the analyzed 237 minerals, iron was found to be positively correlated with serum levels of cholesterol (r=0.1067, 238 p<0.0437) and LDL (r=0.1199, p<0.0233). 239

Numerous studies have demonstrated the significance of micronutrients on cardiovascular 240 health. For instance, Ma et al. [19] suggested that the deficiency in levels of trace minerals such 241 as zinc, copper, iron, and selenium are directly associated with cardiovascular diseases, and 242 supplementation of these trace elements can prevent CVD. A review by Panchal et al. [20] has 243 demonstrated the importance of selenium, vanadium, and chromium in improving metabolic 244 syndrome. Li et al. [21] in their study on plasma metabolomics stated that plasma metabolites 245 and serum micronutrient levels can be used to predict the risk of CVD. Extensive research has 246 increased the understanding of the association between micronutrients and cardiac health. 247 Micronutrients such as vitamins and minerals are widely investigated, whereas amino acids are 248 hardly investigated. A recent report by Tharrey et al. [22] has detailed the association between 249 amino acid intake and cardiovascular mortality and they also reported the negative effect of a 250 few amino acids on cardiac health. The intake of protein and peptide-based health supplements 251 has increased in recent years which could result in increased levels of non-essential amino 252 acids, the effect of this on lipid and lipoprotein levels was analyzed in our study. 253

Levels of a few vital minerals such as magnesium, potassium, calcium, and zinc have also been known to influence cardiac health. For instance, deficiency in levels of magnesium and potassium results in elevated blood pressure. Calcium levels need to be at an optimum since

the deficiency causes pulmonary hypertension, while the excess results in plaque build-up inarteries.

To our knowledge, the present study is the first to report on the association of various amino 259 acids with serum lipid and lipoprotein components. The study observed a statistical 260 significance between various amino acids and serum levels of lipids and lipoproteins as 261 represented in Fig 2. Increased levels of asparagine and glutamine were shown to decrease the 262 levels of LDL. Deprivation of asparagine and glutamine results in lethal effects on endothelial 263 264 cells (EC). The supplementation of these non-essential amino acids can assist in the recovery of EC, can also fight against nitrification stress, and aid in angiogenesis. A previous report by 265 266 Luo et al. [23] on the interactive effects of asparagine and aspartate stated that the subjects with type 2 diabetes were observed to have low levels of HDL-C and reported a negative correlation 267 268 between serum levels of asparagine and HDL-C. Serum levels of glutamine and serine were found to have no influence on plasma lipids and also regular dietary supplementation of these 269 270 amino acids has various clinical advantages [24]. A study by Mansour et al. [25] demonstrated the advantage of glutamine supplementation as it remarkably reduced the total cholesterol and 271 blood pressure in patients with type 2 diabetes. They also proposed that supplementation of 272 glutamine can be an effective pharmaconutrient in controlling diabetes, obesity, and other 273 chronic metabolic disorders. Similarly, adequate supplementation of serine could help in 274 increased antioxidant and anti-fatty streak (lesion in the development of atherosclerosis) 275 activity. The increase in the serum levels of triglycerides is significantly associated with low 276 serum levels of amino acids such as glutamine, serine, leucine, isoleucine, and valine. An 277 increase in the serum levels of triglycerides results in atherosclerosis which leads to high 278 chances of stroke and other related heart diseases [26]. A significant positive association was 279 observed between elevated levels of Apo B and low serum levels of amino acids such as serine, 280 and isoleucine. Serum levels of Apo B above adequate levels are associated with the 281 accumulation of LDL-C and non-HCL-C which are associated with various CVD. 282

The present study brings out an interesting correlation between cardiovascular markers and BCAA's (branched-chain amino acids). BCAA's, leucine, isoleucine, and valine are nonpolar, and hydrophobic, and are vital nitrogen sources for the synthesis of glutamine and alanine [27]. Several epidemiological studies have proved the association between BCAAs and increased risk of type 2 diabetes [28]. The increase in the levels of BCAA's increases the oxidation of BCAA's in muscles which inhibits the fatty acid oxidation and results in blunted insulin signaling. Diabetes and CVD are the major causes of morbidity and mortality. A report by

Magnusson et al., [28] identified BCAA as a strong predictor of CVD development and also as 290 an early marker for the association between diabetes and CVD. Another study by Tobias et al., 291 [29] proved, that circulating BCAA's as strong predictors of type 2 diabetes. The quantitative 292 analysis of BCAA's - leucine, isoleucine, and valine with the cardio markers showed a clear 293 association. A strong negative correlation between HDL and BCAAs and a strong positive 294 295 correction between triglycerides and BCAAs (Table 3). This signifies the increase in the serum level of BCAA decreases the HDL and increases the triglycerides. While in the case of LDL 296 and Apo B a positive correlation was observed with serum level of valine which signifies the 297 298 increase in the serum levels of valine also increases the levels of LDL and Apo B which could 299 result in CVD.

The present results identify a few micronutrients with the possibility of being pathogenic, for 300 301 instance, the positive correlation between vitamin D and serum cholesterol and LDL. The same association has been previously reported by numerous studies including a report by Giri et al. 302 303 [30]. Grimes [31] has reported that in the absence of sunlight the inactive vitamin D is diverted to the synthesis of cholesterol. Even so, intestinal absorption is the only source of fat-soluble 304 vitamins and their mechanism of intestinal absorption remains unclear. Recent studies revealed 305 the participation of several membrane proteins in cholesterol absorption evidenced by 306 advancements in genome-editing, genome-wide association, and gene mutation analysis on 307 cholesterol and intense studies in cholesterol absorption inhibitors. Interestingly, these analyses 308 also revealed that cholesterol transporters can also transport fat-soluble vitamins [32]. In 309 association with these studies, the present study identifies the serum levels of fat-soluble 310 vitamins as effective markers of elevated cholesterol transportation and can be used as an early 311 predictor of CVD. It's a well-established fact that increased serum BCAA was associated with 312 elevated triglycerides and reduced HDL [33]. The present results also identify a similar 313 pathology between serum HDL, Triglycerides and BCAA. The BCAA in the present study 314 exhibited a significant negative correlation with HDL and a strong positive correlation with 315 triglycerides. Consumption of energy-dense and high-palatable foods has increased in recent 316 years, and consumption of BCAAs is one such major behavioral change received considerable 317 attention in recent times. The most recent study by Latimer et al. (2021) reported that an 318 increase in BCAA consumption resulted in the dramatic growth of the heart and also increased 319 the progression of cardiac diseases. 320

One of the main limitations of our study is that it includes data from free-living people with limited information on diet and lifestyle choices. The current study signifies the association of

vital cardio markers with a diverse class of micronutrients. Further research is required for a
 better understanding of the clinical significance of these micronutrients and also to understand
 the biochemical interference of vitamins, minerals, and amino acids in lipid metabolism.

### **Conclusions**

The current study examines the explicit correlation of micronutrients with various cardio markers. Given the broad set of micronutrients evaluated their significance in regulating vital cardio markers was better understood. The study highlights the negative correlation of various vitamins and amino acids on cardiovascular health which was a significant observation. The deficiency of various micronutrients leads to a significant increase in cardiovascular disease risk due to dysregulation of lipid and lipoprotein markers. Similarly increased levels of certain micronutrients especially branched-chain amino acids lead to increased cardiovascular risk due to lipid and lipoprotein dysregulation. It is important to look at both deficiencies and overconsumption of micronutrients to optimize nutrient intake. The study suggests the proper monitoring of body vitals and optimal intake of micronutrients are to be considered for their effective roles in metabolic pathways to implement a risk reduction strategy for cardiovascular health. 

- -

- .0

#### 351

### 352 Acknowledgments

- 353 We thank Qingqing Yue, Junior Graphic Designer for assisting with designing figures and
- 354 Vibrant America LLC for supporting this research.

### 355 Statement of Ethics

356 An ethics statement was not required for this study type

### 357 Author Contributions

Hari Krishnamurthy, Karthik Krishna, and Tianhao Wang performed the research. Hari
Krishnamurthy, John J. Rajasekaran, Karenah Rajasekaran, and Vasanth Jayaraman designed
the study. Qi Song, Kang Bei, and Swarnkumar Reddy analyzed the data. Hari Krishnamurthy
and Swarnkumar Reddy wrote the article.

### 362 **Conflicts of Interest**

Krishnamurthy, Jayaraman, Krishna, Wang, Bei, and Rajasekaran are employees of Vibrant
Sciences LLC. Reddy, Song, and Rajasekaran are employees of Vibrant America LLC. Vibrant
America is a commercial diagnostic lab that could benefit from increased testing of
micronutrients and cardiovascular biomarkers.

# 367 Institutional Review Board Statement

- IRB exemption (work order #1-1098539-1) was determined by the Western Institutional
- 369 Review Board (WIRB) for Vibrant America Biorepository to use de-linked and deidentified
- remnant human specimen and medical data for research purposes.

### 371 Data Availability

- All relevant data are within the manuscript and its Supporting Information files. Any
- additional data will be available upon request from Vibrant America LLC by sending an
- email to our bioinformatics team at bioinformatics@vibrant-america.com or
- 375 hari@vibrantsci.com

# 376 Supplementary Material

16

- 377 Table S1: Association of serum cholesterol with micronutrients
- Table S2: Association of serum LDL with micronutrients
- 379 Table S3: Association of serum HDL with micronutrients
- 380 Table S4: Association of serum triglycerides with micronutrients
- 381 Table S5: Association of serum Apo A with micronutrients
- 382 Table S6: Association of serum Apo B with micronutrients
- 383 Table S7: Association of serum Lipoprotein A with micronutrients
- 384 Table S8: Pearson correlation between serum cholesterol and micronutrients
- 385 Table S9: Pearson correlation between serum LDL and micronutrients
- 386 Table S10: Pearson correlation between serum HDL and micronutrients
- 387 Table S11: Pearson correlation between serum triglycerides and micronutrients
- 388 Table S12: Pearson correlation between serum Apo A and micronutrients
- 389 Table S13: Pearson correlation between serum Apo B and micronutrients
- 390 Table S14: Pearson correlation between serum lipoprotein A and micronutrients

### 391 References

- Getz, G.S. and Reardon, C.A., 2007. Nutrition and cardiovascular disease. *Arterioscler Thromb Vasc Biol.* 2007, 27, 2499.
- Tappia, P.S. and Blewett, H. Nutrition and cardiovascular health. *Int. J. Mol. Sci.* 2020,
   *21(7)*, 2284.
- 396 3. Chiu, H.F., Venkatakrishnan, K., Golovinskaia, O. and Wang, C.K. Impact of
  397 Micronutrients on Hypertension: Evidence from Clinical Trials with a Special Focus
  398 on Meta-Analysis. *Nutrients* 2021, *13*, 588.
- 4. Kkeveetil, C.V., Thomas, G. and Chander, S.J.U. Role of micronutrients in congestive
  heart failure: A systematic review of randomized controlled trials. *Tzu Chi Medical Journal.* 2016 *28 (4)*, 143-150.
- 402 5. Ekpenyong CE. Micronutrient vitamin deficiencies and cardiovascular disease risk:
  403 advancing current understanding. *Eur J Prev Med.* 2017, *5*, 1.

- 404 6. Islam MZ, Shamim AA, Ahmed A, Akhtaruzzaman M, Kärkkäinen M, Lamberg405 Allardt C. Effect of vitamin D, calcium and multiple micronutrients supplementation
  406 on lipid profile in pre-menopausal Bangladeshi garment factory workers with
  407 hypovitaminosis D. *J Health Popul Nutr.* 2014, *32*, 687.
- Lima, L.W., Checchio, M.V., dos Reis, A.R., de Cássia Alves, R., Tezzoto, T. and
  Gratão, P.L. Selenium restricts cadmium uptake and improve micronutrients and
  proline concentration in tomato fruits. Biocatal. Agric. Biotechnol. 2019, *18*, 101057.
- Liu, L., Yin, X., Ikeda, K., Sullivan, D.H. and Eisen, H.J. Micronutrients, inflammation
  and congestive heart failure among the elderly: nutritional perspectives on primary
  prevention and clinical treatment. *Clin. Exp. Pharmacol. Physiol.* 2007, *34*, S14-S16.
- 414 9. Cascino TM, Hummel SL. Nutrient deficiencies in heart failure: a micro problem with
  415 macro effects? *J. Am. Heart Assoc.* 2018,7(17), e010447.
- 10. Rai K, N., Kumari, N. S., Gowda Km, D., & Kr, S. The Evaluation of Micronutrients
  and Oxidative Stress and their Relationship with the Lipid Profile in Healthy adults. *J. Clin. Diagnostic Res.* 2013, 7(7), 1314–1318.
- 11. Bruins MJ, Kupka R, Zimmermann MB, Lietz G, Engle-Stone R, Kraemer K.
  Maximizing the benefits and minimizing the risks of intervention programs to address
  micronutrient malnutrition: symposium report. *Matern Child Nutr.* 2016, *12*, 940.
- 422 12. Ma, X., Jiang, S., Yan, S., Li, M., Wang, C., Pan, Y., Sun, C., Jin, L., Yao, Y. and Li,
  423 B. Association between copper, zinc, Iron, and selenium intakes and TC/HDL-C ratio
  424 in US adults. *Biol. Trace Elem. Res.* 2020, *197(1)*, 43-51.
- Piran, S., Sarmasti, S., Shabani, M., Kakavandi, N., Hosseni, B., Khosravi, M., Resaee,
  S., Soltanmohammadi, E., Naseri, F., Mohammadi, A. and Najafi, M. Association
  Between Fat-soluble Vitamins and Lipid Profile in the Overweight Population. *Recent Pat. food, Nutr. Agric.* 2020, *11(1)*, 56-62.
- 429 14. Pastorino, U., Chiesa, G., Infante, M., Soresi, E., Clerici, M., Valente, M., Belloni, P.A.
  430 and Ravasi, G., 1991. Safety of high-dose vitamin A. *Oncology*, 1991, 48(2), 131-137.
- 431 15. Dibaba DT. Effect of vitamin D supplementation on serum lipid profiles: a systematic
  432 review and meta-analysis. *Nutr Rev.* 2019, 77(12), 890-902.
- 16. Barbarawi M, Kheiri B, Zayed Y, Barbarawi O, Dhillon H, Swaid B, Yelangi A, Sundus
  S, Bachuwa G, Alkotob ML, Manson JE. Vitamin D Supplementation and
  Cardiovascular Disease Risks in More Than 83 000 Individuals in 21 Randomized
  Clinical Trials: A Meta-analysis. *JAMA Cardiol.* 2019, 4(8), 765-776.

| 437 | 17. Galior K, Grebe S, Singh R. Development of Vitamin D Toxicity from Overcorrection        |
|-----|----------------------------------------------------------------------------------------------|
| 438 | of Vitamin D Deficiency: A Review of Case Reports. Nutrients, 2018, 10(8), 953.              |
| 439 | 18. Lykstad J, Sharma S. Biochemistry, Water Soluble Vitamins. StatPearls Publishing,        |
| 440 | Treasure Island (FL); 2021. PMID: 30860745.                                                  |
| 441 | 19. Ma, X., Jiang, S., Yan, S., Li, M., Wang, C., Pan, Y., Sun, C., Jin, L., Yao, Y. and Li, |
| 442 | B. Association between copper, zinc, iron, and selenium intakes and TC/HDL-C ratio           |
| 443 | in US adults. Biol. Trace Elem. Res. 2020, 197(1), 43-51.                                    |
| 444 | 20. Panchal, S.K., Wanyonyi, S. & Brown, L. Selenium, Vanadium, and Chromium as              |
| 445 | Micronutrients to Improve Metabolic Syndrome. Curr Hypertens Rep. 2017, 19(3), 1-            |
| 446 | 11.                                                                                          |
| 447 | 21. Li, K.J., Jenkins, N., Luckasen, G., Rao, S., and Ryan, E.P. Plasma metabolomics of      |
| 448 | children with aberrant serum lipids and inadequate micronutrient intake. PloS one.           |
| 449 | <b>2018</b> , <i>13(10)</i> , p.e0205899.                                                    |
| 450 | 22. Tharrey, M., Mariotti, F., Mashchak, A., Barbillon, P., Delattre, M., Huneau, J.F. and   |
| 451 | Fraser, G.E. Patterns of amino acid intake are strongly associated with cardiovascular       |
| 452 | mortality, independently of the sources of protein. Int J Epidemiol, 2020, 49(1), 312-       |
| 453 | 321                                                                                          |
| 454 | 23. Luo, H.H., Feng, X.F., Yang, X.L., Hou, R.Q. and Fang, Z.Z., 2020. Interactive effects   |
| 455 | of asparagine and aspartate homeostasis with sex and age for the risk of type 2 diabetes     |
| 456 | risk. Biol. Sex Differ. 2020, 11(1), 1-10.                                                   |
| 457 | 24. Xiao, F., Du, Y., Lv, Z., Chen, S., Zhu, J., Sheng, H. and Guo, F. Effects of essential  |
| 458 | amino acids on lipid metabolism in mice and humans. J. Mol. Endocrinol. 2016, 57(4),         |
| 459 | 223-231.                                                                                     |
| 460 | 25. Mansour, A., Mohajeri-Tehrani, M.R., Qorbani, M., Heshmat, R., Larijani, B. and          |
| 461 | Hosseini, S. Effect of glutamine supplementation on cardiovascular risk factors in           |
| 462 | patients with type 2 diabetes. Nutrition, 2015, 31(1), 119-126.                              |
| 463 | 26. Park, M.S.C. and Liepa, G.U. Effects of dietary protein and amino acids on the           |
| 464 | metabolism of cholesterol-carrying lipoproteins in rats. J Nutr. 1982, 112(10), 1892-        |
| 465 | 1898.                                                                                        |
| 466 | 27. Szpetnar, M., Luchowska-Kocot, D., Boguszewska-Czubara, A. et al. The Influence of       |
| 467 | Manganese and Glutamine Intake on Antioxidants and Neurotransmitter Amino Acids              |
| 468 | Levels in Rats' Brain. Neurochem Res. 2016, 41, 2129–2139.                                   |
|     |                                                                                              |

| 469 | 28. Martin Magnusson, Olle Melander, Bo Israelsson, Anders Grubb, Leif Groop, Stefan         |
|-----|----------------------------------------------------------------------------------------------|
| 470 | Jovinge; Elevated Plasma Levels of Nt-proBNP in Patients with Type 2 Diabetes                |
| 471 | Without Overt Cardiovascular Disease. Diabetes Care, 2004, 27 (8), 1929–1935.                |
| 472 | 29. Tobias, D. K., Mora, S., Verma, S., & Lawler, P. R. Altered branched chain amino acid    |
| 473 | metabolism: toward a unifying cardiometabolic hypothesis. Curr. Opin. Cardiol. 2018,         |
| 474 | <i>33(5)</i> , 558–564.                                                                      |
| 475 | 30. Giri, R., Rai, R., Verma, R.K. and Verma, S. Correlation between Vitamin D and lipid     |
| 476 | profile in patients with ischemic stroke. Int J Res Med Sci. 2016, 4(6), 2309-12.            |
| 477 | 31. Grimes, D.S., Hindle, E. and Dyer, T. Sunlight, cholesterol and coronary heart disease.  |
| 478 | QJM: Int. J. Med. 1996, 89(8), 579-590.                                                      |
| 479 | 32. Yamanashi, Y., Takada, T., Kurauchi, R., Tanaka, Y., Komine, T. and Suzuki, H.           |
| 480 | Transporters for the intestinal absorption of cholesterol, vitamin E, and vitamin K. J.      |
| 481 | Atheroscler. Thromb. 2017, 24, 16007.                                                        |
| 482 | 33. Yang, P., Hu, W., Fu, Z., Sun, L., Zhou, Y., Gong, Y., Yang, T. and Zhou, H., 2016.      |
| 483 | The positive association of branched-chain amino acids and metabolic dyslipidemia in         |
| 484 | Chinese Han population. Lipids Health Dis. 2016, 15(1), 1-8.                                 |
| 485 | 34. Latimer, M.N., Sonkar, R., Mia, S., Frayne, I.R., Carter, K.J., Johnson, C.A., Rana, S., |
| 486 | Xie, M., Rowe, G.C., Wende, A.R. and Prabhu, S.D., 2021. Branched chain amino acids          |
| 487 | selectively promote cardiac growth at the end of the awake period. J. Mol. Cell. Cardiol.    |
| 488 | <b>2021</b> , <i>157</i> , 31-44.                                                            |
| 489 |                                                                                              |
|     |                                                                                              |
| 490 |                                                                                              |
| 491 |                                                                                              |
| 492 |                                                                                              |
|     |                                                                                              |
| 493 |                                                                                              |
| 494 |                                                                                              |
| 495 |                                                                                              |
| 133 |                                                                                              |
| 496 |                                                                                              |
| 497 |                                                                                              |
| 498 |                                                                                              |
| 430 |                                                                                              |

Table S1: Association of serum cholesterol with micronutrients

|                 | Greater th  | nan Reference      | Withir     | n range (n=278)   | Р        |
|-----------------|-------------|--------------------|------------|-------------------|----------|
|                 | Ran         | ge (n=62)          |            |                   | (P<0.05) |
| ASPARAGINE      | 53.8±12.7   | 51.4(34.1-93.1)    | 54.1±12.7  | 52.9(28-113.0)    | 0.8067   |
| GLUTAMINE       | 505.7±82.7  | 512.8(210-752)     | 504.2±80.6 | 503.1(202.2-741)  | 0.8270   |
| SERINE          | 144.9±34.3  | 138(75-213.4)      | 149.3±35.3 | 146.1(59.6-282.9) | 0.2869   |
| CYSTEINE        | 17.3±8.7    | 17.0(2.2-46.2)     | 17.7±8.9   | 16.2 (1.3-45.2)   | 0.8426   |
| SELENIUM        | 139±32      | 140.1(-47-207.5)   | 143.3±30.5 | 139 (93.4-360.4)  | 0.8771   |
| VITAMIN E       | 16±5.7      | 14.4 (7.9-29.4)    | 12.9±4.2   | 11.9 (5.3-30.7)   | 0.0001   |
| CHOLINE         | 14.4±5.6    | 13.3(6.1-35.1)     | 14.1±5.7   | 12.5(1.0-39.6)    | 0.5605   |
| CARNITINE       | 28.8±7.7    | 29.1 (12.6-44.3)   | 26.5±7.1   | 26.6(4.1-50.5)    | 0.0317   |
| SODIUM          | 141.9±2.9   | 142 (137-148)      | 140.1±22.0 | 141 (-222-155)    | 0.2091   |
| POTASSIUM       | 4.5±0.4     | 4.6 (3.1-5.6)      | 4.5±0.47   | 4.4 (3.72-6.22)   | 0.1658   |
| CALCIUM         | 9.8±0.3     | 9.8(9-10.6)        | 9.6±0.4    | 9.6 (8.5-11.2)    | 0.0001   |
| MANGANESE       | 0.6±0.2     | 0.6 (0.3-1.7)      | 0.7±0.4    | 0.6 (0.2-6.8)     | 0.6281   |
| ZINC            | 0.7±0.1     | 0.7 (0.49)         | 0.7±0.1    | 0.6 (0.3-2.2)     | 0.0160   |
| COPPER          | 1.0±0.2     | 0.9 (0.6-2.1)      | 1.05±0.3   | 1.0 (0.3-3.4)     | 0.7309   |
| CHROMIUM        | 0.2±0.1     | 0.2 (0.05-0.6)     | 0.2±0.1    | 0.22 (0.01-1.7)   | 0.6393   |
| IRON            | 108.7±33.3  | 102.0 (34.8-206.5) | 101.9±38.8 | 99.9 (25.3-238.9) | 0.1217   |
| MAGNESIUM       | 2.2±0.1     | 2.2 (1.9-2.6)      | 2.1±0.1    | 2.1 (1.0-2.6)     | 0.0001   |
| VITAMIN A       | 80.7±25.1   | 77.8(34.1-142.9)   | 76.0±23.6  | 71.5 (37.4-151.9) | 0.0942   |
| VITAMIN_B1      | 21.3±13.5   | 19.4 (1.0-70.3)    | 21.6±15.0  | 18.3 (0.8-136.8)  | 0.8489   |
| VITAMIN_B2      | 26.8±25.3   | 19.4 (6.2-174.1)   | 28.1±21.9  | 21.9 (4.8-140.8)  | 0.4462   |
| VITAMIN_B3      | 17.4±7.2    | 18.1 (3.4-34.6)    | 19.7±8.8   | 19.1 (2.7-110.1)  | 0.0559   |
| VITAMIN_B6      | 15.3±13.0   | 11.3 (1.1-70.8)    | 17.5±19.6  | 12.3 (1.6-236.7)  | 0.4704   |
| VITAMIN_B12     | 787.9±358.1 | 758 (245.1-1958)   | 719±319    | 650 (196-1923)    | 0.1395   |
| VITAMIN_B5      | 99.6±74.4   | 70.8 (23.5-315.2)  | 107.5±89.2 | 71.0 (13.8-482.1) | 0.6705   |
| VITAMIN_C       | 0.4±0.2     | 0.4 (.05-1.2)      | 0.4±0.3    | 0.3 (.05-3.74)    | 0.5634   |
| VITAMIN_D3      | 1.1±0.2     | 1.1 (0.4-1.7)      | 0.8±0.2    | 0.8 (0.3-1.6)     | 0.0001   |
| VITAMIN_K1      | 2.1±1.5     | 1.5 (0.1-7.3)      | 1.4±1.3    | 1.2 (0.05-13.9)   | 0.0003   |
| VITAMIN_K2      | 0.8±1.7     | 0.2 (0.11-11.2)    | 0.6±1.0    | 0.2 (0.1-11.0)    | 0.1909   |
| FOLATE          | 13.6±4.4    | 13.6(2.9-19.9)     | 13.6±3.9   | 13.9 (2.8-19.9)   | 0.8426   |
| VITAMIN D 25 OH | 50.2±26.6   | 41.2 (11.4-133)    | 46.5±22.5  | 40.9 (8.8-136)    | 0.5307   |

| ISOLEUCINE | 68.0±17.2  | 66.9 (35.7-115.7)  | 68.4±21.1  | 64.6 (24.0-142.7)  | 0.6996 |
|------------|------------|--------------------|------------|--------------------|--------|
| VALINE     | 255.7±54.7 | 248.3 (146.5-400)  | 242.3±55.4 | 233.2 (134.9-442)  | 0.0484 |
| LEUCINE    | 166.5±37.4 | 159.0 (79.7-247.6) | 162.6±34.2 | 159.1 (80.3-249.2) | 0.5826 |
| CITRULLINE | 31.4±7.6   | 31.3 (17.3-52.1)   | 29.6±8.1   | 28.8 (10.1-69.3)   | 0.0774 |
| ARGININE   | 121.8±32   | 117.5 (65.1-220.6) | 123.2±33.8 | 119.1 (49.6-299.2) | 0.7459 |

# Table S2: Association of serum LDL with micronutrients

|                 | Greater t   | han Reference      | Within          | range (n=212)     | Р        |
|-----------------|-------------|--------------------|-----------------|-------------------|----------|
|                 | Ran         | ge (n=146)         |                 |                   | (P<0.05) |
| ASPARAGINE      | 52.9±11.2   | 51.7(31.1-108.0)   | 54.8±12.7       | 53.1(28.1-113.0)  | 0.2238   |
| GLUTAMINE       | 496.9±80.5  | 502.3(204.1-752.4) | 510.6±80.3      | 507.6(202.2-741.  | 0.1594   |
| SERINE          | 148.4±33.9  | 144.1(75-227.9)    | 148.4±35.4      | 146.4(59.6-282.9) | 0.9280   |
| CYSTEINE        | 18.5±8.7    | 17.9(2.8-46.2)     | 17.3±9.1        | 15.6(1.3-45.2)    | 0.1121   |
| SELENIUM        | 142.2±23.6  | 139.4(93.4-210.8)  | 143.6±32.1      | 141.4(95.7-360.4) | 0.8131   |
| VITAMIN E       | 14.8±4.8    | 13.6(7.3-29.4)     | 12.3±4.2        | 11.2(5.3-30.7)    | 0.0001   |
| CHOLINE         | 14.2±5.6    | 13.0(5.8-39.6)     | 14.0±5.7        | 12.6(1.0-36.6)    | 0.7838   |
| CARNITINE       | 28.0±7.3    | 28.3(10.2-50.5)    | 26.1±7.1        | 26.3(4.1-43.6)    | 0.0258   |
| SODIUM          | 141.7±3.4   | 142 (133-151)      | 139.7±25.1      | 141(129-155)      | 0.3443   |
| POTASSIUM       | 4.5±0.3     | 4.5(3.1-5.6)       | 4.5±0.4         | 4.5(3.6-6.2)      | 0.7340   |
| CALCIUM         | 9.6±0.3     | 9.6 (8.5-10.6)     | 89.6±0.4        | 9.6(8.6-11.2)     | 0.5248   |
| MANGANESE       | 0.69±0.26   | 0.63(0.2-1.85)     | 0.74±0.54       | 0.63(0.3-6.82)    | 0.9838   |
| ZINC            | 0.72±0.12   | 0.71(0.39-1.39)    | 0.70±0.18       | 0.67(0.44-2.23)   | 0.0373   |
| COPPER          | 1.05±0.29   | 1.02(0.37-2.53)    | 1.05±0.31       | 1.0 (0.4-3.4)     | 0.8362   |
| CHROMIUM        | 0.2±0.1     | 0.2(0.02-1.0)      | 0.26±0.17       | 0.2(0.011-1.79)   | 0.4714   |
| IRON            | 108±33.3    | 108.1(35.5-201.8)  | 99.1±41.4       | 91.4(25.3-238.9)  | 0.0024   |
| MAGNESIUM       | 2.23±0.16   | 2.2(1.5-2.66)      | 2.16±0.19       | 2.1(1.0-2.6)      | 0.0002   |
| VITAMIN A       | 78.3±22.7   | 74.6(34.1-151.5)   | 76.2±24.8       | 72.2(37.1-151.9)  | 0.2012   |
| VITAMIN_B1      | 20.8±13.5   | 18.0(1.0-75.9)     | 22.4±15.9       | 18.8(0.83-136.8)  | 0.4553   |
| VITAMIN_B2      | 27.2±22.8   | 21.1(5.7-174.1)    | 29.2±25.8       | 21.6(4.8-222.5)   | 0.7505   |
| VITAMIN_B3      | 19.4±10.5   | 18.6(3.4-110.1)    | 19.0±6.7        | 18.2(2.7-40.6)    | 0.7766   |
| VITAMIN_B6      | 16.0±13.2   | 12.2(1.1-84.2)     | 18.2±21.3       | 12.3(1.4-236.7)   | 0.6179   |
| VITAMIN_B12     | 744.3±328.8 | 657.2(245.1-1958)  | 726.1±323.4     | 663.9(196-1923)   | 0.6856   |
| VITAMIN_B5      | 103.6±87.5  | 70.6(13.8-482.1)   | 111.1±9.2       | 71.5(19.2-407.4)  | 0.5429   |
| VITAMIN_C       | 0.45±0.29   | 0.41(0.05-2.62)    | 0.45±0.31       | 0.39(0.08-3.74)   | 0.7418   |
| VITAMIN_D3      | 1.04±0.26   | 1.02(0.44-1.78)    | $0.84 \pm 0.81$ | 0.81(0.32-1.63)   | 0.0001   |
| VITAMIN_K1      | 1.65±1.2    | 1.29(0.05-7.32)    | 1.56±1.4        | 1.25(0.15-13.9)   | 0.3875   |
| VITAMIN_K2      | 0.68±1.2    | 0.28(0.10-11.2)    | 0.72±1.17       | 0.29(0.082-11.0)  | 0.5063   |
| FOLATE          | 13.8±4.0    | 14.1(2.9-19.9)     | 13.6±3.9        | 13.9(2.8-19.9)    | 0.5133   |
| VITAMIN D 25 OH | I47.8±22.6  | 41.5(10.4-133)     | 46.3±23.5       | 40.5(8.8-136)     | 0.3757   |

| ISOLEUCINE | 69.0±20.1  | 67.0(31.0-139.7)   | 68.6±21.0  | 64.4(24.0-142.7)  | 0.6712 |
|------------|------------|--------------------|------------|-------------------|--------|
| VALINE     | 250.5±55.1 | 242.0(146.5-442.7) | 241.1±54.2 | 232.5(134.9-442.4 | 0.0903 |
| LEUCINE    | 166.4±35.1 | 159.3(79.7-248.2)  | 161.5±34.4 | 158.2(87.7-249.2) | 0.2160 |
| CITRULLINE | 30.1±7.6   | 29.4(10.3-51.8)    | 29.9±8.3   | 28.8(10.1-69.3)   | 0.7509 |
| ARGININE   | 122.2±33.2 | 118.9(61.0-220.6)  | 123.3±33.8 | 118.4(49.6-299.2) | 0.7600 |

# Table S3: Association of serum HDL with micronutrients

|                 | Less the    | an Reference      | Within      | range (n=301)     | Р        |
|-----------------|-------------|-------------------|-------------|-------------------|----------|
|                 | Rar         | nge (n=36)        |             |                   | (P<0.05) |
| ASPARAGINE      | 105.6±42.6  | 110.1(34.1-220.6) | 53.9±11.6   | 52.9(28.1-108.0)  | 0.0001   |
| GLUTAMINE       | 212.5±164.3 | 124.6(61.0-671.4) | 508.6±80.7  | 510.9(202.2-752.4 | 0.0001   |
| SERINE          | 128.0±36.2  | 124.7(61.0-282.9) | 149.4±34.2  | 145.6(59.6-274.5) | 0.0001   |
| CYSTEINE        | 20.4±7.8    | 20.1(6.7-42.7)    | 17.8±9.5    | 16.5(2.5-46.2)    | 0.0364   |
| SELENIUM        | 141.1±24.8  | 142.2(96.8-210.8) | 143.0±31.5  | 140.6(93.4-360.4) | 0.7682   |
| VITAMIN E       | 15.8±5.3    | 16.2(6-30.7)      | 13.2±4.5    | 12.1(5.3-29.4)    | 0.0011   |
| CHOLINE         | 13.3±4.8    | 11.7(6.1-27.3)    | 14.2±5.8    | 12.9(1.0-39.6)    | 0.3783   |
| CARNITINE       | 27.3±6.6    | 26.9(12.8-40.3)   | 26.9±7.3    | 27.2(4.1-50.5)    | 0.7748   |
| SODIUM          | 141.5±3.5   | 142(134-150)      | 141.4±3.2   | 141(129-155)      | 0.9044   |
| POTASSIUM       | 4.4±0.43    | 4.3(3.1-5.3)      | 4.5±0.39    | 4.5(3.6-6.2)      | 0.2055   |
| CALCIUM         | 9.6±0.5     | 9.5(8.8-11.2)     | 9.6±0.3     | 9.6(8-11.1)       | 0.3304   |
| MANGANESE       | 0.70±0.2    | 0.68(0.32-1.2)    | 0.72±0.4    | 0.62(0.2-6.8)     | 0.3071   |
| ZINC            | 0.68±0.1    | 0.6(0.4-0.9)      | 0.7±0.1     | 0.6(0.3-2.2)      | 0.2098   |
| COPPER          | 1.1±0.3     | 1.0(0.4-2.5)      | 1.04±0.30   | 0.9(0.3-3.4)      | 0.3136   |
| CHROMIUM        | 0.23±0.10   | 0.21(0.06-0.52)   | 0.2±0.16    | 0.2(0.01-1.7)     | 0.6318   |
| IRON            | 92.2±33.6   | 86.5(25.3-192.1)  | 104.1±38.2  | 100(29.8-238.9)   | 0.0983   |
| MAGNESIUM       | 2.1±0.2     | 2.1(1.2-2.5)      | 2.1±0.18    | 2.2(1.0-2.6)      | 0.8566   |
| VITAMIN A       | 84.8±27.0   | 80.0(43.3-151.9)  | 76.7±23.9   | 72.3(34.1-151.5)  | 0.0661   |
| VITAMIN_B1      | 21.1±14.0   | 17.7(1.0-56.8)    | 21.4±15.0   | 18.4(0.8-136.8)   | 0.8646   |
| VITAMIN_B2      | 21.8±14.3   | 17.2(6.4-64.2)    | 28.1±21.8   | 22.0(4.8-140.8)   | 0.0848   |
| VITAMIN_B3      | 19.4±5.5    | 19.4(5.4-30.3)    | 19.4±8.8    | 18.9(2.7-110.1)   | 0.7625   |
| VITAMIN_B6      | 13.5±13.6   | 9.1(2.9-80.9)     | 17.6±19.0   | 12.4(1.1-236.7)   | 0.1048   |
| VITAMIN_B12     | 642±304.0   | 532.2(245.1-1593) | 742.3±331.1 | 674.3(150-1958)   | 0.0509   |
| VITAMIN_B5      | 104.3±84.9  | 71.8(25.8-330.0)  | 106.0±87.9  | 68.3(13.8-482.1)  | 0.8070   |
| VITAMIN_C       | 0.43±0.23   | 0.39(0.08-0.88)   | 0.44±0.29   | 0.39(0.05-3.74)   | 0.9910   |
| VITAMIN_D3      | 0.93±0.24   | 0.93(0.41-1.46)   | 0.92±0.27   | 0.88(0.32-1.78)   | 0.5533   |
| VITAMIN_K1      | 2.3±2.7     | 1.6(0.2-13.9)     | 1.5±1.0     | 1.2(0.05-7.3)     | 0.0290   |
| VITAMIN_K2      | 0.74±0.87   | 0.32(0.10-3.8)    | 0.71±1.2    | 0.28(0.082-11.2)  | 0.2940   |
| FOLATE          | 12.0±4.1    | 11.0(2.9-19.6)    | 13.7±3.9    | 13.9(2.8-19.9)    | 0.0146   |
| VITAMIN D 25 OF | [40.7±24.9  | 33.6(12.4-136)    | 48.3±22.8   | 41.7(8.8-133)     | 0.0091   |

| ISOLEUCINE | 76.8±24.3  | 73.2(35.7-142.7)   | 67.9±20.2  | 65.1(24.0-139.7)  | 0.0193 |
|------------|------------|--------------------|------------|-------------------|--------|
| VALINE     | 256.6±57.0 | 247.8(175.3-363.9) | 244.1±54.8 | 234.8(134.9-442.  | 0.2253 |
| LEUCINE    | 169.3±35.8 | 168.7(113.7-241.0) | 163.4±34   | 158.3(80.3-249.2) | 0.3703 |
| CITRULLINE | 28.3±8.3   | 28.7(10.3-44.9)    | 30.2±8.0   | 29.1(10.1-69.3)   | 0.3014 |
| ARGININE   | 129.6±33.0 | 119.5(78.3-205.3)  | 122.5±34.1 | 119.2(49.6-299.2) | 0.3083 |

# Table S4: Association of serum triglycerides with micronutrients

|                 | Greater that | n Reference Range  | Within      | range (n=323)     | Р        |
|-----------------|--------------|--------------------|-------------|-------------------|----------|
|                 |              | (n=36)             |             |                   | (P<0.05) |
| ASPARAGINE      | 53.4±15.5    | 49.9(31.1-118.7)   | 54.3±12.2   | 53.1(28.1-113.0)  | 0.3363   |
| GLUTAMINE       | 463.7±107.6  | 472.9(118.7-608.3) | 508.4±78.7  | 507.6(202.2-752)  | 0.0290   |
| SERINE          | 136.5±32.8   | 130.6(76.0-198.5)  | 149.6±34.7  | 145.6(59.6-282.9) | 0.0368   |
| CYSTEINE        | 22.1±18.1    | 19.4(4.9-118.7)    | 17.6±9.1    | 15.7(1.3-46.2)    | 0.0573   |
| SELENIUM        | 142.6±22.8   | 141(96.8-207.5)    | 143.0±29.5  | 140.2(93.4-360.4) | 0.7712   |
| VITAMIN E       | 20.1±17      | 16.7(8.5-118.7)    | 12.9±4.3    | 11.9(5.3-29.4)    | 0.0001   |
| CHOLINE         | 17.8±18.1    | 14.1(7.0-118.7)    | 14.0±5.7    | 12.6(1.0-39.6)    | 0.1661   |
| CARNITINE       | 32.6±16.5    | 31.5(11.6-118.7)   | 26.5±7.2    | 26.6(4.1-50.5)    | 0.0014   |
| SODIUM          | 141.5±4.8    | 142.5(118.7-150)   | 141.5±3.4   | 141(129-155)      | 0.3449   |
| POTASSIUM       | 7.7±19.0     | 4.5(4.1-118.7)     | 4.5±0.3     | 4.5 (3.1-6.2)     | 0.6792   |
| CALCIUM         | 12.8±18.1    | 9.7(9.0-118.7)     | 9.6±0.4     | 9.6(8.2-11.1)     | 0.0518   |
| MANGANESE       | 0.7±0.2      | 0.67(0.32-1.5)     | 0.72±0.46   | 0.63(0.2-6.8)     | 0.1321   |
| ZINC            | 0.68±0.13    | 0.702(0.4-1.0)     | 0.71±0.16   | 0.69(0.39-2.23)   | 0.5508   |
| COPPER          | 1.01±0.23    | 1.0(0.48-1.5)      | 1.0±0.3     | 1.0(0.3-3.4)      | 0.6959   |
| CHROMIUM        | 0.23±0.11    | 0.22(0.05-0.51)    | 0.25±0.16   | 0.22(0.01-1.7)    | 0.6972   |
| IRON            | 101.2±29.1   | 97.5(50.7-160)     | 102.8±39.5  | 100(25.3-238.9)   | 0.9361   |
| MAGNESIUM       | 2.2±0.15     | 2.2(1.9-2.6)       | 2.1±0.19    | 2.2(1.0-2.6)      | 0.7556   |
| VITAMIN A       | 88.4±27.3    | 82(52.8-151.9)     | 75.8±23.3   | 72.1(34.1-151.5)  | 0.0061   |
| VITAMIN_B1      | 19.8±15.7    | 16.9(1.0-66.4)     | 21.9±14.9   | 18.6(0.8-136.8)   | 0.2701   |
| VITAMIN_B2      | 26.8±15.5    | 24.5(6.2-64.7)     | 27.9±22.9   | 20.8(4.8-174.1)   | 0.4594   |
| VITAMIN_B3      | 17.5±5.6     | 16.9(8.7-27.8)     | 19.4±8.7    | 18.9(2.7-110.1)   | 0.1979   |
| VITAMIN_B6      | 13.2±10.8    | 9.8(2.9-49.1)      | 17.7±19.0   | 12.4(1.1-236.7)   | 0.1156   |
| VITAMIN_B12     | 688.9±321.3  | 552.1(281.5-1593)  | 738.2±325.9 | 667.8(196-1958)   | 0.2503   |
| VITAMIN_B5      | 112.6±97.3   | 70.5(27.4-437.4)   | 107.5±88.3  | 71.2(13.8-482.1)  | 0.6561   |
| VITAMIN_C       | 0.51±0.42    | 0.41(0.14-2.6)     | 0.44±0.28   | 0.40(0.05-3.74)   | 0.6053   |
| VITAMIN_D3      | 0.96±0.29    | 0.93(0.40-1.42)    | 0.91±0.26   | 0.88(0.32-1.78)   | 0.3611   |
| VITAMIN_K1      | 3.14±2.7     | 2.3(0.22-13.9)     | 1.42±0.99   | 1.22(0.05-7.32)   | 0.0001   |
| VITAMIN_K2      | 1.07±1.9     | 0.32(0.10-11.2)    | 0.66±1.09   | 0.28(0.082-11.0)  | 0.1134   |
| FOLATE          | 12.4±4.5     | 12.6(2.8-19.6)     | 13.8±3.9    | 14.1(2.9-19.9)    | 0.0839   |
| VITAMIN D 25 OH | 33.9±13.6    | 30.7(15.4-71.2)    | 48.6±23.2   | 41.8(8.8-136)     | 0.0001   |

| ISOLEUCINE | 84.0±27.5  | 84.2(35.7-142.7)   | 67.1±19.1  | 64.6(24.0-139.7)  | 0.0002 |
|------------|------------|--------------------|------------|-------------------|--------|
| VALINE     | 275.0±63.3 | 281.1(175.3-442.4) | 241.7±52.8 | 233.6(134.9-442.) | 0.0020 |
| LEUCINE    | 179.9±36.8 | 182.7(113.7-233.5) | 161.7±34.1 | 157.4(79.7-249.2) | 0.0033 |
| CITRULLINE | 29.3±7.5   | 30.8(10.3-41.7)    | 30.0±8.1   | 28.8(10.1-69.3)   | 0.8478 |
| ARGININE   | 134.4±38.1 | 125.0(76.9-211.3)  | 121.6±32.8 | 117.7(49.6-299.2) | 0.0539 |

# Table S5: Association of serum Apo A1 with micronutrients

|                 | Less that   | an Reference       | Within      | range (n=323)     | Р        |
|-----------------|-------------|--------------------|-------------|-------------------|----------|
|                 | Rar         | nge (n=47)         |             |                   | (P<0.05) |
| ASPARAGINE      | 51.0±10.6   | 49.4(34.1-79.1)    | 54.5±12.1   | 53.3(28.1-113.0)  | 0.0444   |
| GLUTAMINE       | 498.7±78.4  | 490.2(320.3-719.9) | 506.4±81.7  | 509(202.2-752.4)  | 0.2889   |
| SERINE          | 147.0±34.8  | 150.5(76.0-225.4)  | 148.8±34.6  | 144.1(59.6-282.9) | 0.8934   |
| CYSTEINE        | 20.7±8.7    | 20.2(6.7-42.7)     | 17.7±9.2    | 16.4(2.2-60.3)    | 0.0210   |
| SELENIUM        | 140.6±34.4  | 131.5(96.8-298.7)  | 143.7±28.4  | 141.7(93.4-360.4) | 0.1749   |
| VITAMIN E       | 12.2±4.8    | 10.9(4.0-23.4)     | 13.5±4.7    | 12.4(5.6-30.7)    | 0.0369   |
| CHOLINE         | 13.7±5.8    | 13.2(6.0-36.6)     | 14.1±5.6    | 12.7(1.0-39.6)    | 0.5099   |
| CARNITINE       | 26.3±6.5    | 25.2(12.8-40.3)    | 27.1±7.3    | 27.2(4.1-50.5)    | 0.4189   |
| SODIUM          | 140.8±2.9   | 141(134-148)       | 141.6±3.5   | 141(129-155.0)    | 0.1868   |
| POTASSIUM       | 4.4±0.4     | 4.4(3.1-5.3)       | 4.5±0.3     | 4.5(3.6-6.22)     | 0.0501   |
| CALCIUM         | 9.4±0.3     | 9.5(8.7-10.4)      | 9.6±0.39    | 9.6(8.5-11.1)     | 0.0022   |
| MANGANESE       | 0.70±0.39   | 0.64(0.2-2.6)      | 0.7±0.4     | 0.64(0.24-6.8)    | 0.2491   |
| ZINC            | 0.69±0.19   | 0.64(0.45-1.50)    | 0.71±0.15   | 0.69(0.39-2.23)   | 0.0315   |
| COPPER          | 1.0±0.29    | 1.10(0.48-1.59)    | 1.05±0.30   | 0.99(0.37-3.41)   | 0.5663   |
| CHROMIUM        | 0.23±0.11   | 0.22(0.04-0.56)    | 0.2±0.16    | 0.22(0.01-1.79)   | 0.4849   |
| IRON            | 85.6±36.6   | 78.5(25.3-182.4)   | 105.5±38.4  | 101.6(33.2-238.9) | 0.0015   |
| MAGNESIUM       | 2.1±0.22    | 2.16(1.2-2.5)      | 2.2±0.18    | 2.2(1.03-2.95)    | 0.0638   |
| VITAMIN A       | 72.0±23.2   | 65.0(38.2-145.8)   | 78.3±24.4   | 73.5(34.1-151.9)  | 0.0573   |
| VITAMIN_B1      | 20.5±14.3   | 16.8(.89-66.4)     | 21.7±15.1   | 18.5(0.83-136.8)  | 0.4571   |
| VITAMIN_B2      | 24.0±18.8   | 17.3(5.3-84.3)     | 28.0±22.8   | 21.9(4.8-174.1)   | 0.1599   |
| VITAMIN_B3      | 19.3±5.4    | 19.8(5.4-30.3)     | 19.1±8.8    | 18.3(2.7-110.4)   | 0.5138   |
| VITAMIN_B6      | 20.2±34.8   | 12.3(2.9-236.7)    | 16.6±13.9   | 12.4(1.1-84.2)    | 0.9154   |
| VITAMIN_B12     | 637.5±271.7 | 559.4(245.1-1600)  | 750.3±330.1 | 691.3(196-1958)   | 0.0198   |
| VITAMIN_B5      | 104.0±81.5  | 73.7(20.2-330.0)   | 107.2±87.9  | 70.0(13.8-482.1)  | 0.9560   |
| VITAMIN_C       | 0.41±0.24   | 0.32(0.086-1.04)   | 0.45±0.31   | 0.41(0.05-3.74)   | 0.2341   |
| VITAMIN_D3      | 0.84±0.24   | 0.81(0.41-1.5)     | 0.94±0.28   | 0.91(0.32-2.19)   | 0.0198   |
| VITAMIN_K1      | 1.3±1.1     | 0.99(0.15-5.8)     | 1.6±1.3     | 1.2(0.05-13.9)    | 0.1330   |
| VITAMIN_K2      | 0.69±0.72   | 0.34(0.10-3.24)    | 0.72±1.2    | 0.28(0.082-11.2)  | 0.1358   |
| FOLATE          | 12.1±4.0    | 12.2(2.2-19.6)     | 13.8±4.0    | 14.2(2.8-19.9)    | 0.0050   |
| VITAMIN D 25 OH | 44.1±29.5   | 31.4(8.8-136)      | 48.1±21.9   | 41.8(10.4-133)    | 0.0177   |

| ISOLEUCINE | 73.7±23.9  | 72.2(35.7-142.7)   | 68.1±20.0  | 65.3(24.0-139.7)  | 0.1804 |
|------------|------------|--------------------|------------|-------------------|--------|
| VALINE     | 251.1±63.6 | 238.2(149.8-442.4) | 244.6±53.8 | 236.9(134.9-442.) | 0.6595 |
| LEUCINE    | 162.7±32.0 | 161.9(102-233.4)   | 163.4±35.1 | 158.8(79.7-249.2) | 0.9295 |
| CITRULLINE | 28.2±8.1   | 27.8(10.3-47.9)    | 30.4±8.4   | 29.4(10.1-79.4)   | 0.1294 |
| ARGININE   | 122.2±26.7 | 115.8(78.3-205.3)  | 123.5±34.3 | 120(49.6-299.2)   | 0.8107 |

# Table S6: Association of serum Apo B with micronutrients

|                 | Greater t   | han Reference      | Within      | range (n=270)     | Р        |
|-----------------|-------------|--------------------|-------------|-------------------|----------|
|                 | Rai         | nge (n=87)         |             |                   | (P<0.05) |
| ASPARAGINE      | 53.4±11.1   | 53.5(34.1-79.1)    | 54.2±12.3   | 52.8(28.1-113.0)  | 0.7013   |
| GLUTAMINE       | 489.6±84.4  | 492.2(204.1-752.4) | 510.5±79.7  | 507.8(202.2-741.  | 0.0643   |
| SERINE          | 140.6±33.0  | 135.4(75.0-209.7)  | 151.1±34.7  | 147.2(59.6-282.9) | 0.0189   |
| CYSTEINE        | 18.4±9.5    | 17.9(2.8-60.3)     | 18.0±9.1    | 16.5(2.2-45.2)    | 0.6201   |
| SELENIUM        | 146.4±24.0  | 144.8(93.4-210.8)  | 142.3±30.3  | 139(95.7-360.4)   | 0.0451   |
| VITAMIN E       | 16.0±5.5    | 15.3(7.3-29.0)     | 12.5±4.1    | 11.7(4.0-30.7)    | 0.0001   |
| CHOLINE         | 14.4±5.3    | 13.2(6.6-39.6)     | 13.9±5.7    | 12.4(1.0-36.6)    | 0.3090   |
| CARNITINE       | 27.8±7.7    | 28.2(9.8-44.3)     | 26.7±7.1    | 26.6(4.1-50.5)    | 0.1555   |
| SODIUM          | 141.5±3.4   | 141(133-151)       | 141.5±3.4   | 141(129-155)      | 0.8920   |
| POTASSIUM       | 4.5±0.35    | 4.5(3.6-5.6)       | 4.5±0.40    | 4.49(3.1-6.22)    | 0.0377   |
| CALCIUM         | 9.7±0.3     | 9.7(8.7-10.6)      | 9.6±0.3     | 9.6(8.5-11.1)     | 0.0055   |
| MANGANESE       | 0.73±0.29   | 0.67(0.34-2.1)     | 0.73±0.49   | 0.63(0.24-6.82)   | 0.1635   |
| ZINC            | 0.73±0.11   | 0.72(0.39-1.0)     | 0.70±0.17   | 0.68(0.44-2.23)   | 0.0058   |
| COPPER          | 1.0±0.32    | 1.0(0.6-2.5)       | 1.0±0.3     | 1.0(0.3-3.4)      | 0.4660   |
| CHROMIUM        | 0.24±0.11   | 0.22(0.05-0.59)    | 0.25±0.17   | 0.22(0.011-1.7)   | 0.9988   |
| IRON            | 109.3±34.2  | 107.7(45.6-201.3)  | 100.8±39.9  | 97.7(25.3-238.9)  | 0.0239   |
| MAGNESIUM       | 2.2±0.1     | 2.2(1.9-2.9)       | 2.1±0.19    | 2.1(1.0-2.6)      | 0.0002   |
| VITAMIN A       | 82.4±23.7   | 77.7(34.1-145.8)   | 75.8±24.2   | 72.1(37.1-151.9)  | 0.0096   |
| VITAMIN_B1      | 19.3±14.1   | 16.8(1.17-70.3)    | 22.2±15.2   | 18.6(0.83-136.8)  | 0.0516   |
| VITAMIN_B2      | 27.1±23.8   | 20.9(6.2-174.1)    | 28.5±24.8   | 21.2(4.8-222.5)   | 0.7427   |
| VITAMIN_B3      | 18.7±11.9   | 17.8(3.4-110.1)    | 19.3±7.0    | 19.1(2.7-40.6)    | 0.0954   |
| VITAMIN_B6      | 15.5±14.3   | 11.7(2.9-84.2)     | 17.6±19.1   | 12.5(1.1-236.7)   | 0.2511   |
| VITAMIN_B12     | 750.2±345.3 | 659.5(290.2-1958)  | 730.6±318.6 | 666.8(196-1923)   | 0.8363   |
| VITAMIN_B5      | 110.1±89.9  | 72.0(13.8-437.4)   | 96.5±76.8   | 68.6(23.5-482.1)  | 0.4485   |
| VITAMIN_C       | 0.45±0.29   | 0.40(0.05-3.74)    | 0.45±0.32   | 0.39(0.05-2.6)    | 0.7818   |
| VITAMIN_D3      | 0.87±0.24   | 0.83(0.32-1.6)     | 1.09±0.30   | 1.08(0.44-2.19)   | 0.0001   |
| VITAMIN_K1      | 1.5±1.3     | 1.2(0.05-13.9)     | 1.8±1.4     | 1.4(0.10-7.3)     | 0.0416   |
| VITAMIN_K2      | 0.6±1.0     | 0.29(0.082-11.0)   | 0.86±1.6    | 0.28(0.10-11.2)   | 0.9964   |
| FOLATE          | 13.0±4.3    | 13.3(2.8-19.8)     | 13.8±3.9    | 14.2(2.2-19.9)    | 0.1956   |
| VITAMIN D 25 OF | I47.6±22.3  | 41.7(8.8-136)      | 47.5±25.3   | 40.1(15.4-133)    | 0.4508   |

| ISOLEUCINE | 72.7±19.9  | 70.7(34.0-121.4)   | 67.6±20.7  | 64.2(24.0-142.7)  | 0.0138 |
|------------|------------|--------------------|------------|-------------------|--------|
| VALINE     | 261.9±55.2 | 262.7(146.5-404.0) | 240.2±54.2 | 232.1(134.9)      | 0.0004 |
| LEUCINE    | 172±34.8   | 168.8(113.7-248.2) | 160.5±34.2 | 157.4(79.7-249.2) | 0.0138 |
| CITRULLINE | 30.1±8.0   | 28.8(10.1-69.3)    | 30.2±9.6   | 29.7(10.3-79.4)   | 0.9509 |
| ARGININE   | 123.7±33.8 | 119.4(49.6-299.2)  | 122.2±32.0 | 117.5(61.1-211.3) | 0.7427 |

# Table S7: Association of serum Lipoprotein (a) with micronutrients

|                 | Greater t   | han Reference      | Within      | range (n=270)     | Р        |
|-----------------|-------------|--------------------|-------------|-------------------|----------|
|                 | Rai         | nge (n=87)         |             |                   | (P<0.05) |
| ASPARAGINE      | 54.0±10.0   | 54.2(31.1-80.6)    | 53.5±12.3   | 52.7(28.1-108.0)  | 0.4975   |
| GLUTAMINE       | 508.3±81.7  | 514.8(320.3-710.3) | 505.3±80.5  | 506.9(202.2-741.  | 0.8216   |
| SERINE          | 151.4±35.3  | 150.7(59.6-274.5)  | 148.0±37.8  | 142.5(70.5-241.1) | 0.4179   |
| CYSTEINE        | 17.9±8.6    | 7.02(2.8-45.1)     | 19.0±9.9    | 17.4(3.3-45.2)    | 0.6336   |
| SELENIUM        | 139.2±21.9  | 138.3(96.6-210.8)  | 141.5±25.9  | 138.0(93.4-274.7) | 0.7976   |
| VITAMIN E       | 13.5±4.8    | 12.0(5.6-29.4)     | 13.1±4.2    | 12.4(5.3-28.2)    | 0.9456   |
| CHOLINE         | 13.6±5.6    | 11.9(5.8-36.6)     | 14.6±6.1    | 13.2(1.0-39.6)    | 0.1288   |
| CARNITINE       | 26.5±7.1    | 26.7(12.5-50.5)    | 26.8±7.7    | 27.0(4.1-44.3)    | 0.7048   |
| SODIUM          | 141.5±3.5   | 142(129-150)       | 141.6±3.6   | 141(133-155)      | 0.7881   |
| POTASSIUM       | 4.5±0.4     | 4.5(3.1-5.6)       | 4.5±0.39    | 4.4(3.7-6.2)      | 0.4339   |
| CALCIUM         | 9.6±0.4     | 9.5(8.7-10.6)      | 9.6±0.4     | 9.6(8.5-10.8)     | 0.6777   |
| MANGANESE       | 0.70±0.29   | 0.64(0.24-1.85)    | 0.74±0.32   | 0.69(0.3-2.6)     | 0.2023   |
| ZINC            | 0.72±0.15   | 0.69(0.45-1.5)     | 0.7±0.14    | 0.69(0.3-1.3)     | 0.4235   |
| COPPER          | 1.0±0.29    | 1.0(0.10-2.1)      | 1.0±0.29    | 1.0(0.5-2.5)      | 0.4000   |
| CHROMIUM        | 0.24±0.12   | 0.23(0.02-0.68)    | 0.25±0.14   | 0.22(0.02-1.0)    | 0.8911   |
| IRON            | 100.8±38.4  | 95(33.7-238.9)     | 105.7±38.4  | 102.0(25.3-201.3) | 0.3270   |
| MAGNESIUM       | 2.1±0.9     | 2.1(1.2-2.6)       | 2.1±0.2     | 2.1(1.0-2.6)      | 0.4372   |
| VITAMIN A       | 76.8±25.4   | 71.2(34.3-151.2)   | 77.9±25.9   | 71.5(36.9-151.5)  | 0.7935   |
| VITAMIN_B1      | 16.8±11.1   | 14.9(1.0-49.2)     | 22.7±13.7   | 20.7(0.8-78.8)    | 0.0008   |
| VITAMIN_B2      | 26.7±20.4   | 20.3(5.7-135.7)    | 30.1±30.4   | 22.2(5.7-222.5)   | 0.4808   |
| VITAMIN_B3      | 19.9±6.9    | 19.8(3.4-35.4)     | 19.7±10.2   | 18.9(2.7-110.1)   | 0.3823   |
| VITAMIN_B6      | 17.2±22     | 11.9(1.6-236.7)    | 17.1±16.9   | 11.0(1.4-84.2)    | 0.6969   |
| VITAMIN_B12     | 684.3±264.5 | 599.1(196-1381)    | 776.9±364.0 | 713.1(200-1923)   | 0.1376   |
| VITAMIN_B5      | 103.8±81.9  | 68.6(13.8-360.9)   | 101.8±86.0  | 70.0(21.5-482.1)  | 0.8976   |
| VITAMIN_C       | 0.43±0.24   | 0.38(0.08-1.2)     | 0.44±0.33   | 0.4(0.05-3.7)     | 0.8100   |
| VITAMIN_D3      | 0.93±0.28   | 0.91(0.3-1.7)      | 0.94±0.26   | 0.94(0.32-1.6)    | 0.4137   |
| VITAMIN_K1      | 1.5±1.1     | 1.2(0.05-5.8)      | 1.5±1.1     | 1.32(0.1-7.3)     | 0.5896   |
| VITAMIN_K2      | 0.69±1.2    | 0.29(0.08-11.2)    | 0.61±0.78   | 0.28(0.10-4.8)    | 0.9556   |
| FOLATE          | 13.5±4.2    | 13.7(2.9-19.9)     | 13.8±3.7    | 13.9(3.4-19.8)    | 0.7113   |
| VITAMIN D 25 OF | I 46.7±21.1 | 40.9(10.4-128)     | 47.7±23.4   | 41.2(12.4-133)    | 0.9703   |

| ISOLEUCINE | 68.8±19.7  | 66.3(33.5-129.7)   | 68.6±21.6  | 65.6(24.0-142.7)  | 0.8235 |
|------------|------------|--------------------|------------|-------------------|--------|
| VALINE     | 243.9±56.8 | 236.2(149.8-442.7) | 243.1±53.4 | 240.0(146.5-409.2 | 0.9007 |
| LEUCINE    | 164.4±33.4 | 164.5(90.3-235.1)  | 161.1±33.9 | 157.2(80.3-248.2) | 0.3296 |
| CITRULLINE | 29.6±7.8   | 28.6(10.1-51.2)    | 30.1±9.2   | 29.6(10.3-69.3)   | 0.5236 |
| ARGININE   | 124.7±39.2 | 118.3(56.1-299.2)  | 125.4±32.8 | 122.4(49.6-220.6) | 0.5700 |

Table S8: Pearson correlation between serum cholesterol and micronutrients

|                 | r        | р        |
|-----------------|----------|----------|
| ASPARAGINE      | -0.125   | 0.018    |
| GLUTAMINE       | -0.1127  | 0.0331   |
| SERINE          | -0.02601 | 0.6238   |
| CYSTEINE        | -0.01392 | 0.793    |
| SELENIUM        | 0.02659  | 0.616    |
| VITAMIN E       | 0.4086   | < 0.0001 |
| CHOLINE         | 0.03297  | 0.5341   |
| CARNITINE       | 0.09912  | 0.061    |
| SODIUM          | 0.01349  | 0.7992   |
| POTASSIUM       | 0.009154 | 0.863    |
| CALCIUM         | 0.01211  | 0.8193   |
| MANGANESE       | -0.08336 | 0.1154   |
| ZINC            | -0.06639 | 0.2101   |
| COPPER          | -0.05695 | 0.2826   |
| CHROMIUM        | -0.07196 | 0.1743   |
| IRON            | 0.1067   | 0.0437   |
| MAGNESIUM       | 0.01114  | 0.8337   |
| VITAMIN A       | 0.1471   | 0.0053   |
| VITAMIN_B1      | -0.08282 | 0.1178   |
| VITAMIN_B2      | -0.02302 | 0.6643   |
| VITAMIN_B3      | -0.03355 | 0.5268   |
| VITAMIN_B6      | -0.08714 | 0.0997   |
| VITAMIN_B12     | 0.03583  | 0.4992   |
| VITAMIN_B5      | -0.0739  | 0.1629   |
| VITAMIN_C       | -0.02218 | 0.6757   |
| VITAMIN_D3      | 0.5125   | < 0.0001 |
| VITAMIN_K1      | 0.2334   | < 0.0001 |
| VITAMIN_K2      | 0.07045  | 0.1835   |
| FOLATE          | -0.104   | 0.0493   |
| VITAMIN D 25 OH | 0.06205  | 0.2416   |
| ISOLEUCINE      | 0.007779 | 0.8834   |
| VALINE          | 0.09774  | 0.0647   |
| LEUCINE         | 0.04598  | 0.3857   |
| CITRULLINE      | 0.02438  | 0.6458   |
| ARGININE        | 0.02322  | 0.6614   |

# Table S9: Pearson correlation between serum LDL and micronutrients

|                 | r        | р        |
|-----------------|----------|----------|
| ASPARAGINE      | -0.1217  | 0.0213   |
| GLUTAMINE       | -0.1074  | 0.0423   |
| SERINE          | -0.04485 | 0.3975   |
| CYSTEINE        | 0.0241   | 0.6495   |
| SELENIUM        | -0.00553 | 0.917    |
| VITAMIN E       | 0.3398   | < 0.0001 |
| CHOLINE         | -0.00725 | 0.8912   |
| CARNITINE       | 0.1446   | 0.0061   |
| SODIUM          | 0.02695  | 0.6113   |
| POTASSIUM       | 0.02737  | 0.6058   |
| CALCIUM         | 0.03125  | 0.5556   |
| MANGANESE       | -0.09346 | 0.0774   |
| ZINC            | -0.07538 | 0.1546   |
| COPPER          | -0.07262 | 0.1704   |
| CHROMIUM        | -0.08254 | 0.119    |
| IRON            | 0.1199   | 0.0233   |
| MAGNESIUM       | 0.03085  | 0.5607   |
| VITAMIN A       | 0.09463  | 0.0737   |
| VITAMIN_B1      | -0.07151 | 0.177    |
| VITAMIN_B2      | -0.02853 | 0.5906   |
| VITAMIN_B3      | -0.00581 | 0.9127   |
| VITAMIN_B6      | -0.05988 | 0.2585   |
| VITAMIN_B12     | 0.03573  | 0.5003   |
| VITAMIN_B5      | -0.04077 | 0.4419   |
| VITAMIN_C       | 0.00019  | 0.9971   |
| VITAMIN_D3      | 0.4774   | < 0.0001 |
| VITAMIN_K1      | 0.06084  | 0.2509   |
| VITAMIN_K2      | 0.0651   | 0.2192   |
| FOLATE          | -0.07946 | 0.1335   |
| VITAMIN D 25 OH | 0.07967  | 0.1324   |
| ISOLEUCINE      | 0.01793  | 0.7354   |
| VALINE          | 0.1471   | 0.0053   |
| LEUCINE         | 0.09979  | 0.0593   |
| CITRULLINE      | 0.001029 | 0.9845   |

|     | ARGININE | -0.03571 | 0.5007 |
|-----|----------|----------|--------|
| 541 |          |          |        |
| 542 |          |          |        |
| 543 |          |          |        |
| 544 |          |          |        |
| 545 |          |          |        |
| 546 |          |          |        |
| 547 |          |          |        |
|     |          |          |        |

548

### Table S10: Pearson correlation between serum HDL and micronutrients

|                 | r        | р        |
|-----------------|----------|----------|
| ASPARAGINE      | 0.007988 | 0.8803   |
| GLUTAMINE       | 0.01765  | 0.7392   |
| SERINE          | 0.06766  | 0.2016   |
| CYSTEINE        | -0.2289  | < 0.0001 |
| SELENIUM        | 0.08967  | 0.0902   |
| VITAMIN E       | -0.099   | 0.0613   |
| CHOLINE         | 0.01779  | 0.7373   |
| CARNITINE       | -0.1653  | 0.0017   |
| SODIUM          | -0.08206 | 0.1212   |
| POTASSIUM       | -0.0799  | 0.1313   |
| CALCIUM         | -0.08061 | 0.1279   |
| MANGANESE       | 0.03657  | 0.4903   |
| ZINC            | 0.03521  | 0.5067   |
| COPPER          | 0.04878  | 0.3574   |
| CHROMIUM        | 0.0416   | 0.4326   |
| IRON            | 0.03515  | 0.5074   |
| MAGNESIUM       | -0.08087 | 0.1267   |
| VITAMIN A       | -0.03156 | 0.5517   |
| VITAMIN_B1      | 0.02135  | 0.6873   |
| VITAMIN_B2      | 0.02877  | 0.5874   |
| VITAMIN_B3      | 0.01155  | 0.8276   |
| VITAMIN_B6      | -0.01147 | 0.8288   |
| VITAMIN_B12     | 0.07736  | 0.1441   |
| VITAMIN_B5      | -0.01955 | 0.7123   |
| VITAMIN_C       | -0.01446 | 0.7852   |
| VITAMIN_D3      | 0.02496  | 0.6378   |
| VITAMIN_K1      | -0.04944 | 0.3509   |
| VITAMIN_K2      | -0.0078  | 0.8831   |
| FOLATE          | -0.02846 | 0.5915   |
| VITAMIN D 25 OH | 0.0655   | 0.2163   |
| ISOLEUCINE      | -0.2298  | <0.0001  |
| VALINE          | -0.2317  | < 0.0001 |
| LEUCINE         | -0.2405  | <0.0001  |

|     | CITRULLINE | 0.0138   | 0.7948 |
|-----|------------|----------|--------|
|     | ARGININE   | -0.03223 | 0.5432 |
| 549 |            |          |        |
| 550 |            |          |        |
| 551 |            |          |        |
| 552 |            |          |        |
| 553 |            |          |        |
| 554 |            |          |        |
| 555 |            |          |        |
|     |            |          |        |

556

Table S11: Pearson correlation between serum triglycerides and micronutrients

|                 | r        | р        |
|-----------------|----------|----------|
| ASPARAGINE      | 0.001283 | 0.9807   |
| GLUTAMINE       | -0.1002  | 0.0582   |
| SERINE          | -0.09025 | 0.0882   |
| CYSTEINE        | 0.1626   | 0.002    |
| SELENIUM        | 0.001458 | 0.9781   |
| VITAMIN E       | 0.3832   | < 0.0001 |
| CHOLINE         | 0.02606  | 0.6232   |
| CARNITINE       | 0.1316   | 0.0127   |
| SODIUM          | 0.03108  | 0.5578   |
| POTASSIUM       | 0.0221   | 0.6769   |
| CALCIUM         | 0.02466  | 0.6419   |
| MANGANESE       | -0.05805 | 0.2733   |
| ZINC            | -0.0603  | 0.2552   |
| COPPER          | -0.05772 | 0.2761   |
| CHROMIUM        | -0.06203 | 0.2417   |
| IRON            | -0.03861 | 0.4665   |
| MAGNESIUM       | 0.02212  | 0.6766   |
| VITAMIN A       | 0.2278   | < 0.0001 |
| VITAMIN_B1      | -0.04035 | 0.4466   |
| VITAMIN_B2      | -0.05275 | 0.3196   |
| VITAMIN_B3      | -0.02601 | 0.6238   |
| VITAMIN_B6      | -0.1057  | 0.0457   |
| VITAMIN_B12     | -0.1209  | 0.0221   |
| VITAMIN_B5      | -0.0363  | 0.4936   |
| VITAMIN_C       | -0.02185 | 0.6803   |
| VITAMIN_D3      | 0.1342   | 0.011    |
| VITAMIN_K1      | 0.5732   | < 0.0001 |
| VITAMIN_K2      | 0.0625   | 0.2382   |
| FOLATE          | -0.01247 | 0.8141   |
| VITAMIN D 25 OH | -0.1507  | 0.0043   |
| ISOLEUCINE      | 0.2838   | < 0.0001 |
| VALINE          | 0.2234   | < 0.0001 |

| LEUCINE    | 0.2139  | < 0.0001 |
|------------|---------|----------|
| CITRULLINE | -0.0145 | 0.7845   |
| ARGININE   | 0.1363  | 0.0098   |

# Table S12: Pearson correlation between serum Apo A and micronutrients

|                 | r        | р      |
|-----------------|----------|--------|
| ASPARAGINE      | -0.04291 | 0.419  |
| GLUTAMINE       | 0.003761 | 0.9435 |
| SERINE          | 0.0321   | 0.5455 |
| CYSTEINE        | -0.05867 | 0.2689 |
| SELENIUM        | 0.0395   | 0.4569 |
| VITAMIN E       | -0.05202 | 0.327  |
| CHOLINE         | -0.03578 | 0.5004 |
| CARNITINE       | -0.0026  | 0.9609 |
| SODIUM          | -0.06147 | 0.2467 |
| POTASSIUM       | -0.0526  | 0.3216 |
| CALCIUM         | -0.05579 | 0.2931 |
| MANGANESE       | 0.05431  | 0.3062 |
| ZINC            | 0.04085  | 0.4417 |
| COPPER          | 0.05533  | 0.2971 |
| CHROMIUM        | 0.05078  | 0.3387 |
| IRON            | 0.01219  | 0.8185 |
| MAGNESIUM       | -0.05607 | 0.2907 |
| VITAMIN A       | 0.03416  | 0.52   |
| VITAMIN_B1      | 0.009489 | 0.8582 |
| VITAMIN_B2      | -0.05013 | 0.345  |
| VITAMIN_B3      | -0.04226 | 0.426  |
| VITAMIN_B6      | -0.05052 | 0.3412 |
| VITAMIN_B12     | 0.03913  | 0.4611 |
| VITAMIN_B5      | -0.05052 | 0.3412 |
| VITAMIN_C       | -0.00363 | 0.9455 |
| VITAMIN_D3      | -0.05824 | 0.2724 |
| VITAMIN_K1      | -0.04603 | 0.3859 |
| VITAMIN_K2      | -0.04088 | 0.4413 |
| FOLATE          | 0.07275  | 0.1702 |
| VITAMIN D 25 OH | -0.07913 | 0.1356 |
| ISOLEUCINE      | -0.04946 | 0.3514 |

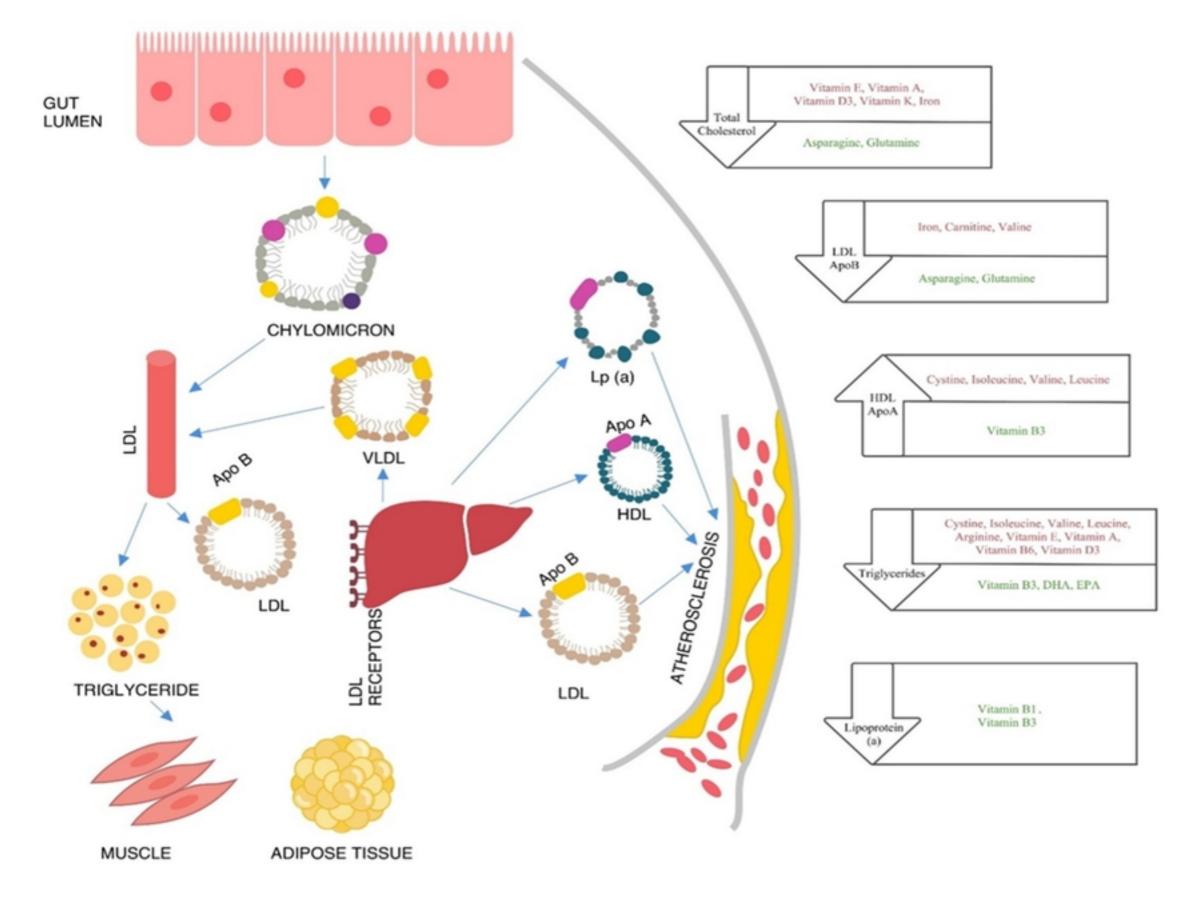
| VALINE     | -0.02571 | 0.6283 |
|------------|----------|--------|
| LEUCINE    | -0.06696 | 0.2069 |
| CITRULLINE | 0.002819 | 0.9577 |
| ARGININE   | 0.003076 | 0.9538 |

\_ \_ \_ \_

# Table S13: Pearson correlation between serum Apo B and micronutrients


|                 | r        | р      |
|-----------------|----------|--------|
| ASPARAGINE      | -0.03841 | 0.4694 |
| GLUTAMINE       | -0.1388  | 0.0086 |
| SERINE          | -0.1269  | 0.0165 |
| CYSTEINE        | -0.02353 | 0.6577 |
| SELENIUM        | -0.01502 | 0.7774 |
| VITAMIN E       | 0.06915  | 0.1924 |
| CHOLINE         | 0.032    | 0.5467 |
| CARNITINE       | 0.03729  | 0.4825 |
| SODIUM          | 0.04303  | 0.4176 |
| POTASSIUM       | 0.03938  | 0.4582 |
| CALCIUM         | 0.03969  | 0.4547 |
| MANGANESE       | -0.00535 | 0.9198 |
| ZINC            | -0.00317 | 0.9525 |
| COPPER          | 0.01326  | 0.8028 |
| CHROMIUM        | -0.00639 | 0.9042 |
| IRON            | 0.08265  | 0.119  |
| MAGNESIUM       | 0.04038  | 0.4469 |
| VITAMIN A       | 0.1008   | 0.057  |
| VITAMIN_B1      | -0.02215 | 0.6767 |
| VITAMIN_B2      | -0.0354  | 0.505  |
| VITAMIN_B3      | -0.09294 | 0.0795 |
| VITAMIN_B6      | -0.02192 | 0.6798 |
| VITAMIN_B12     | 0.003217 | 0.9517 |
| VITAMIN_B5      | -0.00175 | 0.9737 |
| VITAMIN_C       | 0.01495  | 0.7784 |
| VITAMIN_D3      | 0.04051  | 0.4455 |
| VITAMIN_K1      | -0.00555 | 0.9167 |
| VITAMIN_K2      | -0.07411 | 0.1623 |
| FOLATE          | 0.1001   | 0.0589 |
| VITAMIN D 25 OH | -0.01943 | 0.7144 |

| ISOLEUCINE | 0.09702  | 0.0671 |
|------------|----------|--------|
| VALINE     | 0.1259   | 0.0173 |
| LEUCINE    | 0.03799  | 0.4743 |
| CITRULLINE | -0.06951 | 0.1901 |
| ARGININE   | -0.1126  | 0.0334 |


# Table S14: Pearson correlation between serum lipoprotein A and micronutrients

|             | r        | р      |
|-------------|----------|--------|
| ASPARAGINE  | -0.01713 | 0.7914 |
| GLUTAMINE   | 0.06125  | 0.3437 |
| SERINE      | -0.07783 | 0.2287 |
| CYSTEINE    | 0.03708  | 0.5668 |
| SELENIUM    | 0.04334  | 0.5031 |
| VITAMIN E   | 0.008081 | 0.9007 |
| CHOLINE     | -0.06643 | 0.3044 |
| CARNITINE   | -0.05322 | 0.4108 |
| SODIUM      | -0.03759 | 0.5614 |
| POTASSIUM   | 0.09305  | 0.1498 |
| CALCIUM     | 0.000307 | 0.9962 |
| MANGANESE   | -0.01672 | 0.7963 |
| ZINC        | 0.03884  | 0.5485 |
| COPPER      | 0.04358  | 0.5007 |
| CHROMIUM    | -0.01997 | 0.7577 |
| IRON        | 0.07018  | 0.2778 |
| MAGNESIUM   | 0.01067  | 0.8691 |
| VITAMIN A   | 0.0261   | 0.6869 |
| VITAMIN_B1  | -0.1818  | 0.0046 |
| VITAMIN_B2  | 0.02598  | 0.6882 |
| VITAMIN_B3  | -0.01185 | 0.8548 |
| VITAMIN_B6  | -0.00366 | 0.955  |
| VITAMIN_B12 | -0.08534 | 0.1867 |
| VITAMIN_B5  | 0.01869  | 0.7729 |
| VITAMIN_C   | 0.08509  | 0.188  |
| VITAMIN_D3  | 0.05586  | 0.388  |
| VITAMIN_K1  | 0.004489 | 0.9447 |
| VITAMIN_K2  | -0.04037 | 0.5328 |
| FOLATE      | -0.03829 | 0.5541 |

| VITAMIN D 25 OH | 0.07921  | 0.2205 |
|-----------------|----------|--------|
| ISOLEUCINE      | -0.02975 | 0.6458 |
| VALINE          | -0.0444  | 0.4927 |
| LEUCINE         | 0.02835  | 0.6614 |
| CITRULLINE      | -0.02425 | 0.708  |
| ARGININE        | -0.0665  | 0.3039 |



Figure



Figure