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50 Abstract

51 Background

52 Aedes (Stegomyia)-borne diseases are an expanding global threat, but gaps in surveillance make 

53 comprehensive and comparable risk assessments challenging. Geostatistical models combine data 

54 from multiple locations and use links with environmental and socioeconomic factors to make 

55 predictive risk maps. Here we systematically review past approaches to map risk for different Aedes-

56 borne arboviruses from local to global scales, identifying differences and similarities in the data types, 

57 covariates, and modelling approaches used.

58

59 Methods

60 We searched on-line databases for predictive risk mapping studies for dengue, Zika, chikungunya, and 

61 yellow fever with no geographical or date restrictions. We included studies that needed to 

62 parameterise or fit their model to real-world epidemiological data and make predictions to new spatial 

63 locations of some measure of population-level risk of viral transmission (e.g. incidence, occurrence, 

64 suitability, etc).

65

66 Results

67 We found a growing number of arbovirus risk mapping studies across all endemic regions and 

68 arboviral diseases, with a total of 183 papers published 2002-2022 with the largest increases shortly 

69 following major epidemics. Three dominant use cases emerged: i) global maps to identify limits of 

70 transmission, estimate burden and assess impacts of future global change, ii) regional models used to 

71 predict the spread of major epidemics between countries and iii) national and sub-national models that 

72 use local datasets to better understand transmission dynamics to improve outbreak detection and 

73 response. Temperature and rainfall were the most popular choice of covariates (included in 50% and 

74 40% of studies respectively) but variables such as human mobility are increasingly being included. 

75 Surprisingly, few studies (22%, 33/148) robustly tested combinations of covariates from different 
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76 domains (e.g. climatic, sociodemographic, ecological, etc) and only 48% of studies assessed 

77 predictive performance via out-of-sample validation procedures.

78

79 Conclusions

80 Here we show that approaches to map risk for different arboviruses have diversified in response to 

81 changing use cases, epidemiology and data availability. We outline specific recommendations for 

82 future studies regarding aims and data choice, covariate selection, model formulation and evaluation.

83

84 Author Summary

85 Aedes-borne arboviruses such as dengue, Zika, chikungunya, and yellow fever pose a growing global 

86 threat. It is crucial to map their risk to target interventions and control their spread. A review of 183 

87 studies found that risk mapping methods have evolved over time to respond to changing epidemiology 

88 and data availability. Initially, mapping risk involved using data from multiple areas and satellite 

89 imagery to develop models predicting transmission risk on a global or continental scale. Following 

90 Zika and chikungunya epidemics, mechanistic models based on national-level incidence data have 

91 been utilised to track the spread of epidemics across countries. The use of case-based surveillance 

92 systems has enabled more precise and detailed predictions at sub-national levels. Of the studies 

93 reviewed, half included temperature and rainfall as covariates, and human mobility was increasingly 

94 accounted for in arbovirus risk mapping. However, only 33 of the 148 studies robustly selected the 

95 variables included in their predictions, and only half of the studies assessed their accuracy against new 

96 data. The review suggests that future risk mapping studies should consider the purpose of the map, 

97 data quality, and methodological innovations to improve accuracy of risk maps to ensure they are 

98 useful for informing control of Aedes-borne arboviruses.
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99 Background

100 Arboviruses, commonly referred to as arthropod-borne viruses, are a wide range of viral 

101 pathogens transmitted through the bite of arthropods such as mosquitoes and ticks. The term arbovirus 

102 does not refer to a distinct taxonomic group, but the viruses have similar transmission mechanisms, 

103 which makes information gained from one virus potentially useful in understanding and preventing 

104 the spread of other viruses [1]. In this paper, we focus on Aedes (Stegomyia)-borne arboviruses, 

105 including dengue, Zika, chikungunya, and yellow fever, which are of particular concern due to their 

106 high disease burden and life-threatening health consequences [2]. The geographical spread and burden 

107 of this group of arboviruses have been rapidly increasing in recent years. It has been estimated that 

108 100-400 million dengue infections occur each year worldwide, mainly in South America and South-

109 East Asia (SE Asia), with the disease threatening to spread to new regions including Europe [3–5]. 

110 Zika and chikungunya viruses were first identified in Africa and Asia, but emerged and rapidly spread 

111 throughout the Americas between 2013 and 2015, likely due to a combination of suitable climatic 

112 factors, increasing international air travel and possible immunological drivers [6,7]. The Zika 

113 outbreak received global attention due to its link to congenital and neurological complications, 

114 resulting in the declaration of a Public Health Emergency of International Concern by the World 

115 Health Organization (WHO) in 2016 [7]. Chikungunya is frequently accompanied by joint pain and 

116 rheumatic manifestations that can persist for a long time and have a significant impact on the quality 

117 of life of affected individuals [4]. Yellow fever is endemic in tropical and subtropical countries of 

118 South America and Africa, with an estimated number of 109,000 severe infections and 51,000 deaths 

119 in 2018 [8]. Among the Aedes-borne arboviruses, yellow fever is the only one that has a safe and 

120 effective vaccine available for humans. A sylvatic cycle between non-human primate reservoirs and 

121 mosquitoes is the most common source of yellow fever virus infection; however, humans can also 

122 become infected through the urban cycle, which can potentially lead to large outbreaks, as recently 

123 seen in Angola, Nigeria and the Democratic Republic of the Congo [8,9]. As these Aedes-borne 

124 arboviruses share a common mechanism of transmission, the WHO launched the Global Arbovirus 

125 Initiative in 2022, which includes the aim of developing a comprehensive risk monitoring and early 
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126 detection tool that will allow countries to assess global risk of different Aedes-borne viruses, 

127 strengthen vector control, and develop global systems and strategies to monitor and reduce the risk in 

128 the local, regional, and national levels. This initiative identified reviewing the drivers of spatial 

129 arbovirus risk at global and regional levels as a key priority.

130 Surveillance of arboviral diseases varies among countries, by clinical manifestations, and over 

131 time, but three main data types are used most commonly for risk mapping: disease occurrence, case 

132 incidence, and seroprevalence data. Occurrence data represent a specific location where one or more 

133 cases of a disease has occurred [10] (e.g. an outbreak report) and is often available even in otherwise 

134 data-sparse regions, but conveys limited information about the magnitude of risk. Case incidence, as 

135 measured by traditional, largely passive disease surveillance systems, provides more information on 

136 magnitude due to being denominator-based (e.g. cases per 1,000 residents), but often underestimates 

137 the incidence of infection and is often not directly comparable between countries due to differing case 

138 definitions, health seeking patterns, health care and laboratory capacity, immunological landscape and 

139 surveillance systems. Age-specific community-representative seroprevalence survey data, when 

140 combined with models, can be used to estimate force of infection. This provides a less biased measure 

141 of long-term transmission risk, but is the least abundant data type and is subject to the limitations of 

142 serology in the context of cross-reactive flavivirus infections [11].

143 The geographic distribution and intensity of Aedes-borne arbovirus transmission have been 

144 attributed to a combination of pathogen, environmental, demographic and socioeconomic factors such 

145 as climate change, urbanisation and local and international travel. Temperature, in particular, is a 

146 frequently cited determinant of arbovirus transmission, as temperature drives all important metabolic 

147 traits for vector mosquitoes to transmit the virus to humans [12]. Rapid unplanned urbanisation 

148 increases human population density, can create urban heat islands and can lead to inadequate water 

149 provision and solid waste disposal which favour the proliferation of both vectors and virus 

150 transmission [13]. Increasing trade has facilitated expansion of Aedes vectors while increasing travel 

151 of humans has spread new viruses and virus sub-types into previously naive populations [14]. Finally, 

152 the level of local immunity also helps determine arboviral transmission patterns. Immunity is driven 

153 by both demography and past pathogen circulation patterns and can vary substantially between 
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154 populations. The inherent spatial and temporal patterns of arbovirus transmission are therefore the 

155 result of the complex interactions of multiple factors, likely differing between arbovirus, location and 

156 spatial scale. 

157 A wide range of spatial modelling techniques has been developed to account for complexities 

158 in investigating the variations in geographic spread of Aedes-borne arbovirus infections. Broadly, 

159 these can be categorised into i) data-driven approaches where flexible statistical models aim to 

160 recreate observed patterns with fewer built-in mechanistic assumptions about how variables are 

161 related to risk or ii) process-driven approaches where assumptions about drivers and how they affect 

162 transmission are encoded in a mechanistic (mathematical) model, which is then fit to observational 

163 data. Due to data scarcity in many risk mapping applications, implementing statistical and 

164 mathematical models in Bayesian frameworks has become increasingly popular due to incorporating 

165 prior information and better representing uncertainty in their predictions.

166 Previous systematic reviews have been conducted to identify and characterise dengue 

167 transmission models focused on predicting trends over time (hindcasting with the goal of developing 

168 forecasting systems) as opposed to spatially explicit prediction (risk mapping) [15–17]. Some of these 

169 systematic reviews included risk mapping studies but they have been limited to just a single arbovirus, 

170 usually dengue [7,18–20].  Although arbovirus risk mapping studies have become more diverse and 

171 advanced, to our knowledge, there are no systematic reviews that consider the important similarities 

172 and differences among arboviruses. Therefore, this study aims to identify and review studies that map 

173 Aedes mosquito-transmitted arbovirus risk in humans, and to characterise epidemiological data, 

174 covariates, modelling frameworks and methods of evaluation used.

175 Methods

176 This review employed a search strategy and inclusion and exclusion criteria based on the 

177 preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines [21].

178  
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179 Search strategy

180 Four online bibliographic databases were searched: Embase, Global Health, Medline, and 

181 Web of Science. The final search was conducted on 15 June 2022 using institutional access from 

182 Oxford University. The search strategy included keywords and Medical Subject Headings (MesH) 

183 related to different arboviral diseases (namely dengue, Zika, chikungunya, and yellow fever) and 

184 those related to prediction. Search terms included “(Dengue OR DENV OR Zika OR ZIKV OR 

185 Chikungunya OR CHIKV OR Yellow fever OR YFV) AND (predict* OR forecast* OR map* OR 

186 driver*)”. Additionally, we manually searched the reference lists of articles and contacted experts in 

187 the field of arbovirus modelling to identify any studies not identified through the database search. 

188 Selection process

189 Results from database searches were combined and stored using Zotero referencing software; 

190 duplicates were removed using R (version 4.2.2) [22] by comparing the Digital Object Identifier 

191 (DOI) numbers of each study. Titles and abstracts were screened independently by two team 

192 members. All identified papers were included in full-text review and irrelevant articles were excluded. 

193 Full-text review was completed and disagreements on inclusion were resolved by consensus. 

194 Inclusion/exclusion criteria

195 Articles must be peer-reviewed, published in English and contain a spatial model that 

196 investigates the transmission of the arboviruses to humans. Spatial models were defined as models 

197 that included geographically realistic and explicit representations of more than one spatial location. 

198 While our primary focus was to review spatial models, spatiotemporal models were also included. 

199 There were no geographical or publishing date restrictions applied. We only included models that 

200 made predictions of some measure of the population-level virus infection risk, including but not 

201 limited to occurrence, incidence, prevalence, and proxies of transmission risk (e.g. reproduction 
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202 number). Studies where the model was developed and/or validated in a previous paper were also 

203 included.

204 Articles were excluded if they only modelled transmission to vectors or non-human hosts or 

205 were exclusively dealing with occurrence of or suitability for the mosquito (e.g. vector suitability). 

206 Studies were excluded if they had only descriptive mapping of incidence using geographic 

207 information systems or if the model was not fitted or validated using observation data. Simulation-

208 based and theoretical modelling studies were excluded unless their predictions of Aedes-borne disease 

209 transmission risk (as opposed to model parameters) were validated using data from real-world 

210 settings. Conference and workshop proceedings were excluded, as were review articles. This 

211 systematic review is registered on PROSPERO (reference: CRD42022358144).

212 Data extraction

213 The following variables were extracted from eligible articles: 

214 - study identification (title, author names, year of publication, study area, disease studied);

215 - model characteristics (type of model used, covariates included, covariates tested and not 

216 included, spatiotemporal resolution, assessment of collinearity);

217 - model validation (validation methods, metrics used to assess the model performance)

218 Analysis of the data and visualisations were carried out using R (version 4.2.2) [22]. The 

219 complete list of all included studies and data extracted from each study are available in S1 File. 

220 Quality assessment

221 A quality assessment tool was developed using the EPIFORGE checklist (S2 File), a 

222 guideline for standardised reporting of epidemic forecasting and prediction research, to assess the 

223 reporting quality of included studies [23]. This guideline assesses whether studies report on the 

224 following domains: study goals, data sources, model characteristics and assumptions, model 

225 evaluation, and study generalisability. The nine criteria were equally weighted, each with a score of 0 
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226 (poor) to 2 (good), for a maximum of 18 points. On the basis of the overall score, each paper was 

227 rated ‘low’ (<10), ‘medium’ (10–12), ‘high’ (13–15) or ‘very high’ (>15). 

228 Results

229 A total of 16,625 records were retrieved from the databases and 7,742 titles and abstracts 

230 screened after removing duplicates (Fig 1). A total of 83 records were additionally identified through 

231 bibliographic searches and contacts with experts. Of 301 records, a total of 118 studies were excluded 

232 because the full-text was not available, they were published in other languages, or the topics were 

233 irrelevant. One paper included two different models using different datasets so we counted it as two 

234 separate studies [24]. As a result, we identified 183 studies published between 2002 and 2022 that 

235 were ultimately included in the review (Fig 1). 

236

237 Fig 1. PRISMA flow chart.

238

239 There has been a rapid increase in the number of arboviral spatial modelling studies over the 

240 past 20 years, reflecting the growing public health priority of these diseases and increasing 

241 accessibility of data and modelling methods. There was an average of 1.7 studies published per year 

242 before 2008, 4.7 studies per year between 2008-2014 and 19.3 per year between 2015-2021 (Fig 2). 

243 The distribution of risk mapping studies over geography and by disease closely follow the abundance 

244 and availability of data. Using WHO Regions, a total of 40.8% (n = 78) of the studies were conducted 

245 in the Americas, followed by 19.4% (n = 37) in SE Asia and 17.3% (n = 33)  in the Western Pacific 

246 region with a wide geographic diversity of studies over the past five years. Brazil (n = 35) was the 

247 most frequently studied country, followed by Colombia (n = 15) and Indonesia (n = 13). The diversity 

248 of regions studied has also increased: until 2014 studies tended to focus primarily on the Americas 

249 and Western Pacific whereas since 2015 studies focusing on SE Asia and the global scale have been 

250 increasingly prevalent (Fig 2). More than 70% (n = 131) of the studies modelled dengue transmission, 

251 20 (10.9%) modelled Zika, 15 (8.2%) modelled yellow fever and seven (3.8%) chikungunya. There 
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252 were six (3.3%) studies that modelled the risk of dengue, Zika, and chikungunya together, while also 

253 modelling the diseases individually; two modelled dengue and Zika together and two modelled Zika 

254 and chikungunya together.

255

256 Fig 2. Number of included studies per year by study region. The brackets represent the key years 

257 for Aedes-borne arbovirus outbreaks, including chikungunya in the Americas (2014-2015) [25], Zika in 

258 the Americas (2015-2016) [7], yellow fever in Brazil (2016-2019) and Angola and Democratic Republic 

259 of Congo (2015-2016) [26], and dengue in the Americas & SE Asia (2019-2020) [27]. 

260 Purpose of maps

261 The main groups of purposes or goals of risk maps vary depending on the specific disease and 

262 context, but can generally be grouped into four categories: 1) providing a broad overview of the spatial 

263 distribution of risk over long-term averages and suggesting how it might change under different 

264 scenarios of global changes in climate, economics, and demographics (e.g., [28,29]); 2) predicting the 

265 spread of outbreaks and gaining a better understanding of major drivers of geographical spread (e.g, 

266 [30,31]); 3) evaluating and planning vaccination programs by estimating disease burden and identifying 

267 high-risk areas at the continental or country-level scale (e.g., [32,33]); and 4) informing planning and 

268 outbreak response by increasing the precision of risk estimates and mapping sub-national risk using 

269 surveillance data (e.g., [34,35]). 

270 Data types

271 Most studies (n = 137, 74.9%) used case count data from routine passive surveillance to fit 

272 models, most often aggregated to the administrative district (admin2)- or province (admin1)-level (Fig 

273 3). Use of occurrence data was also widespread (n = 29, 15.8%), particularly for specific use cases, 

274 such as the generation of global suitability maps. There were only seven studies (3.8%) that included 

275 data from community-representative seroprevalence surveys, and seven studies that included data 

276 from at least two different data types. The use of seroprevalence data was limited to dengue (n = 9) 
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277 and yellow fever (n = 4), both resulting from widespread seroprevalence surveys in preparation for, or 

278 to evaluate, vaccination programmes. Generally the paucity of any one data type for yellow fever 

279 meant a more equally distributed use of different data types in models and greater use of multiple 

280 types of data [8,33,36,37] (Fig 3).

281

282 Fig 3. Sources of epidemiological data used by diseases. Each cell represents the number and 

283 percentage of studies with the denominators summed vertically. 

284

285 Risk maps have been generated across a wide range of spatial scales from global to sub-

286 national (Fig 4). We identified 22 studies that produced global risk maps of various Aedes-borne 

287 arboviruses. Despite large gaps in data availability at the global scale, the majority (n = 18/23, 78.3%) 

288 of these global maps make high resolution predictions at the pixel level, enabled by growing 

289 availability of high resolution remotely-sensed climate datasets (Fig 5). For Zika, yellow fever, and 

290 chikungunya, maps were primarily focussed at a continent or national scale with a resolution between 

291 city-level and national-level (Figs 4 and 5), reflecting the more regional scope of their distribution 

292 (yellow fever in Africa) or high profile epidemics (the 2015-2016 Zika epidemic in the Americas). 

293 While maps are available at all spatial scales for dengue, the majority of models (n = 83, 63.4%) are 

294 now at sub-national scale, usually at the resolution of city/district (admin-2) (Figs 4 and 5). This 

295 reflects the increasing application of these techniques to routinely collected case incidence data to 

296 provide country-specific recommendations about targeting of control resources within countries based 

297 on the latest local data. There remain strong regional disparities in the scale and resolution of mapping 

298 efforts with many high-resolution and country-specific maps in the Americas, while risk estimates for 

299 Africa are fewer, of comparatively lower resolution, and are typically derived from global or 

300 continent-level modelling efforts (S1 Fig). 

301

302 Fig 4. Geographical scope by diseases. Each cell represents the number and percentage of studies with 

303 the denominators summed vertically.
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304 Fig 5. Spatial resolution by geographical scope. Each cell represents the number and percentage of 

305 studies with the denominators summed horizontally.

306

307 Spatiotemporal prediction maps were often generated based on monthly or weekly intervals 

308 (S1 Table). The longest period of study was for 804 months (67 years), while the shortest period of 

309 study was for 3 months, with an average of 125 months (10 years) and a median of 60 months (5 

310 years). Studies tended to use data from periods with high numbers of reported cases, with dengue data 

311 concentrated in between 2010-2015, Zika data between 2015-2016. For chikungunya many studies 

312 use data from 2014 and for yellow fever the data used have been spread over time, with few studies 

313 using recent data from 2015-2020 (S2 Fig).

314  Covariates

315 Studies reviewed included a wide range of covariates in their models (Table 1). We grouped 

316 these into six main groups: climatic, demographic, socioeconomic, ecological, environmental and 

317 spatiotemporal incidence.  

318

319 Table 1. List of covariates included in the studies.

Covariates Count Percentage (%)
Climatic

Temperature 98 53.6
Rainfall 79 43.2
Humidity 23 12.6
Bioclimatic variables 6 3.3
El Nino Southern Oscillation Index 4 2.2
Soil moisture (water stress/wetness) 4 2.2

Demographic factors
Population density 44 24.0
Age 26 14.2
Air travel 19 10.4
Human daily mobility 13 7.1
Vaccination coverage 7 3.8
Sex 7 3.8

Socio-economic factors
Gross domestic product 15 8.2
Household income 12 6.6
Education/literacy rate 6 3.3
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Covariates Count Percentage (%)
Occupation and employment status 5 2.7
Socio-economic strata 6 3.3

Ecology
Non-human primates species 6 3.3
Location of breeding sites 6 3.3
Breteau index 3 2.2
Adult mosquito abundance 2 1.1

Environmental factors
Vegetation 27 14.8
Elevation/altitude 25 13.7
Urbanisation 22 12.0
Distance to roads, road density 14 7.7
Land use/land cover 13 7.1
Distance to water bodies/river 9 4.9

Spatiotemporal incidence
Case count across time periods and 
neighbouring regions 23 12.6

320

321 Climatic variables were the most common group of covariates in models with temperature 

322 and rainfall dominating. More than half of the studies (n = 98, 53.6%) included temperature as a 

323 covariate while around 40% of studies had rainfall (n = 79, 43.2%). Temperature and rainfall were 

324 better fit when lagged one or two months rather than unlagged [38–41]. Temperature and rainfall were 

325 considered as significant factors in most studies, but some studies showed that meteorological factors 

326 alone are not sufficient to explain spatial heterogeneity in disease transmission, which may be 

327 associated more with non-climatic factors [42–44]. Rather than rely on raw measures of temperature, 

328 24 studies (13.1%) instead used “temperature suitability” of Aedes mosquito vectors, which 

329 incorporates a variety of different methods of modelling the temperature constraints on the vector and 

330 virus dynamics that are most critical for virus transmission [45]. Six studies used bioclimatic variables 

331 that encompassed annual temperature and precipitation ranges, seasonal fluctuations, as well as 

332 extreme or constraining factors that capture broader biological patterns [29,46–50]. Four studies 

333 additionally used indicators associated with El Niño Southern Oscillation as covariates [35,51–53]. 

334 Examples of other climatic variables that were included in the reviewed models were diurnal 

335 temperature range [54–56], atmospheric pressure [57,58], wind speed [59,60], and duration of 

336 sunshine [38,61,62]. 
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337 Population density (n = 44, 24.0%) and age distributions (n = 26, 14.2%) were often 

338 considered in modelling arboviruses. Many studies found population density to be a significant 

339 covariate in their models, demonstrating a positive association with disease transmission, but some 

340 studies reported a negative [63,64] or null association [39,44,65]. Human mobility between cities or 

341 countries (n = 19, 10.4%) was also considered by including travel distance between regions [66,67] or 

342 air travel passenger volume [68–73]. Some studies included daily human mobility data (n = 13, 7.1%), 

343 mostly mapped at sub-national scale, with the aim of better representing short-distance high frequency 

344 movements such as daily commuting [74,75]. Seven studies, for yellow fever and dengue, considered 

345 vaccination coverage and measures of population immunity from infection in their models 

346 [27,33,37,47,63,76,77]. 

347 The most common socio-economic variable was gross domestic product (GDP) (n = 15), 

348 followed by household poverty/income level (n = 12, 6.6%) and education level (n = 6, 3.3%). A 

349 socio-economic strata or a composite index such as human development index, social advantage and 

350 disadvantage score (n = 6, 3.3%) were also included as socio-economic predictors in some of the 

351 reviewed models. Lower neighbourhood socio-economic status was generally associated with 

352 increased risk of Aedes-borne arbovirus diseases; in regions with established arboviral circulation, 

353 community-level factors such as inadequate garbage collection, low income, and lack of access to 

354 health care were associated with elevated risk of dengue infections [78–80].    

355 For models fit at the sub-national scale to case incidence data, accompanying direct 

356 measurements of the Aedes mosquito population improved model predictive performance. Breteau 

357 index (BI), which is defined as the number of positive containers per 100 houses, was used as a 

358 predictor in three studies [53,81,82]. Six studies included location of Aedes breeding sites in their 

359 models [74,83–87]. The number of catches of female adult mosquitoes was included in two studies 

360 [58,88]. In the absence of direct measurements of the vector abundance, modelled predictions of 

361 “suitability for Aedes mosquitoes [89]” have been used, particularly at broad global scales and to 

362 make early predictions for emerging Zika epidemics. Six studies included the occurrence or species 

363 richness of non-human primates in modelling yellow fever.
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364 The most common environmental variable was vegetation index (n = 27, 14.8%), followed by 

365 altitude/elevation (n = 25, 13.7%) and urbanisation (n = 22, 12.0%). Some studies found that 

366 vegetation was not a key predictor variable and had no association with dengue incidence [90,91], 

367 whereas those considering vegetation in modelling yellow fever generally found that there was a 

368 strong and significant vegetation-disease association possibly because of the greater role of the forest-

369 fringe environment in driving spillover from non-human primate reservoirs [64,92–94]. Road density 

370 and proximity to the road were also included as a predictor in 14 studies (7.7%). More generic 

371 categories of land use and land cover type have also been considered in another 13 studies. 

372 Disease incidence across time periods and neighbouring regions were included as covariates 

373 in 23 studies (12.6%) to explain contemporaneous disease transmission. Several studies included past 

374 case counts lagged by one week to four months to improve temporal prediction accuracy [51,66,95–

375 98]. Source country’s disease incidence rate was included in studies quantifying the risk of 

376 importation from endemic to non-endemic settings such as Europe [70,99] and Asia-Pacific regions 

377 [69]. 

378 For each paper, we also examined whether the collinearity among covariates was checked and 

379 whether models retained covariates after conducting variable selection procedures. Among the 148 

380 studies excluding those that used mechanistic models or only included random effect terms, only 33 

381 studies (22.3%) tested different combinations of covariates and checked the multicollinearity among 

382 them by calculating the correlation coefficient or variance inflation factor, or using principal 

383 component analysis. There were 63 studies (42.6%) that did not include any process for selecting 

384 variables or checking collinearity (S3 Table). However, it is worth noting that some of these studies 

385 may have had a small number of covariates that were selected based on their known or cited 

386 ecological or theoretical relevance to disease transmission, which may explain the lack of variable 

387 selection process. 

388 For the 33 studies that both checked the multicollinearity of covariates and performed 

389 variable selection, we summarised the retention rate of different groups of covariates in the final 

390 models (Fig 6A) [27,32,38–44,46–48,54,59,60,72,78,79,86,93,99–112]. Of 33 studies, 25 studies 

391 (96.2%) retained climatic variables when tested. Only one study on dengue [111] tested all six 
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392 categories and rejected demographic, ecological data and spatiotemporal incidence; seven studies 

393 tested all categories except for ecological variables. Apart from climatic variables, environmental 

394 variables were the most commonly used, with 21 studies tested and only three of them rejected, 

395 followed by demographic (23 tested and 6 rejected), socio-economic variables (16 tested but 5 

396 rejected). Ecological data (7 tested and 2 rejected) and spatiotemporal incidence (5 tested and 1 

397 rejected) were the least tested and included (Fig 6A). The most common combinations of retained 

398 categories were climatic, environmental, demography, and socio-economic (n = 4) [41,44,103,108]. 

399 For climatic variables, different measures of temperature and rainfall were tested in reviewed studies. 

400 Inclusion of temperature in models differed between studies, with minimum temperature often 

401 selected over average and maximum temperature in six out of 14 studies (Fig 6B). We identified that 

402 average rainfall was preferred over other measures of rainfall and humidity but only five studies 

403 examined the performance of models in which both variables were considered (Fig 6B). We found 

404 that 29 studies have included lagged covariates in their models. The length of the lag periods tested 

405 for temperature, humidity and precipitation ranged from 0 to 16 weeks, with most being concentrated  

406 between 4 to 12 weeks (S3 Fig). The average lag periods for mean temperature and precipitation tend 

407 to be longer in the Americas compared to Western Pacific and SE Asia (S3 Fig). 

408

409 Fig 6. Covariates included and rejected. (a) Selected covariate categories; (b) climate variable 

410 selections. Mean temp: mean temperature; Min temp: minimum temperature; Max temp: maximum 

411 temperature; DTR: Diurnal temperature range; Avg: average. The values in the bottom represent the 

412 number and percentage of studies tested and included the corresponding category of covariates. 

413 Modelling framework

414 Four classes of modelling methods were identified: statistical mixed effect models, statistical 

415 fixed effect models, machine learning and mechanistic models (Table 2). Overall, the most common 

416 modelling approaches were types of statistical mixed effect models (n = 69, 39.5%), with generalised 

417 linear mixed models (GLMM) dominating, followed by generalised additive mixed models (GAMM) 
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418 (n = 4) and distributed lag non-linear models (DLNM) (n = 4). Mixed effect models were often 

419 preferred when using areal-type case count data aggregated over distinct geographical areas (e.g. 

420 administrative boundaries) (Fig 7).

421

422 Fig 7. Modelling framework by input data type.

423

424 Statistical fixed effect models were used in 21.2% of studies, with generalised linear models 

425 (GLM) and geographically weighted regression (GWR) as the most used approaches. Since fixed 

426 effect models assume that all observations are independent, models used spatial variables to account 

427 for spatial relationships. For example, several studies included the coordinates (long, lat) of cases, 

428 households, or the centroid of a region [32,36,77,113–116].

429 A variety of machine learning methods were employed in 26.1% of studies. The most 

430 frequently used machine learning methods were MaxEnt and boosted regression tree (BRT). They 

431 were often used when developing ecological niche or species distribution models using point-

432 referenced occurrence data to describe the environmental suitability of arbovirus transmission, and 

433 especially for larger geographical scales (e.g., international scale). Of 23 studies that developed a 

434 global risk map of different arbovirus transmission, ten studies adopted machine learning methods, six 

435 of which used either MaxEnt or BRT [3,28,29,117–119]. Seven studies developed and compared the 

436 performance of different machine learning methods. For example, Jiang et al. (2018) adapted three 

437 different machine learning models, namely backward propagation neural network, gradient boosting 

438 machine and random forest, and reported that backward propagation neural network showed the best 

439 performance in predicting the global transmission risk of Zika [120]. Two studies generated ensemble 

440 model projections of the spatiotemporal dynamics of Zika in Brazil and burden of yellow fever in 

441 Africa [121]. 

442 Mechanistic models were used in 15.2% of studies, especially compartmental and 

443 metapopulation models. Compartmental models e.g. human SEIR - mosquito SIR models were used 

444 in six studies to explain the impact of different factors on the transmission dynamics, especially for 

445 smaller scales e.g. country or sub-national scale [75,88,122–125]. Eight studies used metapopulation 
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446 or network models, all of which considered the connectivity between areas or regions by including the 

447 patterns of daily human mobility or air travel data [31,67,70,71,73,82,83,126]. Five studies used 

448 mechanistic mosquito models to produce estimates of temperature suitability, vectorial capacity or 

449 basic reproductive number (R0) at the continent or global scale [127–131].  

450 Surprisingly, only 48.1% of studies (n = 88) included in this review assessed the predictive 

451 performance using cross-validation procedures, such as K-fold cross-validation or random partitioning 

452 of data, commonly referred to as "out-of-sample validation". It was more common to perform this 

453 type of validation in studies using machine learning methods than in studies using other modelling 

454 methods; only 25% of studies using fixed effect models performed out-of-sample validation (Fig 8). 

455 Of these studies, only three studies included model validation on independent test data (“hold-out 

456 validation”) [55,132,133]. 

457

458 Fig 8. Out-of-sample validation by modelling framework.

459

460 The most common model performance evaluation metrics were information criteria (n = 82, 

461 29.8%), with Akaike information criteria (AIC) and the Bayesian information criterion (BIC) as the 

462 most used metric (S2 Table). Confusion matrix-based metrics were used in 21.1% of studies, with the 

463 Receiver Operating Characteristics (ROC) curve most frequently used. Correlation-based metrics 

464 were used in 14.9% of studies, especially R-squared. 23 studies (8.4%) did not use any of the metrics 

465 described above (S2 Table).

466 Quality assessment

467 Using the adapted tool for assessment of modelling study reporting, scores for the reviewed 

468 paper ranged from 6 to 18 out of 18. Twelve studies were classified as low quality, 50 as medium 

469 quality, 76 as high quality and 45 as very high quality. The median score was 13/18, which is 

470 categorised as high quality. Discussions on the generalisability of the developed models were lacking 
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471 in many papers. Study objectives, settings, and data sources were often unclear in poorly scored 

472 studies.   

473 Discussion

474 This review provides a comprehensive overview of risk mapping studies, including their 

475 covariates and modelling frameworks to investigate the transmission of arboviruses. We found that 

476 the choices of data, covariates and modelling frameworks were largely determined by the purpose of 

477 the map. We identified 23 studies that generated global risk maps, using machine learning-based 

478 ecological niche modelling. These approaches are designed to give a broad overview of the spatial 

479 distribution of risk over long-term averages and suggest how it might change under different scenarios 

480 of global changes in climate, economics and demographics. Geolocation of disease occurrence data, 

481 often combined with high- resolution environmental datasets, were more common for global risk 

482 mapping because they encompass large areas and various environmental conditions and provide 

483 information about the extent of transmission. However, caution is needed when utilising the outputs 

484 of high resolution global risk maps, particularly for informing local decisions due to large data gaps 

485 and biases [133] that are not reflected in their highly geographically precise predictions and 

486 sometimes don’t align with (typically later published) estimates from country-specific models that use 

487 more local data. 

488 We found that major epidemics, such as the 2015-2016 Zika epidemic, have acted as catalysts 

489 for the development of new risk mapping methods applied in new contexts, possibly due to expanding 

490 generation and sharing of data that has accompanied these more recent epidemics. The paucity of data 

491 in the early stages of epidemics and similarities between arboviral diseases gives mechanistic 

492 modelling approaches an advantage over more data-dependent statistical approaches despite the 

493 latter’s traditional dominance of the field of risk mapping [14]. As with any model, the predictions are 

494 inherently a function of the data available and primary use cases at the time of analysis, and 

495 contemporary approaches to mapping risk of diseases like Zika and chikungunya would likely differ 

496 substantially from those conducted in the early stages of epidemics. We also show how epidemics 
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497 have accelerated the use of human movement data in arbovirus risk mapping, and that human 

498 movement data is especially valuable to understand long-distance spread since Aedes mosquitoes have 

499 a limited dispersal capability [134]. Daily commuting and air travel has improved predictions in both 

500 statistical and mechanistic modelling approaches, particularly when mapping how the spatial 

501 distribution of risk changes over the course of an epidemic.

502 Studies on modelling yellow fever employed multiple datasets and various approaches, 

503 mostly motivated by the need to account for sparse, non-standardised data. They tend to be conducted 

504 at continental or country-level scale in African and South American countries with high endemicity 

505 for yellow fever transmission or recent outbreaks, for the purpose of evaluation and planning 

506 vaccination programs. Inclusion of seroprevalence data and vaccination coverage therefore played a 

507 significant role in robust estimation of disease burden and approaches used for yellow fever could be 

508 increasingly important for mapping dengue risk as vaccines begin to be rolled out in various countries 

509 [135].

510 In contrast, the majority of publications that use predictive risk mapping for dengue (which 

511 accounted for more than 70% of the studies included in this review) now focus on mapping sub-

512 national risk using case incidence data from a country’s passive surveillance system. Such models 

513 theoretically offer the most potential for direct integration with country surveillance systems and 

514 would allow risk maps to directly inform planning, intervention targeting and outbreak response. The 

515 proliferation of risk mapping in this domain closely aligns with improvements in routine dengue 

516 disease surveillance and sharing of sub-nationally disaggregated data and could be applied to other 

517 emerging disease threats if similar approaches to surveillance are adopted. We found that statistical 

518 mixed effect models were more commonly implemented than machine-learning approaches for sub-

519 national models, which allow more constraints over the effects of environmental covariates and are 

520 easier to implement in Bayesian frameworks, both assets that allow more stability and better 

521 representation of uncertainty when making spatio-temporal predictions. Such models blur the 

522 boundaries between pure risk mapping (predicting to new spatial locations) and pure 

523 hindcasting/forecasting (predicting to new periods of time) and show the added value considering 

524 both spatial and temporal information can contribute to each of these applications.
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525 Overall, we found that the quantity and variety of covariates included in arbovirus risk 

526 mapping studies has increased in line with growing availability of these variables. While 

527 developments over the past decade have focussed on global climate datasets, data on human 

528 movement [136] and urban infrastructure [137] are becoming increasingly available and may play 

529 important roles in future arbovirus risk mapping studies. Historically, limited data availability has 

530 made it difficult to quantify human mobility patterns, requiring models that incorporate gravity or 

531 radiation as an approximation [31,83,138]. However, the recent emergence of mobile phone data 

532 enables real-time tracing of fine-scale movement across large numbers of individuals, although 

533 privacy and bias issues remain [139]. The move towards large, open, accessible datasets for vector 

534 borne diseases necessitates not just a more robust data science workforce, but a better motivation and 

535 capacity planning for data fluency among primary data producers. While issues of human subjects and 

536 data privacy must remain foremost in contemplating large-scale studies of vector borne disease risk, 

537 nonetheless, leveraging entomological surveillance data, meteorological data, geospatial 

538 representation of infrastructure and landscape (e.g., derived from remote sensing, well-resolved built 

539 environment enumerations, high resolution travel network data), and climatological modelling output, 

540 is less constrained by international regulations, so identifying the necessary investments and key 

541 routes of engagement is a high-level first step to addressing the data gaps. 

542 We found surprisingly few studies conducted robust variable selection procedures. In 

543 addition, out-of-sample validation techniques were explicitly stated in only half of the studies 

544 reviewed. Statistical and machine learning models, predominantly used in arbovirus risk mapping 

545 studies, require a large amount of data and therefore both variable selection and cross-validation are 

546 important steps to reduce overfitting and improve model interpretability and predictive accuracy. 

547 Although the majority of studies used traditional cross-validation techniques, the use of spatial cross-

548 validation i.e., spatial block bootstrapping is increasingly popular due to its ability to account for 

549 spatial dependence in the data [92,94]. This may help to better test the spatial predictive performance 

550 of the model, particularly if there are large heterogeneities in data availability across the study sites, 

551 which is common in many arbovirus mapping applications. 
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552 Limitations

553 One limitation of our systematic review is that it focussed on spatial modelling approaches. 

554 The conclusions we reach, particularly with reference to drivers of transmission, may differ between 

555 risk mapping and temporal prediction models which may be particularly important as the two fields 

556 continue to overlap. We also only considered studies published in English, which may affect our 

557 conclusions about regional patterns. Additionally, it is possible that some relevant literature, 

558 particularly in the form of grey literature, may have been missed as the databases do not contain all 

559 journals and university press articles. This is particularly true for locally-relevant geospatial modelling 

560 work, which may not have been published in mainstream academic outlets. Finally, we excluded 

561 studies that did not assess risk of human infection, excluding a number of studies dealing exclusively 

562 with entomological risk or non-human host risk. 

563 Recommendations for future studies

564 ● Consider the strengths and weaknesses of different data types for different purposes as the 

565 choice of data type imposes specific restrictions on the modelling framework and resolution 

566 of the prediction. Historically the most common applications have been: occurrence data to 

567 map the changing global limits of transmission, short-term aggregated level incidence data to 

568 track the geographic spread of epidemics and high spatiotemporal resolution incidence data to 

569 understand the roles of different drivers and forecast epidemics.

570 ● Include covariates from multiple domains (climatic, environmental, demographic, 

571 socioeconomic, ecological) and test whether their inclusion improves prediction.

572 ● National or subnational studies should consider additional local covariates not available 

573 across broader regions, such as data from the arbovirus control programmes, finer scale 

574 meteorological resolution data, or infrastructural data from census databases.

575 ● Even with extensive use of covariates, unobserved confounding will still be an issue, 

576 particularly for broad scope (national and above) models, meaning that the use of structured 
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577 spatio-temporal random effects, ideally in a Bayesian mixed effects statistical modelling 

578 framework, is preferable to more simplistic fixed effect statistical models.

579 ● Use predictive validation metrics on held out datasets. Ideally using procedures that take into 

580 account the unique challenges posed by highly spatially and temporally heterogeneous 

581 datasets, such as multiple-fold blocked spatial and temporal cross validation.

582 ● Arbovirus risk mapping is a rapidly developing field with continual improvements in data 

583 quantity and representativeness, growing availability of potentially informative covariates and 

584 new innovations to model fitting and evaluation. Future arbovirus risk mapping studies should 

585 incorporate these new developments and not just rely on the status quo of existing studies.

586 Conclusion

587 Spatial modelling can help identify potential risk factors for arbovirus transmission and 

588 provide a better understanding of the current and future distribution of arboviruses. We provide a 

589 synthesis of covariates and modelling frameworks used for risk mapping of arbovirus, providing an 

590 evidence base for developing up-to-date arbovirus risk maps based on current best practices. Although 

591 approaches to map arbovirus risk have diversified, it is important to select the data, covariates, 

592 models, and evaluation methods based on the purpose of maps, data availability and epidemiological 

593 contexts.
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