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Abstract 28 

Aging is a complex process with interindividual variability, which can be measured by aging 29 

biological clocks. Aging clocks are machine-learning algorithms guided by biological 30 

information and associated with mortality risk and a wide range of health outcomes. One of 31 

these aging clocks are transcriptomic clocks, which uses gene expression data to predict 32 

biological age; however, their functional role is unknown. Here, we profiled two 33 

transcriptomic clocks (RNAAgeCalc and knowledge-based deep neural network clock) in a 34 

large dataset of human postmortem prefrontal cortex (PFC) samples. We identified that 35 

deep-learning transcriptomic clock outperforms RNAAgeCalc to predict transcriptomic age in 36 

the human PFC. We identified associations of transcriptomic clocks with psychiatric-related 37 

traits. Further, we applied system biology algorithms to identify common gene networks 38 

among both clocks and performed pathways enrichment analyses to assess its functionality 39 

and prioritize genes involved in the aging processes. Identified gene networks showed 40 

enrichment for diseases of signal transduction by growth factor receptors and second 41 

messenger pathways. We also observed enrichment of genome-wide signals of mental and 42 

physical health outcomes and identified genes previously associated with human brain 43 

aging. Our findings suggest a link between transcriptomic aging and health disorders, 44 

including psychiatric traits. Further, it reveals functional genes within the human PFC that 45 

may play an important role in aging and health risk.  46 

Keywords: Biological clocks, aging, prefrontal cortex, transcriptomic clocks, deep learning 47 
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Main 56 

Aging is a complex biological process that can manifest differently and at a different rate in 57 

each individual  1–3. The individual variability in biological aging can be measured, resulting in 58 

the development of aging clocks 4–6. Aging clocks are an excellent predictor of mortality and 59 

lifespan 7–10, as well as disease risk 11,12. One of the best-known aging clocks are epigenetic 60 

clocks 13,14, which are based on age-related alterations in DNA methylation at CpG sites. We 61 

and others have found a link between epigenetic clocks and psychiatric disorders 15–18. Age-62 

associated biological changes can also occur at the RNA level 19,20. Recent studies of 63 

transcriptomic clocks 21,22 have shown associations with age-related disorders 20. These 64 

clocks have been generated using several mathematical models, including the elastic net 65 

model. However, such method is limited to a fixed set of genes for predicting age. Recently 66 

developed deep learning methods can overcome this limitation 22 by using the whole 67 

transcriptome to train a neural network to select the most precisely defined and informative 68 

set of genes. 69 

 70 

The human prefrontal cortex (PFC) and other brain regions undergo molecular, structural, 71 

and functional changes during aging 23–25. Structural age-related alterations in the PFC in 72 

older individuals are well-established by neuroimaging studies 26–32. A meta-analysis of 3,880 73 

individuals showed that older people have a reduction in the activation of subcortical and 74 

cortical brain regions compared with young adults measured by functional magnetic 75 

resonance during a cognitive task 33. Molecular studies evaluating brain aging have found 76 

that the PFC could age faster than other brain regions. For example, increased epigenetic 77 

age in the PFC is observed compared to the cerebellum 34,35. Further, accelerated epigenetic 78 

age in peripheral tissue has been associated with reduced cortical thickness 36,37. Recent work in 79 

aging clocks have shown that those trained in peripheral tissues do not have the same 80 

accuracy as those from the brain 38, with brain-trained clocks having a better chronological 81 

age prediction accuracy 39. While some work has evaluated epigenetic clocks in the brain, 82 

very few studies have examined transcriptomic clocks. Evaluating transcriptomic clocks is 83 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 25, 2023. ; https://doi.org/10.1101/2023.04.19.23288765doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.19.23288765
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

important given recent evidence showing age-associated transcriptomic changes in the PFC 84 

involving, for example, gene dysregulation of synaptic genes 40–44. 85 

 86 

The present study aimed to profile a transcriptomic clock and to characterize its functional 87 

impact in four human PFC regions (Fig. 1) from a large cohort of 551 human postmortem 88 

brain samples. We highlight the advantage of deep learning methods to improve accuracy in 89 

predicting brain transcriptomic age and identify that both clocks have concordance at 90 

advanced ages. We replicated an association of the RNAAgeCalc with PTSD. Further, we 91 

comprehensively characterized co-expressed genes shared by both clocks and prioritized 92 

genes that could have an important role in aging within the human prefrontal cortex. 93 

 94 

Results 95 

 96 

Transcriptomic clocks performance in predicting age 97 

To estimate the transcriptomic age, we used two machine learning-based transcriptomic 98 

clocks, the RNAAgeCalc 21 and a clock that uses knowledge-primed artificial neural networks 99 

22. The RNAAgeCalc clock is a model that predicts tissue-specific transcriptomic age based 100 

on a fixed set of coefficients for the genes calculated from a pre-trained elastic net model. In 101 

this analysis, we used the model trained in brain tissue. The knowledge-primed artificial 102 

neural network clock (neural clock) is a model that uses the RNAseq data as input and The 103 

Molecular Signatures Database (MSigDB) hallmark gene set collection 45 to train a neural 104 

network and estimate the transcriptomic age. A neural network is divided into layers; each 105 

layer has several nodes, and each of these nodes inside a layer is called a neuron. The 106 

neuron is relevant to predict the outcome, commonly named activation, if the statistical 107 

model associates the neuron with the outcome. Based on the activation of each neuron in 108 

the neural network, the model selects a different set of genes as predictors of chronological 109 

age. Both transcriptomic clocks showed high correlations with chronological age. The neural 110 

clock (r = 0.89, p = 1.89e-56) showed a higher correlation with chronological age compared 111 
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to the RNAAgeCalc (r = 0.68, p = 3.34e-23) (Fig. 2A) (Supplementary Table 1A). The 112 

clocks also correlated between each other (r = 0.65, p = 2.81e-20) (Fig. 2B). The error in 113 

age estimation was higher in the RNAAgeCalc (RMSE = 9.09 years) than in the neural clock 114 

(RMSE = 5.55 years). Our results suggest that the deep learning clock showed better 115 

accuracy in predicting age than RNAAgeCalc. 116 

 117 

The estimations of delta-Age were higher in the RNAAgeCalc (Fig. 2C, Supplementary 118 

Table 1B). Of the total PFC samples included in the testing set (n = 160), 65% (n = 104) 119 

have a concordant delta-Age among both transcriptomic clocks (Supplementary Table 1C). 120 

We also analyzed the distribution density of the transcriptomic age based on their discordant 121 

or concordant effect (increased or decreased) on both clocks (Fig. 2D - 2E). We found that 122 

the density of samples with a concordant decreased delta-Age clustered in advanced ages 123 

for both clocks. We also found that samples showing concordant increased transcriptomic 124 

age clustered at lower ages, whereas samples showing discordant effects did not show a 125 

clustering pattern. These results suggest that transcriptomic clocks have the same prediction 126 

accuracy at advanced chronological age, but this prediction accuracy could differ at lower 127 

ages. Further, to evaluate if the transcriptomic age could also be correlated with advanced 128 

age, we examined the correlation of the transcriptomic age with age and age squared. In the 129 

correlation analysis with age squared, we found that the age squared was significant for both 130 

clocks (Supplementary Table 2). This correlation suggests that the association of 131 

transcriptomic age is not linear with chronological age at older age. 132 

 133 

Associations of transcriptomic age with psychiatric-related phenotypes and potential 134 

confounding covariates. 135 

We analyzed the relationship between transcriptomic age derived from two approaches and 136 

psychiatric-related traits, including major depressive disorder, post-traumatic stress disorder, 137 

opioid use, alcohol use, tobacco use, amphetamine use, cocaine use, and cause of death 138 

and possible confounding variables (PMI, RIN, sex, PFC region, and relative cell-type 139 
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proportions). First, a multivariate regression analysis was performed followed by a stepwise 140 

multivariate regression analysis to refine the variables associated with transcriptomic age. In 141 

the multivariate model, we identified multiple associations with each transcriptomic clock 142 

(Supplementary Tables 3A - 4B). The transcriptomic age estimated with the neural clock 143 

was associated with neurons and endothelial cells, relative cell proportion. The RNAAgeCalc 144 

transcriptomic age was associated with the OFC and sgPFC. In the stepwise multivariate 145 

regression analysis, we identified associations between the Neural clock transcriptomic age 146 

and opioid misuse and endothelial cells. In contrast, the RNAAgeCalc was associated with 147 

posttraumatic stress disorder (PTSD), orbitofrontal cortex (OFC), and subgenual prefrontal 148 

cortex (sgPFC). Concordant associations in both clocks include a negative association with 149 

cause of death by overdose and relative neuron proportions (positively associated with 150 

RNAgeCalc and negatively associated with the neural clock). Overall, these results suggest 151 

that the clocks have differential associations with psychiatric traits. 152 

 153 

We also modelled an age squared term in the regression models to account for the effect of 154 

increased chronological age in the transcriptomic age. When considering age squared in the 155 

model, the age squared term was significant in both clocks (Supplementary Table 5A - 6B). 156 

In the stepwise correlation analysis, age, age-squared, and neurons remained significant in 157 

the Neural clock (Fig. 2E), whereas age, age squared, OFC, sgPFC, neurons, and COD 158 

overdose remained significant in the RNAAgeCalc. Some of the associations found 159 

previously where not replicated when adding the age squared term into the regression 160 

models, suggesting that the effect of these traits in the transcriptomic age could not be the 161 

same at different chronological ages and considering this variable in the analysis of the PFC 162 

transcriptomic age could be important to model aging of the human PFC. 163 

 164 

In silico functional analysis of the genes in the transcriptomic clocks 165 

To investigate potential functional implications of the transcriptomic clocks, we conducted 166 

the following analyses: 1) functional enrichment analysis, 2) comparison with a cortical 167 
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epigenetic clock, and 3) associations with aging phenotypes. The genes used in the 168 

RNAAgeCalc and neural clock models differed. These differences rely on the mathematical 169 

modeling of the clocks. The RNAAgeCalc uses a fixed number of genes (n = 1616, 170 

Supplementary Table 7) selected for the association with age, prioritizing each gene by an 171 

elastic net algorithm 21. The knowledge-primed artificial neural network clock is based on a 172 

deep neural network. In this clock, deep neural networks are built by layers where only some 173 

layers are activated by the statistical model, to predict an outcome, chronological age. In this 174 

clock, each layer is represented by each of the biological pathways in the MSigDB database, 175 

building a compartmentalized network. The deep neural clock splits the genes of the 176 

transcriptome into each biological pathway, and a gene predicted chronological age if all the 177 

genes in this biological pathway are associated with chronological age. This clock selects 178 

the best predictors for chronological age in the dataset; in this analysis, the neural clock 179 

selected 4325 genes 22. Both clocks showed an overlap of 390 genes (7%).  180 

 181 

Considering that the genes associated with both clocks could have a greater functional 182 

impact on aging-related processes, we performed functional enrichment analysis. By using 183 

Metascape, overlapped genes showed enrichment for 976 ontology and pathways 184 

(Supplementary Table 8). The top enriched ontology/pathways, included diseases of signal 185 

transduction by growth factor receptors and second messengers (R-HSA-5663202, ngenes 186 

= 45), Epstein-Barr virus infection (hsa05169, ngenes = 27), ribonucleotide metabolic 187 

process (GO:0009259, ngenes = 33), Pathways in cancer (hsa05200, ngenes = 36), and 188 

cellular response to cytokine stimulus (GO:0071345, ngenes = 40) (Fig. 3A). When 189 

evaluating previous genome-wide association signals, we identified enrichment in 45 190 

disorders, with diastolic blood pressure, Crohn's disease, mean corpuscular hemoglobin, 191 

and coronary artery disease (Supplementary Table 9, Fig. 3B) as top associations. 192 

Enrichment for mental disorders was also observed, including schizophrenia (ngenes = 26, 193 

q-value = 6.84e-04), bipolar disorder (ngenes = 20, q-value = 3.47e-03), and autism 194 

spectrum disorder or schizophrenia (ngenes = 20, q-value = 9.88e-03). Overall, these results 195 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 25, 2023. ; https://doi.org/10.1101/2023.04.19.23288765doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.19.23288765
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

suggest that the overlapped genes could impact several biological pathways and are 196 

associated with aging phenotypes, as well as other health-related traits, including psychiatric 197 

traits. 198 

 199 

Epigenetic clocks are the most commonly studied biological clocks and they are good 200 

predictors of mortality and health outcomes. We analyzed whether genes of a cortical 201 

epigenetic clock trained in the human PFC tissue 38 overlapped with the genes of the 202 

transcriptomic clocks (Fig. 3C). We found six genes overlapping among the three clocks 203 

(POU2F1, HLA-C, FGF17, PVT1, ADM, and ENO2). When comparing each transcriptomic 204 

clock with the cortical epigenetic clock (Supplementary Table 10), we found that the neural 205 

clock showed a higher gene overlap (1.20%, ngenes = 72) with the epigenetic clock 206 

compared to the RNAAgeCalc (0.20%, ngenes = 10, RNPC3, GOSR1, ZNF518B, HSF4, 207 

TATDN1, TATDN3, HLA-H, POLR1A, NUP62, and SSBP4). The 72 overlapped genes 208 

between the neural clock and the epigenetic clock were enriched in 20 ontologies and 209 

pathways (Supplementary Table 10), with the most significant enrichment including the 210 

Nuclear receptors meta-pathway (ngenes = 11) and enzyme-linked receptor protein 211 

signaling pathway (ngenes = 12) (Supplementary Table 11). In the protein-protein 212 

clustering of these 72 genes, performed by Metascape, we identified one gene cluster 213 

containing the HSPA1A, HSPA1L, CREBBP, POLR2A, CCND1, and CDKN1A genes (Fig. 214 

3D). We evaluated if the genes in both clocks could be regulated by a common transcription 215 

factor by enrichment analysis. In the transcription factor enrichment analysis, we identified 216 

55 factors that could target these overlapped genes; the most significant was the BANP 217 

(Supplementary Table 12).  We then evaluated the HAGR database 46 to identify if any of 218 

these transcription factors have been associated with aging phenotypes and, consequently, 219 

acting as a regulatory gene in aging processes. We identified FOXO4, E2F1, CEBPB, and 220 

NRF2 with previous associations with aging phenotypes.  221 

 222 

Cell-type enrichment analysis 223 
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To understand the cellular diversity associated with each transcriptomic clock, we conducted 224 

the Expression Weighted Cell Type Enrichment (EWCE). In the Neural trained clock, we 225 

identified enrichment for almost all cells at annotation level 1 (pyramidal CA1, pyramidal SS, 226 

astrocytes ependymal, oligodendrocytes, endothelial mural, and microglia) (Fig. 3E, 227 

Supplementary Table 13A - B). In contrast, RNAAgeCalc was enriched for the pyramidal 228 

CA1, pyramidal SS, and endothelial mural cells (Fig. 3E, Supplementary Table 13C - D). 229 

Thus, these cell-type enrichment analyses suggest that specific cell types differentially 230 

contribute to different transcriptomic clocks. 231 

 232 

Consensus network analysis 233 

Gene expression patterns can correlate among genes, and grouping highly correlated genes 234 

in networks may identify genes with common biological functions. We used a system biology 235 

approach to build a network of the overlapped genes between both clocks followed by 236 

functional annotation. We identified 416 nodes and 4855 edges in the consensus network. 237 

Of the 390 overlapped genes between both clocks, we identified that 192 genes (49.23%) 238 

are co-expressed in all the brain PFC regions (Supplementary Table 14). These genes 239 

were enriched in 358 ontologies and pathways (Supplementary Table 15). The five most 240 

enriched pathways were Huntington disease (hsa05016, ngenes = 19), transport of small 241 

molecules (R-HSA-382551, ngenes = 26), the citric acid (TCA) cycle/respiratory electron 242 

transport (R-HSA-1428517, ngenes = 14), and membrane trafficking (R-HSA-199991, 243 

ngenes = 23) (Fig. 4A). Also, of the 192 genes identified in the consensus network, we 244 

found 71 in the HAGR database (Supplementary Table 16). This consensus network 245 

showed a high enrichment of protein-protein interactions (PPI) (p-value < 1.00e-06). The PPI 246 

network identified 55 genes clustered in 5 groups (Fig. 4B). Of the 55 genes identified in 247 

these clusters, 5 (XRCC6, YWHAZ, PRKAR2B, DLD, and YWHAG) were identified in the 248 

HAGR database. The genes of this consensus network were also enriched in 14 249 

transcription factors, with NRF2 as the most significant, a transcription factor also included in 250 

the HAGR database (Fig. 4C). This consensus network that targets NRF2 contains 16 251 
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genes (ALDOA, ATP1B1, ATP6V0A1, DMD, HSP90AB1, PAFAH1B1, PFN2, PSMD12, 252 

RAN, SKP1, TUBA4A, YWHAG, USP14, RTN3, CAB39, and TUBB). The consensus 253 

network analysis identified genes associated with the aging process and identified NRF2 as 254 

the potential transcription factor regulating the expression of genes common in both clocks. 255 

 256 

We explored the enrichment of these highly conserved co-expressed genes in the synapsis 257 

using SynGO. Enrichment of the consensus network was observed in the synapsis (Fig. 4D, 258 

Supplementary Table 17), including the EIF2S1, ARPC5L, RTN3, YWHAG, AP2M1, NAPA, 259 

NAPB, PFN2, HSPA8, VPS35, ADD2, ARFGEF2, GAD1, PRKCE, NSF, GDI1, VDAC1, 260 

ATP2B1, CLTC, DNM1L, ATP6V1E1, SCAMP1, MAL2, ATP6V0D1, ATP6V0A1, CNTN1, 261 

KCNA4, ATP1A3, SCN2A, PRKAR2B, NCKAP1, ACTR2, YWHAZ, DMD, PAK3, and MAG 262 

genes. Of these 36 genes, six genes (HSPA8, YWHAZ, PRKAR2B, DMD, GAD1, and 263 

YWHAG) were found in the HAGR database. This enrichment suggests that genes common 264 

in both transcriptomic clocks have a role in synaptic processes. 265 

 266 

Discussion 267 

Here, we report a comprehensive study examining the role and functionality of transcriptomic 268 

clocks in a large cohort of human postmortem PFC. Biological clocks, predominantly 269 

epigenetic clocks, predict aspects of morbidity and mortality. We compared two different 270 

transcriptomic clocks and found that while both can predict age, the knowledge-primed 271 

artificial neural networks, trained with deep learning techniques, outperforms RNAAgeCalc. 272 

The advantage of deep learning techniques in predicting age has been previously reported 273 

for epigenetic clocks 47,48. However, even with the higher prediction accuracy, the neural 274 

clock correlated with fewer phenotypes compared to the RNAAgeCalc. The observed 275 

differences could be due to low gene overlap between the transcriptomic clocks driven by 276 

distinct feature selection in each model. This is also observed in epigenetic clocks, where 277 

multiple and different sets of CpG sites have been used to predict age, with some achieving 278 

comparable accuracy 49. 279 
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 280 

Our stepwise multivariate analysis of RNAAgeCalc found that PTSD is associated with PFC 281 

transcriptomic age. This association is consistent with previous findings from peripheral 282 

blood and brain. For instance, a previous study using RNAAgeCalc identified an accelerated 283 

transcriptional age in 324 World Trade Center responders 50. Further, an epigenetic age 284 

acceleration in the motor cortex 51 and transcriptomic age acceleration in the ventromedial 285 

PFC has been reported in PTSD cases44. These findings suggest that individuals diagnosed 286 

with PTSD exhibit accelerated aging, reflected at both the transcriptomic and epigenomic 287 

levels. We also found that the correlation with PTSD was not significant when including an 288 

age-squared term in the model, suggesting that the effect of age in transcriptomic age is not 289 

linear in the PFC, a phenomenon also observed in epigenetic clocks 38,52. A similar effect of 290 

the age-squared was found in the correlation of the neural transcriptomic clock and opioid 291 

misuse. We found an association of opioid misuse with advanced transcriptomic age, which 292 

was not replicated when including the age-squared term in the regression model. This 293 

deviation in age at advanced ages could be an effect of the training model. Another 294 

explanation is that aging processes could be different at advanced ages compared to other 295 

stages of the lifespan. For example, a previous study reported that the effect of body mass 296 

index on epigenetic age was found only in young people but not in nonagenarians 53. 297 

Estimating biological age in older ages is still underexplored; further studies are needed to 298 

understand the differences of biological aging across the lifespan. 299 

 300 

Our convergent analysis of transcriptomic and epigenetic cortical clocks identified six 301 

overlapped genes between the three clocks. These genes are involved in blood-brain barrier 302 

integrity and oligodendrocyte function. Among these genes, we found ADM 303 

(adrenomedullin), a hypotensive peptide secreted by endothelial cells 54 and involved in 304 

blood-brain barrier structure 55. ADM protein is also included in the recently developed 305 

epigenetic clock GrimAge 9, further supporting its role in aging. Even though the exact 306 

mechanisms of ADM in aging are still unknown, recent animal studies suggest a role in 307 
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neurodegenerative diseases 56,57. Another convergent gene between the three clocks is 308 

FGF17 (fibroblast growth factor 17), implicated in oligodendrocyte function. Recently, a study 309 

where aged mice were infused with cerebrospinal fluid from young mice found that Fgf17 310 

regulates oligodendrogenesis in the hippocampus, which correlated with an improvement in 311 

memory tasks 58. 312 

 313 

Our consensus network analysis identified 192 co-expressed genes in the four PFC regions 314 

shared by both clocks and enriched in synaptic processes, supporting a role of synaptic 315 

changes in the PFC during aging 59. Further, we identified genes involved in mitochondria 316 

functioning and dystrophic neurites. During the aging process, the mitochondria accumulate 317 

a plethora of anomalies, promoting an accumulation of dysfunctional mitochondria, which 318 

may lead to neuronal alterations and are suggested as common mechanisms for several 319 

neurodegenerative diseases, such as Alzheimer's disease 60–63. For example, in patients and 320 

animal models of Alzheimer’s disease, imbalance of mitochondrial dynamics 64, decreased 321 

bioenergetics 65, and increased mitochondrial calcium levels are associated with neuronal 322 

death 66. Besides, the functional analysis of the consensus network found that the 323 

transcription factor NRF2 (Nuclear factor erythroid 2-related factor 2) could be involved in 324 

regulating the genes used to predict transcriptomic age. NRF2 was enriched in the co-325 

expressed genes used as predictors in both clocks. This gene is considered a master 326 

regulator of the cellular antioxidant defense system 67, controlling the expression of genes 327 

with antioxidant response elements (ARE) in their promoters and activating genes with 328 

cytoprotective activity 68–71. In addition, NRF2 is upregulated in animal models with 329 

exceptional longevity, like the mole-rat 72,73, and under caloric restriction, an intervention 330 

reported to have an effect in increasing longevity in animal models 74–78. 331 

 332 

Overall, we conducted a comprehensive transcriptomic clock study of four PFC regions in a 333 

large human postmortem brain cohort. Our findings suggest an association between PTSD 334 
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and transcriptomic aging. Further, we identified functional genes within the human PFC that 335 

may play an important role in the aging process. 336 

 337 

Limitations 338 

In the analysis of the knowledge primed deep neural clock, we have to split the sample into a 339 

training and testing set, thus reducing our sample size to perform associations with the 340 

phenotypic traits. Still, our cohort is larger than similar to recent work 44. Also, this reduction 341 

in sample size did not allow us to stratify the sample by sex to potential sex-specific effects. 342 

 343 

Methods 344 

 345 

Sample population 346 

We included 551 human postmortem brain samples 143 individuals from the National Center 347 

for PTSD Brain Bank 80. Psychiatric history and demographic information were obtained by 348 

psychological autopsies performed postmortem by next of kin. Diagnostic and Statistical 349 

Manual of Mental Disorders version 4 (DSM-IV) criteria and the Structured Clinical Interview 350 

for DSM-IV Axis I Disorders (SCID-1) interviews were adapted for psychological autopsy and 351 

were used to define the diagnosis. All consents were acquired for the next of kin. 352 

 353 

RNA Sequencing 354 

RNA from each brain region was extracted using the RNeasy Mini kit with genomic DNA 355 

elimination, as described by the manufacturer (Qiagen). The RNA integrity number (RIN) 356 

and concentration were assessed using a Bioanalyzer (Agilent). Libraries were constructed 357 

using a SMARTer Stranded RNA-seq kit (Takara Bio). rRNA depletion was performed using 358 

a Ribozero Gold kit (Illumina). Samples were paired-end sequenced on an Illumina 359 

HiSeq4000 with a read length of 75 base pairs and targeting a depth of 50 million reads. 360 

Sequences in the FASTQ files were mapped to the human genome using STAR (v.2.5.3a) 81 361 
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with the reference genome (release 79, GRCh38). We used RNA-SeQC 82 to quantify the 362 

transcripts using Ensembl's gene transfer format (GTF) annotation file. 363 

 364 

 365 

Transcriptomic clocks analyses 366 

To estimate the transcriptomic age, we used two machine learning-based transcriptomic 367 

clocks, the RNAAgeCalc 21 and a clock that uses knowledge-primed artificial neural networks 368 

22. The RNAAgeCalc clock is a model that predicts the tissue-specific transcriptomic age 369 

based on a fixed set of coefficients for the genes calculated from a pre-trained elastic net 370 

model; in this analysis, we used the model trained in brain tissue. We used the RNAAgeCalc 371 

R package R21 and used raw counts of the RNA sequencing analysis from all samples. The 372 

knowledge-primmed artificial neural network clock (neural clock) is a model that uses the 373 

RNAseq data as input and The Molecular Signatures Database (MSigDB) hallmark gene set 374 

collection 45 as input to train a neural network and estimate the transcriptomic age. Based on 375 

the activation of each neuron in the neural network, the model selects a different set of 376 

genes as predictors of chronological age. Conditional quantile normalization was conducted 377 

using the cqn R package 83. For the neural clock analysis, we randomly split the postmortem 378 

brain samples into training (⅔ of the brain samples) and testing datasets (⅓ of the brain 379 

samples) (Supplementary Table 18). 380 

 381 

Predictive age accuracy of transcriptomic clocks 382 

Since the neural clock uses the training dataset to estimate the set of genes that better 383 

predicts the chronological age, we only used the testing dataset to explore the predictive 384 

accuracy of the clocks. First, we performed pairwise Pearson correlations between the 385 

chronological and transcriptomic age; and between the predicted biological ages from both 386 

clocks. In addition, we estimated the prediction error of transcriptomic age using the root 387 

mean square error (RMSE) measurement implemented in the rmse function of the Metrics R 388 

package. We also calculated the delta of age (delta-Age) as the difference between 389 
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transcriptomic and chronological age (delta-Age = transcriptomic age - chronological age). If 390 

the transcriptomic age is higher than the chronological age (delta-Age > 0), we classified the 391 

sample as having an increased transcriptomic age (i.e, positive delta-Age). If the 392 

transcriptomic age is lower than the chronological age (delta-Age < 0), we classified the 393 

sample as decreased transcriptomic age (i.e, negative delta-Age). To estimate the 394 

concordance (i.e, samples with increased transcriptomic age in both clocks) between the 395 

delta-Age values of the transcriptomic clocks, we counted the number of samples that had 396 

estimated concordance between both clocks and those that had discordant results in both 397 

clocks (i.e, samples with increased transcriptomic age in one clock but decreased in the 398 

other) and compared these counts by a chi-squared test. All analyses were performed in R 399 

version 4.1.1 84. 400 

 401 

Analysis of transcriptomic clocks with age 402 

To test associations between chronological age and transcriptomic age, we regressed 403 

transcriptomic age against chronological age. By definition, transcriptomic age is correlated 404 

with chronological age, but if it varies non-linearly with chronological age, the estimations in 405 

the older ages could be different. Therefore, we tested the extent to which the prediction 406 

accuracy of the transcriptomic clocks correlates with age by including an age-squared term 407 

in the regression model. All the correlations analyses were performed in R version 4.1.1 84. 408 

 409 

Association of transcriptomic age acceleration with phenotypic traits 410 

To test the association of the transcriptomic clocks with multiple phenotypic traits, we tested 411 

multivariable models in two ways: a complete model (a model including all the covariates in 412 

the regression model) and a step-wise correlation model to identify the most predictive 413 

variables. In this multivariable model, we regressed the transcriptomic age with age, sex, 414 

major depressive disorder (MDD), posttraumatic stress disorder (PTSD), opioid misuse, 415 

cause of death (classified as overdose, traumatic injury, or other causes of death), tobacco 416 

use at the time of death, alcohol use at the time of death, amphetamine misuse, and cocaine 417 
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misuse. We combined all the brain regions for these models and added the brain region as a 418 

covariate. We also included the model's postmortem interval (PMI), RNA integrity number 419 

(RIN), and relative cell-type proportions as possible confounders. Relative cell-type 420 

proportions were estimated using the Brain cell type-specific analysis implemented in the 421 

Brettigea R package 85. For the step-wise correlation models, we used the stepAIC function 422 

in the MASS package. We performed the regressions again using the same models, 423 

multivariate and step-wise, but including an age-squared variable. The age-squared term 424 

was included to verify if the association remained significant after adding the non-linear age 425 

variable. All the correlations were analyzed in R 84. 426 

 427 

Cell-type enrichment analysis  428 

To understand the cell-type diversity in each transcriptomic clock, we conducted the 429 

Expression Weighted Cell Type Enrichment (EWCE) analysis and used the reported single-430 

cell transcriptome reference data. EWCE is a method that uses single-cell transcriptomes to 431 

generate the probability distribution of a gene list having an average expression level within 432 

different cell types 86. This analysis allows us to estimate the enrichment in two levels of cell 433 

annotation depending on cell differentiation. For example, annotation level 1 would be 434 

interneurons, and annotation level 2 would break this interneuron into 16 different 435 

interneurons subtypes depending on your reference dataset. 436 

 437 

Gene overlap with prefrontal cortex epigenetic clock 438 

To identify genes that overlap between transcriptomic and epigenetic clocks, we annotated 439 

the 347 CpG sites of a previously published epigenetic clock 38, trained to predict epigenetic 440 

age in the human prefrontal cortex, to their closest genes using the 441 

IlluminaHumanMethylationEPICanno.ilm10b2.hg19 package. 442 

 443 

Construction of a consensus network (CoDiNA) 444 
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Gene co-expression networks are useful for identifying a set of genes that could be 445 

biologically relevant and could be coregulated 87,88. Most gene co-expression network 446 

methods infer independent networks, which could generate inconsistencies in the network 447 

construction. The construction of consensus networks has been recently proposed to 448 

overcome this limitation 89. We used co-expression differential network analysis implemented 449 

in the CoDiNA package 90 to identify a consensus network in the PFC regions. We built 450 

independent networks for dACC, OFC, dlPFC, and sgPFC using the wTO package 91 using 451 

the common genes as predictors of age in both transcriptomic clocks. We used conditional 452 

quantile normalized counts and extracted the co-expressed genes in the four PFC regions. 453 

 454 

Functional analyses 455 

Functional analyses were conducted, including enrichment analysis and protein-protein 456 

interaction (PPI) networks, by using Metascape 92, a web-based portal that integrates a 457 

broad set of current biological databases and applies analytical pipelines to perform a 458 

comprehensive gene list annotation. Most of the known biological databases are redundant, 459 

and reducing this redundancy is helpful to have more biological interpretable results. 460 

Metascape applies a hierarchical clustering algorithm that reduces redundancies into 461 

representative clusters. PPI analysis was performed to infer biologically interpretable results 462 

from complex networks. For this, we used Metascape, which applies a mature complex 463 

identification algorithm called Molecular Complex Detection (MCODE) 93 that detects densely 464 

connected regions in PPI networks. Enrichment analyses were performed of the overlapped 465 

genes in both transcriptomic clocks and those found in the consensus network. 466 

 467 

Synapsis GO (SynGO) enrichment analysis 468 

Synaptic processes play a role in the brain aging process 59. To explore if the transcriptomic 469 

clocks include genes with a synaptic function, we performed an enrichment analysis using 470 

the GO synapsis database (SynGO) 94. We also performed a synapsis GO enrichment 471 

analysis of the genes identified in the consensus network. 472 
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 473 

Human aging genomic resources (HAGR) 474 

To assess whether the genes in the transcriptomic clocks have been previously associated 475 

with aging, we queried the Human aging genomic resource (HAGR) database 46, an online 476 

collection of multiple databases containing genes associated with aging. 477 
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 501 

Figure Legends 502 

Fig. 1 Schematic study workflow. We performed RNAseq of 551 postmortem human 503 

prefrontal cortex (PFC) brain samples from 143 individuals and estimated the transcriptomic 504 

age using two aging clocks, RNAAgeCalc, and a knowledge-based deep neural network 505 

clock (neural clock). Then, we correlated transcriptomic age with age and psychiatric 506 

phenotypes and evaluated the prediction accuracy of both clocks. Further, we analyzed the 507 

co-expression network shared between the four PFC regions and performed a functional 508 

analysis with several databases and algorithms. 509 

Fig. 2 Correlations of transcriptomic age with several phenotypes. A) Correlation between 510 

chronological age and transcriptomic age, the orange line represents the RNAAgeCalc and 511 

blue the neural clock; B) Pairwise correlations between chronological age and the 512 

transcriptomic clocks; C) Mean of the delta of age (dAge) in samples separated by 513 

decreased and increased dAge. Blue represents the neural clock, and orange the 514 

RNAAgeCalc; D) Density plots of the correlation between chronological and transcriptomic 515 

age. Blue represents the density of the distribution of individuals with concordant increased 516 

transcriptomic age, green represents samples with discordance between transcriptomic age, 517 

red represents concordance with decreased age acceleration, and E) Effect sizes of the 518 

most predictive features in the pairwise correlation. 519 

Fig. 3 Functional analysis and cell-type enrichment analysis of the overlap of both clocks. A) 520 

Top 10 most significant gene ontologies and pathways after redundancy remotion in the 521 

clusters; B) Genome-wide enrichment analysis of the genes that overlap between both 522 

clocks; C) Gene overlap between the genes used by the transcriptomic locks and the 523 

epigenetic clock; D) MCODE of the protein-protein interaction network of the genes that 524 

overlap between the neural clock and the epigenetic cortical clock; E) Cell-type enrichment 525 

analysis of the genes in the neural clock (blue) and RNAAgeCalc (orange) at annotation 526 

level 1. 527 
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Fig. 4 Functional annotation of the consensus network. A) Top 10 enriched gene ontologies 528 

and pathways after redundancy remotion; B) MCODE clusters of the protein-protein 529 

interaction network analysis; C) Transcription factor enrichment analysis of the consensus 530 

network; and D) Synaptic enrichment analysis of the consensus network. 531 

 532 
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