Title: Refining the diagnosis of Gestational Diabetes Mellitus: A systematic review to inform efforts in precision medicine

Authors: Ellen C. Francis¹, Camille E. Powe², William L. Lowe, Jr.³, Sara L. White⁴, Denise M. Scholtens⁵, Cuilin Zhang⁶, Yeyi Zhu⁷, Marie-France Hivert⁸, Soo Heon Kwak⁹, Arianne Sweeting¹⁰

¹ Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Rutgers University, Piscataway, NJ, USA

² Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, USA

³ Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA

⁴ Department of Women and Children's Health, King's College London, London, United Kingdom

⁵ Department of Preventive Medicine, Division of Biostatistics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA

⁶ Global Center for Asian Women's Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

⁷ Kaiser Permanente Northern California Division of Research, Oakland, California, USA

⁸ Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA

⁹ Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea

¹⁰ Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia

Funding: AS: Grant support from the NHMRC and ADS; CP: Grant support from NIH/NIDDK and Robert Wood Johnson Foundation; DS: Grant support from NIH/NIDDK; ECF: Grant support from the NIH/NICHD and NIH/NHLBI; SLW: Grant support from the MRC; WL: Grant support from NIH/NIDDK; YZ: Grant support from NIH/NIDDK and NIH/NHLBI

ABSTRACT

Background: Among people with gestational diabetes mellitus (GDM), there is inter-individual variability in clinical outcomes that appears to be related to factors beyond glycemia. However, the precise factors (information on the unique pathophysiology within a person, environment, and/or context) that may help refine the diagnosis of GDM remain unclear. To determine if a precision medicine approach could refine the diagnosis of GDM, we conducted a systematic review of a variety of potential precision markers analyzed in studies among individuals with GDM.

Methods: Systematic literature searches were performed in PubMed

(https://pubmed.ncbi.nlm.nih.gov/) and EMBASE (https://www.embase.com) databases from inception to March 2022 for observational studies and controlled trials. Studies were included if they reported data on, and compared outcomes between, individuals with GDM. The following categories of precision markers were included in the current search: non-glycemic biochemical markers (cholesterol, insulin profiles); genetics/genomics or other -omics (proteomics, lipidomics, metabolomics, metagenomics); maternal/fetal anthropometric (eg., maternal BMI, gestational weight gain, fetal biometry ultra-sound measures); clinical risk factors (medical/familial history, prior delivery complicated by macrosomia or a large for gestational age [LGA] neonate); sociocultural or environmental modifiers (diet, smoking, race/ethnicity, socioeconomic status).

Results: We focused on synthesizing the literature on genetics, -omics, non-glycemic biomarkers, maternal anthropometry/fetal biometry, and clinical/sociocultural risk factors. A total of 5,905 titles and abstracts were screened, 775 underwent full-text review, and 137 studies that included a total of 432,156 GDM cases were synthesized. Of the studies on non-glycemic biomarkers (n=33), lipids and insulin sensitivity/secretion indices were the two most common precision markers, with elevated maternal triglycerides and insulin resistance generally associated with greater risk of LGA and macrosomia. Studies of genetics or other -omics were scarce (n=5); however, differences in genetic variants in adiponectin or adiponutrient genes and non-coding RNAs accounted for variability in perinatal outcomes. The majority of studies (n=77) evaluated maternal anthropometry or fetal biometry as a precision marker, and these studies demonstrate that individuals with adiposity who develop GDM are at a substantially higher risk of LGA or macrosomia than those with GDM and lower adiposity. There were 49 studies evaluating GDM risk factors or sociocultural markers, with only six studies examining multiple risk factors as a composite marker. There were inconsistent findings that GDM risk factors, such as older maternal age, accounted for variation in adverse outcomes.

Conclusions: Our review demonstrates that a major gap exists in studies examining nonglycemic biochemical, genetic, or other 'omic precision markers among individuals with GDM. Given that people meeting current diagnostic criteria for GDM may have different risk profiles, our review identifies several factors (including obesity, insulin resistance, hypertriglyceridemia) that may be useful in risk stratification of GDM, setting the stage for a precision approach to its diagnosis.

INTRODUCTION

Gestational diabetes (GDM) is the most common metabolic complication of pregnancy with an increasing prevalence consistent with the concomitant global increase in obesity and diabetes¹. GDM is traditionally referred to abnormal glucose tolerance with onset or first recognition during pregnancy, which is typically tested for between 24-28 weeks' gestation². It is associated with increased maternal and neonatal complications such as hypertensive disorders of pregnancy and preeclampsia, birth trauma, neonatal respiratory distress, neonatal hypoglycemia, and macrosomia³.

It is important to note that not all cases of GDM carry the same risk of adverse outcomes. While the diagnostic criteria for GDM focus on detecting dysregulation of glucose metabolism, GDM is a disorder of all metabolic fuels, and is increasingly recognized as a heterogeneous condition^{4,5}. Several upstream determinants of metabolic health are considered risk factors for the development of GDM, including higher body mass index (BMI) as well as sociocultural factors. Both clinical and metabolic differences among individuals with GDM may modify the impact of the condition on maternal and fetal health⁶. However, efforts to systematically review studies evaluating clinical and sociocultural/environmental risk factors, genetics, -omics and non-glycemic biomarkers that could identify subgroups within GDM with higher risk of adverse perinatal outcomes are lacking. In an era with increased attention to precision medicine, this lack of systematic data represents a critical gap. Therefore, it is essential to characterize markers that modify the effect of GDM on adverse perinatal outcomes to inform whether the diagnosis can be refined. This knowledge may lead to different clinical actions during pregnancy for different GDM subtypes and argue for the development of novel interventions to reduce adverse pregnancy and perinatal outcomes.

The Precision Medicine in Diabetes Initiative (PMDI) was established in 2018 by the American Diabetes Association (ADA) in partnership with the European Association for the Study of Diabetes (EASD). The ADA/EASD PMDI includes global thought leaders in precision diabetes medicine who are working to address the burgeoning need for better diabetes prevention and care through precision medicine⁷. As part of the ADA/EASD PMDI effort, we aimed to review the existing literature to investigate GDM subtypes and heterogeneity among GDM in association with adverse perinatal outcomes. This effort was undertaken to aid in determining whether a precision medicine approach could refine the diagnosis of GDM beyond traditional glycemic measures.

METHODS

A protocol for this review was registered at PROSPERO (CRD42022316260) on 11 March 2022. **Data sources and search strategy**

Systematic literature searches were performed in PubMed (https://pubmed.ncbi.nlm.nih.gov/) and EMBASE (https://www.embase.com) databases from inception to March 2022 for observational studies and controlled trials that reported data on, and compared outcomes between, individuals with GDM. The following categories of precision markers were included in the current search: non-glycemic biochemical markers (cholesterol, insulin profiles); genetics/genomics or other -omics (proteomics, lipidomics, metabolomics, metagenomics); maternal/fetal anthropometric (eg., maternal BMI, gestational weight gain, fetal biometry ultrasound measures); clinical risk factors (medical/familial history, prior delivery complicated by macrosomia or a large for gestational age [LGA] neonate); sociocultural or environmental modifiers (diet, smoking, race/ethnicity, socioeconomic status). The search was restricted to studies in adult humans, published in English. The search strategy is available in **Supplementary Material 1**.

Selection criteria

We included studies that included at least 100 participants and 30 GDM cases. Study outcomes needed to be reported among GDM cases or compared between subgroups of participants with GDM. Studies that reported on one or more common pregnancy and perinatal outcomes related to GDM diagnosis were included. Maternal outcomes included hypertensive disorders in pregnancy, preeclampsia and cesarean delivery. Offspring outcomes included anthropometry at birth (macrosomia, LGA offspring, small-for-gestational-age [SGA] neonate), preterm delivery, birth trauma, metabolic sequelae or mortality. Studies evaluating prevention, prediction, treatment, long-term maternal and offspring outcomes or glycemic markers to risk stratify or subgroup individuals with GDM were the objective of complementary reviews, or were beyond the scope of the present review.

As our main goal was to review studies that were offering GDM subtyping beyond glycemia, we excluded studies that only reported on glycemic based biochemical markers (e.g., HbA1c, fasting glucose, oral glucose tolerance test glycemic thresholds). We also excluded studies that measured the precision marker after GDM diagnosis, did not report outcomes specifically among participants with GDM or GDM subgroups, studies which included overt diabetes (based on non-pregnancy glycemic thresholds) with GDM cases, studies among multigestations, or studies missing full-text or without full-text in English. We excluded studies that used total gestational weight gain (GWG) over the whole period pregnancy, or fetal biometry only after 32 weeks of gestation because these factors would not be suitable as a precision marker at or around the time of GDM diagnosis. All studies were screened by reviewers in duplicate. All titles and abstracts were screened for eligibility, and those that were assessed as potentially meeting inclusion/exclusion criteria were selected for full-text evaluation.

Data extraction and quality assessment

Study and sample characteristics were extracted in duplicate from full-text using a web-based collaboration software platform that streamlines the production of systematic literature reviews (Covidence systematic review software, Veritas Health Innovation, Melbourne, Australia). The following data elements were extracted from each study when available: cohort characteristics (continent, country, study type [hospital/registry/cohort], enrollment years); participant characteristics (age, BMI, the proportion nulliparous); GDM information (GDM sample size, GDM diagnostic criteria or description); timing of precision marker measurement (pre-pregnancy, before or at GDM diagnosis); perinatal outcomes (maternal, fetal/neonatal).

The risk of bias and overall quality of each study was assessed independently or in duplicate using the Joanna Briggs Institute Critical Appraisal Tool for cohort studies, which was modified specifically for the objectives of the current systematic review⁸ (**Supplementary Material 2**). We assessed the studies using a ten-question measure and considered studies with two poor quality metrics to be of low quality.

Data synthesis and analysis

For each category of precision marker, two independent reviewers jointly summarized the findings. Most studies reported outcomes among individuals with GDM for more than one precision marker (e.g. maternal BMI, also reporting on maternal age, prior history of GDM, etc.).

RESULTS

Literature search

The literature search yielded 5905 non-duplicated abstracts (Figure 1). After independent review by 2 investigators for each abstract, 5130 abstracts were excluded. Among the 775 full-text studies reviewed, 638 were excluded based on our study selection criteria (precision variable measured after diagnosis, no outcome reported among GDM cases, or because they were unrelated to the scope of the present review (**Figure 1**). After final exclusions, 137 studies met the inclusion criteria and were summarized in the present systematic review. The studies were categorized into three groups of precision markers 1) biochemical, genetics, 'omics precision markers; 2) maternal anthropometry/fetal biometry; and 3) clinical risk factors, sociocultural or environmental modifiers.

Overall study characteristics

Detailed study characteristics of the 137 studies representing a total of 432,156 participants are shown in **Table 1**. The median (range) number of participants was 587 (60 - 170,572). Of these studies, 33 evaluated non-glycemic biomarkers among individuals with GDM and five studies included genetic or 'omic markers. The majority of studies (n=73) evaluated maternal anthropometry as a precision marker. There were 49 studies evaluating maternal clinical risk factors or sociocultural markers, with six studies examining multiple risk factors as a composite marker or algorithms/nomograms. Most studies (72%) included pregnancies from 2000-2020 and were from geographically diverse regions. Of the studies included, 20% were conducted in China, 12% in the USA, 7% in Australia, and 6% in Spain. The most frequent diagnostic criteria for GDM were either current IADPSG or WHO criteria.

Overall, 45% of the studies were considered to be of low quality (**Figure 2**). Approximately 40% of studies reported unadjusted estimates and therefore were ranked low on domains of confounding. Self-reported data is generally considered to be of low quality, and since most studies included self-reported pre-prepregnancy weight, 28% of studies were ranked as poor on the ascertainment of precision marker domain. Other factors that impacted the quality rankings were mostly due to unclear reporting in the manuscripts.

Biochemical, genetics, 'omics precision markers

Study characteristics

A total of 38 unique studies reported associations of biochemical, genetics, or other -omics markers with adverse pregnancy and perinatal outcomes among participants with GDM. Of these studies, 15 described associations of lipid classes (triglycerides, total cholesterol, LDL cholesterol, and HDL cholesterol) with adverse pregnancy and perinatal outcomes⁹⁻²³. There were 12 studies that described associations of insulin sensitivity/resistance profiles^{13,24-30}, or insulin secretion or insulin dynamic indices^{9,31-33} with perinatal outcomes. A small number of the included studies subtyped GDM based on adipokines $(n=2)^{31,34}$, metabolomics $(n=1)^{35}$, noncoding RNA $(n=2)^{36,37}$, and candidate gene studies $(n=2)^{38,39}$. The detailed characteristics of these studies are summarized in Supplementary Table 1, which also includes a few studies with measurement of less precise biochemical markers (eg, proteinuria, platelet count). Most studies (63%) included pregnancies from 2010-2020, diagnosed GDM using IADPSG criteria (55%), and included a median (range) number of GDM cases of 242 (64-2,647). Most studies were of medium to high quality, which was attributable to the reporting of unadjusted estimates and therefore being ranked lower when assessing whether the study accounted for confounding. (Supplementary Figure 1).

Lipid subclasses

Among the 14 studies measuring triglycerides prior to or at the time of GDM diagnosis^{9-11,13-23}, approximately half reported that higher triglycerides were positively correlated with increased

birthweight or risk of LGA or macrosomia¹⁷⁻²³, whereas the other studies were null^{9-11,13-16}. Of the studies measuring total cholesterol, LDL, or HDL cholesterols $(n=12)^{10-16,18,20-23}$, one found a positive association of LDL with LGA²¹, and three reported lower mean HDL levels among individuals who later had an LGA baby^{12,14,15}.

Insulin profiles and indices

A variety of methods of calculating insulin resistance/sensitivity and insulin secretory dysfunction using timed insulin and glucose concentrations measured through the OGTT for GDM subgroup stratification were described. The homeostatic model assessment of insulin resistance (HOMA-IR or HOMA2-IR) calculated using fasting insulin and glucose levels at the time of GDM diagnosis (http://www. dtu.ox.ac.uk/homacalculator/)⁴⁰ was used most commonly. The Matsuda index⁴¹, modelled using fasting glucose and insulin values across the OGTT, and HOMA-S (modelled using fasting glucose and insulin)⁴², were the most frequent measures of insulin sensitivity. HOMA-B/HOMA-2B (http://www. dtu.ox.ac.uk; homeostatic model assessment of beta-cell function; fasting insulin and fasting glucose model) and the Stumvoll first phase insulin estimate (modelled using timed insulin and glucose values from OGTT)⁴³ were the most utilized indices defining insulin secretory function. Other indices such as the insulinogenic index and disposition index were utilized rarely^{24,27}.

Among studies calculating HOMA-IR, all four found that individuals with GDM and high HOMA-IR (highest quartile or >2.0) had a significantly increased risk of LGA or macrosomia^{13,25,29,33}, although in one study the statistical comparison was to normal glucose tolerant individuals. In two studies among GDM only, insulin profiles such as a defect in insulin sensitivity, insulin secretion, or a combination of both were not associated with differences in perinatal outcomes^{26,28}. Three studies reported on insulin profiles among participants with and without GDM^{24,27,30}. In two of these, participants with GDM and defects in insulin sensitivity or a combination of both defects had higher rates of LGA and macrosomia (where GDM individuals with isolated insulin secretion defect were at similar risk to individuals without GDM); however, there were no reported tests to assess whether these rates were statistically different only among the GDM cases^{27,30}. A study of insulin secretion peaks during an OGTT found that a delayed insulin secretion peak was associated with increased risk of preeclampsia, LGA, and neonatal hypoglycemia³², whereas both a study of insulin following a 50g glucose load and a study of fasting plasma insulin, found no association with adverse perinatal outcomes^{9,31}.

Adipokines

Two studies measured adiponectin, leptin^{31,34}, and one additionally measured visfatin³⁴. Neither study found that adiponectin or leptin were associated with perinatal outcomes; however, higher visfatin levels were associated with lower risk of LGA³⁴.

Metabolomics

A single study utilizing mass spectrometry examined the association of plasma levels of carnitine and 30 acylcarnitines with newborn complications in individuals with GDM⁴⁴. Carnitine and three acylcarnitines were associated with GDM after adjustment for covariates. Carnitine and acylcarnitine levels together with clinical factors were used to construct a nomogram to predict macrosomia within the GDM group, which resulted in an area under the ROC curve of 0.78 *non-coding RNAs*

Two studies examined the association of different classes of non-coding RNAs with various adverse pregnancy outcomes^{36,37}. One study of circulating long non-coding RNAs (lncRNAs) measured in 63 GDM cases found that including XLOC_014172 and RP11-230G5.2 in a

prediction model for macrosomia resulted in an area under the receiver operator characteristic curve of 0.962³⁶. In a study of high or low plasma levels of circular RNA circATR2, high circATR2 was associated with higher rates of prematurity, miscarriage, intrauterine death, fetal malformations, intrauterine infection and hypertension but not macrosomia or fetal distress³⁷.

Candidate gene studies

Two studies used a candidate gene approach to subtype individuals with GDM based on their genotype and examine associations with pregnancy outcomes^{38,39}. One study of a variant in the patatin-like phospholipase-3 (PNPLA3)/adiponutrin gene (rs738409 C.G), found that G allele (n=96) vs. CC homozygotes (n=104) was associated with higher levels of AST, ALT, and GGT and lower fasting insulin, insulin resistance and LGA birth³⁹. In a study of SNP 45TG in exon 2 of the adiponectin gene, the G allele and GG + TG genotypes were associated with GDM, lower adiponectin levels and greater incidence of macrosomia and neonatal hypoglycemia compared to the TT group³⁸.

Maternal anthropometry or fetal biometry precision markers

Study characteristics

A total of 77 unique studies reported associations of maternal anthropometric or fetal biometry ultra-sound measures. Of these, 68 described associations of pre-pregnancy overweight and obesity defined by maternal BMI (>25.0-29.9 kg/m² and \geq 30.0 kg/m², respectively) with adverse perinatal outcomes. A small number of studies described the relationship of early gestational weight gain (early GWG) prior to diagnosis (n=4)⁴⁵⁻⁴⁸, or fetal biometry ultra-sound measures (biparietal, head, abdominal circumference or femur length) (n=9)⁴⁹⁻⁵⁶ with adverse perinatal outcomes. The detailed characteristics of these studies are summarized in **Supplementary Table 2**. Studies most frequently (40%) included pregnancies from 2010-2020 and diagnosed GDM

using IADPSG, or modified IADPSG criteria (41%). The median (range) number of GDM cases was 594 (60-16,829). Most studies were of medium to high quality, which was attributable to the reporting of unadjusted estimates and therefore being ranked lower when assessing whether the study accounted for confounding (**Supplementary Figure 2**).

Body Mass Index

Studies evaluating the relationship between maternal BMI and adverse pregnancy outcomes tended to be retrospective hospital record cohort or case control studies relying on self-reported pre-pregnancy weight. Of the 68 studies, all but nine^{10,13,20,23,30,49,50,53,56-59} reported positive associations between maternal overweight and obesity and adverse perinatal outcomes. The most consistently reported association was observed for maternal pre-pregnancy obesity and neonatal birthweight, LGA and macrosomia. Regarding maternal pre-pregnancy overweight and obesity as a precision factor, numerous studies showed associations with greater risk of cesarean delivery^{56,59-69} or preeclampsia/hypertensive disorders of pregnancy^{16,61,63,64,67,70-75}. Four studies reported an association with neonatal hypoglycemia⁷⁶⁻⁷⁹, two studies reported an association with a composite outcome of neonatal morbidity and/or admission to NICU^{58,70}, and one study reported an increased risk of major congenital malformations⁸⁰.

Early gestational weight gain

Three of four⁴⁵⁻⁴⁸ studies of early GWG in individuals with GDM found positive associations with LGA^{45,47,48}, one of which reported that trimester-specific weight gain above the Institute of Medicine Guidelines was additionally associated with increased risk of preeclampsia and macrosomia⁴⁵.

Fetal biometry

Among the studies with a fetal biometry ultra-sound measure near the time of GDM diagnosis, six of the eight studies found that larger fetal abdominal⁸¹⁻⁸⁵ or biparietal circumference²² was positively associated with greater neonatal size (birthweight, LGA, macrosomia).

Clinical risk factors, sociocultural and environmental measures

Study characteristics

A total of 49 unique studies reported associations of individual clinical or sociocultural risk factors, or associations of multiple risk factors with adverse perinatal outcomes among individuals with GDM. Of these studies, six included multiple risk factors as a composite variable^{66,86-90}. Eight studies among individuals with GDM examined unique risk factors (e.g., fetal sex, seasonality of conception, assisted reproduction)⁹¹⁻⁹⁷. The majority (n=35) of studies tested associations of factors that increase risk of GDM in the general population, such as family history of diabetes, older age, and higher maternal BMI, with adverse perinatal outcomes among individuals with GDM. The detailed characteristics of these studies are summarized in **Supplementary Table 3.** Half of the studies included pregnancies from 1990-2009, and four studies from the 1980s. A third of studies diagnosed GDM using IADPSG, or IADPSG modified criteria, and 20% did not report diagnostic criteria. The median (range) number of GDM cases in these 50 studies was 950 (100-170,572). Most studies were of medium to high quality, which was attributed to the reporting of unadjusted estimates and therefore being ranked lower when assessing whether the study accounted for confounding (**Supplementary Figure 3**).

Composite of multiple clinical or sociocultural risk factors

Studies examining multiple clinical or sociocultural risk factors often included data from medical/familial history (prior GDM pregnancy, family history of diabetes), maternal/fetal anthropometry (pre-pregnancy obesity, prior LGA/macrosomia delivery). Four studies found that

GDM with one or more risk factors was associated with greater neonatal size (birthweight percentile, LGA, macrosomia), compared to GDM without risk factors^{66,86-88}, with two of these studies also finding a higher risk of cesarean delivery^{66,88}. One study reported that GDM with one or more risk factors was associated with cesarean delivery and not neonatal size⁹⁰, and another found no difference in perinatal outcomes among individuals with or without risk factors⁸⁹.

Individual clinical or sociocultural risk factors

Individual risk factors such as maternal age, race, polycystic ovarian syndrome, parity, prior history of GDM, prior history of macrosomia, and/or family history of diabetes were often reported in studies with a primary analysis focused on other precision factors (e.g. maternal BMI, biomarkers). However, these risk factors were not the focus of our review, thus we only summarized general observations from our literature assessment in **Supplementary Table 3**. Of note, in addition to studies reporting on GDM risk factors as a potential precision marker, there were four studies reporting on psychological factors (depression, anxiety, diabetes distress), and nine studies that examined unique clinical or sociocultural modifiers, which included markers such as fetal sex, seasonality of conception, assisted reproduction, all of which have been summarized in **Supplementary Table 3**. Two studies found that individuals with GDM and a history of PCOS were at higher risk of preeclampsia, and subsequent delivery of offspring with higher risk of SGA birth weight^{98,99}.

Studies have reported various findings from comparing outcomes in individuals with GDM from different races or ethnicities. Race is a social construct and is correlated with a variety of factors that are specific to social context including experiences of racism, some aspects of culture, socioeconomic status, and many other factors that may influence health outcomes. In the social context of United States (US), individuals with GDM who self-identified as African-American were at higher risk of perinatal complications, including fetal death^{100,101}, data mirroring health disparities leading to different perinatal complications rates in the general US population. Findings were inconsistent regarding risk of complications in individuals with GDM who identified as Hispanic (versus non-Hispanic): most studies did not find major differences in adverse outcomes^{102,103} while one large study reporting higher rate of preterm birth¹⁰⁰. In Hawaii, white individuals with GDM were more likely to give birth to baby with macrosomia compared to other race/ethnicity groups (Hawaiian/Pacific Islander, Filipina, or other Asian individuals)¹⁰⁴. Several studies in Australia, USA, and Canada comparing individuals with GDM from different race/ethnicity found that individuals who identified as Asian were less likely to have babies classified as LGA (compared to a White-identified individuals)^{101,105-109}. In two Canadian studies, GDM participants from First Nations or Indigenous groups were at higher risk of perinatal complications¹¹⁰.

DISCUSSION

Our systematic review of 137 studies and 432,825 individuals with GDM demonstrates that there is inter-individual variability in clinical outcomes that appears to be related to factors that extend beyond glycemia. Among individuals with GDM, those with higher triglycerides or markers of an insulin sensitivity defect (or high insulin resistance), are at higher risk of having a newborn classified as LGA or with macrosomia (overall moderate evidence level). Data from adjusted analyses suggest that this higher risk is only partially attributable to differences in pre-pregnancy BMI. Prior research has largely focused on the impact of pre-pregnancy adiposity on adverse perinatal outcomes. Based on studies of moderate quality, we found that the co-occurrence of adiposity and GDM was associated with an increased risk of LGA and macrosomia as well as

related pregnancy complications (eg, cesarean delivery), compared to GDM without adiposity. Unsurprisingly, higher centiles of fetal biometry measured with ultra-sound in the 2nd or 3rd trimester were also precision markers for fetal overgrowth. There were inconsistent findings that GDM risk factors, such as older maternal age, accounted for variation in adverse outcomes. Thus, further research is needed to assess whether the GDM risk factors commonly measured in the general population, are adequate to stratify risk of adverse perinatal outcomes within the subset of individuals who develop GDM. Below, we summarize our general findings and future directions for precision medicine in GDM diagnosis.

Biochemical, genetics, omic precision markers

Most studies examining lipids among individuals with GDM in association with adverse perinatal outcomes have measured a standard lipid panel that includes three measures of cholesterol levels (total, LDL and HDL cholesterol) and triglycerides. Approximately half of the studies reported higher triglycerides were associated with macrosomia or LGA, with fewer studies finding that higher LDL or lower HDL was associated with neonatal size. Interestingly, the average pre-pregnancy BMI and the percentage of individuals with obesity appeared to be lower among the studies that found a positive association of triglycerides with neonatal size¹⁷⁻²³ compared to the studies that reported no association null^{9-11,13-16}. Future studies among individuals with GDM with adequate enrollment of individuals of different BMI categories are needed to clarify whether lipid subclasses are an effect modifier of GDM-associated outcomes that is dependent on maternal adiposity. Studies should also expand investigations to other lipids to further clarify the mechanisms leading to fetal overgrowth due to higher lipids (which lipids, placental transfer, etc.) so novel therapeutic approaches can be developed and tested.

Although not all the studies of insulin profiles made direct statistical comparisons among individuals with GDM, in general, it appears that individuals with GDM who have a defect in insulin sensitivity, (i.e., high insulin resistance), are at increased risk of fetal overgrowth and subsequent delivery of an LGA baby. These studies were from different geographic locations and most diagnosed GDM using IADPSG criteria. There is inadequate data to determine whether isolated insulin secretion defects without concomitant insulin resistance are related to adverse perinatal outcomes. If GDM subtyping based on insulin physiology is to be translated clinically, we need laboratory standardization of insulin (or c-peptide) assays, so we can address the challenge of establishing of a clinical threshold to determine insulin resistance-based GDM subtypes.

Given the established relationship of adiponectin as an insulin sensitizer¹¹¹ and leptin as modulator of food intake and energy expenditure¹¹², it is surprising that our review only identified two studies among individuals with GDM that reported associations between adipokines and adverse perinatal outcomes. It is difficult to assess if this reflects a publication bias where null findings have been excluded, or a true lack of research in this area. Indeed, future studies assessing adipose-derived peptides as precision markers among individuals with GDM should also consider additional effect modification by maternal adiposity. This latter point may be particularly relevant as previous studies of adipokines in pregnancy have reported effect modification by maternal BMI^{113,114}.

Notably, other peptide hormones such as glucagon-like 1 peptide, which plays an essential role in glucose homeostasis were absent from the studies reviewed. In addition, no studies that met our inclusion criteria included measures of branched chain amino acids, which have been implicated in diabetes risk and complications both within and outside of pregnancy^{115,116}. Although we recognize that pregnancy cohorts not restricted to GDM only have found associations of amino acids with glucose metabolism and perinatal outcomes¹¹⁷⁻¹²¹; However, whether amino acid subclasses or indeed hormonal profiles might be used as potential precision markers among individuals with GDM that identify increased risk of adverse prenatal outcomes has not been adequately studied and future research in this area is needed.

Two candidate gene studies, and two studies of non-coding RNAs suggest that subtyping based on data sources, may identify individuals at higher risk for adverse pregnancy outcomes. The use of omics approaches to subtype individuals with GDM has been limited. Studies performed to date are not only limited in number but have limitations. All have been homogeneous, and in the context of omic studies, the studies have been limited in size. Moreover, except for Lu et al. who used an array-based approach to identify lncRNAs for prediction of macrosomia, studies to date have used a targeted approach examining either a single or limited number of variants/molecules. Finally, there are no reports integrating different omics technologies for more effective subtyping of individuals with GDM, and none that included metagenomics. There is therefore an important opportunity to integrate omics technologies with other clinical and biochemical measures to better subtype individuals with GDM and identify individuals at high risk for adverse maternal and newborn outcomes.

Maternal anthropometry/fetal biometry

Most of our included studies evaluated maternal (pre-pregnancy) BMI, and despite low to moderate data quality assessment pertaining to methodology (mostly retrospective single-center hospital-based studies with self-reported or unclear collection/measurement of pre-pregnancy BMI), there was a consistent positive association between pre-pregnancy overweight/obesity with adverse pregnancy and perinatal outcomes, particularly for fetal overgrowth and subsequent LGA or macrosomia. Although assessment of the relative contribution of maternal glycemia versus obesity to adverse pregnancy and perinatal outcomes was beyond the scope of this review; the risks associated with obesity and GDM are additive⁶¹, which has significant implications given the current obesity epidemic. Importantly, it isn't obesity per se, but rather the metabolic alterations that accompany obesity that increase risk of adverse perinatal outcomes. This underscores the need to better refine the phenotyping of GDM individuals based on lipids, insulin resistance, and other markers that may participate in fetal overgrowth. While clinically, fetal biometry is not a novel precision marker of overgrowth risk, few research studies have evaluated a combination of early ultra-sonic fetal growth biometry with other metabolic data, in association with, or prediction of, adverse perinatal outcomes. These studies are needed as they may help identify early metabolic biomarker profiles (and therefore targets) of birth size.

Few studies have assessed the association of early GWG among individuals with GDM with regard to outcome beyond GDM diagnosis. From the limited studies reviewed, greater GWG prior to diagnosis may be a risk factor for adverse perinatal outcomes. Taken together, the studies of early GWG and pre-pregnancy obesity confirm the need to target maternal adiposity prior to pregnancy. This is particularly critical in the setting of increasing rates of obesity among individuals of reproductive age.

Core clinical risk factors, sociocultural and environmental measures

Macrosomia and LGA tended to be more frequent among individuals with GDM who had at least one risk factor. These studies using a composite of risk factors included characteristics such as a prior GDM pregnancy, a family history of diabetes, a prior LGA/macrosomia delivery, or obesity, thus it is unclear if these findings were largely driven by maternal BMI, as reviewed in the prior section. Individually, the presence of factors that increase the risk of GDM in the general population, were not consistently associated with adverse perinatal outcomes. Prior history of macrosomia was associated with risk of higher birth weight (LGA or macrosomia), but not all studies accounted for maternal BMI. As the prevalence of these risk factors is increasing in reproductive age individuals, there may indeed be an overall greater perinatal risk associated with GDM.

Among clinical precision markers, prior history of PCOS in individuals with GDM was associated with preeclampsia. Individuals with both GDM and preeclampsia were at higher risk for SGA compared to individuals with GDM only, in line with known preeclampsia-related risk of fetal growth restriction. Race is a social construct that is recognized to be related to increased risk of GDM (such as Asian, First Nations/Indigenous, Hispanic). The evidence is mixed whether individuals with GDM from these groups are at higher risk of complications; and we note that these racial and ethnic categories and their relationship with outcomes are highly dependent on the overall social context (countries or regions). Future studies with carful collection and consideration of sociocultural influences, such as race, among individuals with GDM are needed.

Limitations

It is worthwhile to note that half of the studies were considered low quality, which impacts the quality of conclusions drawn from the data. Studies were often rated as low quality due to unclear reporting of methods or presenting unadjusted estimates, which can be a source of bias in observational studies. These impacts on quality are because most studies provided the data relevant to the current review in a sub-analysis only, and therefore thorough confounder consideration or reporting of data collection methods for the variables of interest to the current study were frequently not included in the written manuscripts.

Future directions and overall conclusions

Our systematic review has identified several major areas for further research. First, there is a need for studies among individuals with GDM that collect biospecimens longitudinally that can be used for comprehensive measurement of multi-omics markers. Such data are pivotal for an indepth and systematic understanding of precision biomarkers for GDM and subsequent pregnancy and perinatal outcomes. Related to this is a need for standardization of laboratory analysis for biomarker assessment; mechanistic studies restricted to GDM cases to understand differences in pathophysiology that contribute to heterogeneity in outcomes; and the inclusion of larger and more diverse populations. Second, studies with measurement of genetics and multi-omics that integrate clinical and sociocultural data are needed and could provide insight into the determinants and causal pathways of heterogeneity within GDM pregnancies. This latter need may require applying approaches often used in systems biology or in the aggregation and analysis of large datasets from different sources. Lastly, there were a limited number of studies measuring early pregnancy sociocultural factors such as dietary intake, deprivation, environmental influences, and other lifestyle behaviors, which impact perinatal outcomes and may explain variation among individuals with GDM.

There are currently limited systematic reviews of precision markers related to GDM diagnosis and adverse perinatal outcomes. Findings from the current study demonstrate that individuals with adiposity who develop GDM are at a substantially higher risk of LGA or macrosomia than those with GDM and lower adiposity, highlighting the need for innovative prevention and intervention strategies. An overarching theme was a lack of studies integrating data across all domains of precision markers. Advances in computing and the promotion of cross-disciplinary team science may be one approach for addressing these gaps and future

directions. Given the global and transgenerational burden of GDM, and the increasing prevalence of GDM risk factors, identification of precision markers for GDM diagnosis will clarify whether precision medicine in pregnancy can result in a refined detection of GDM and its subtypes.

FIGURE LEGENDS

Figure 1: Article selection, screening, exclusion, and inclusion

Figure 2: Quality assessment of each individual study overall and by critical appraisal domain

The risk of bias and overall quality of each study was assessed independently or in duplicate using the Joanna Briggs Institute (JBI) Critical Appraisal Tool for cohort studies, which was modified specifically for the objectives of the current systematic review. For each question, a reviewer could indicate "not applicable: 0", "yes: 1", "unclear: 2", "no: 3". An answer of "yes" indicates less risk of bias and greater quality, and answer of "no" indicates a higher risk of bias and lower quality

						Maternal	
Author, yr.	Enrollment yrs.	Country	GDM cases	Diagnostic criteria	Biochemical, genetics, 'omic	anthropometry/ fetal biometry	Clinical/ sociocultural
Benhalima 2019 a	NR	Belgium	228	IADPSG	X	· · · ·	
Bo 2015	2009-2012	Italy	200	IADPSG	х		
Chen 2020	2015-2017	China	261	IADPSG	x		
Gibbons 2021	NR	Multinational ⁵	1026	IADPSG	х		
Han 2015	2011 - 2012	China	128	IADPSG	х		
HerreraMartínez 2018	2013-2015	Spain	250	Spanish Group of Diabetes and Pregnancy	х		
Immanuel 2021	2012-2014	Multinational ²	236	IADPSG	х		
Kebapcilar 2016	2014-2015	Turkey	101	CC	х		
Knopp 1992	1985 - 1986	USA	96	CC	х		
Li 2018	2010-2012	China	923	IADPSG	х		
Lin 2021	2018-2019	China	710	IADPSG	x		
Liu 2018	2015-2016	China	206	IADPSG	х		
Lu 2018	2011-2016	China	600	IADPSG	x		
Ma 2021	2018 - 2019	China	104	NR	x		
Madsen 2021	199-2006	Multinational ³	1090	IADPSG	х		
Park 2013	2006 - 2009	Korea	215	CC	х		
Sun 2020 a	2014 - 2016	China	2647	IADPSG	x		
Sun 2020 b	2017-2018	China	64	IADPSG	x		
Wang 2021 b	2019-2020	China	299	IADPSG	x		
Wong 2014	2010-2013	Australia	1296	IADPSG	x		
Xiao 2020	2016-2018	China	248	IADPSG	x		
Zhang 2019	2017	China	77	IADPSG	x		
Zhang 2020	2015-2018	China	737	IADPSG	x		
Zhu 2021	2019-2020	China	70	IADPSG	x		
Barden 2004	NR	Australia	184	ADIPS	x	х	
Bomba-Opon 2010	NR	Poland	121	Polish Gynaecological Society	x	х	
Grotenfelt 2019	2008-2014	Finland	164	IADPSG	x	x	
Hashemipour 2018	2015-2016	Iran	305	IADPSG	х	х	

Krstevska 2009	2006-2009	Macedonia	200	CC	х	х	
Olmos 2014	2009-2013	Chile	279	2-hour glucose≥ 140 mg/dl (7.77 mmol/l)	х	х	
Simeonova-Krstevska 2014	NR	Macedonia	200	IADPSG	х	х	
Son 2010	2000-2008	Korea	104	CC	х	х	
Zou 2021	2019-2020	China	783	IADPSG	х	x	
Ducarme 2018	2014-2015	France	200	IADPSG	х	х	x
Gorban de Lapertosa 2020	2017-2019	Argentina	1088	NR	х	х	х
Rao 2021	2016-2018	China	565	IADPSG	х		x
Thevarajah 2019	2013-2015	Australia	749	IADPSG; ADIPS guidelines	х	х	х
Zawiejska 2008	1993-2005	Poland	357	IADPSG	х	х	х
Aiken 2019	2014-2017	UK	129	IADPSG with a higher fasting threshold \geq 5.3 mmol/l		х	
Alfadhli 2021	2014-2015	Saudi Arabia	266	IADPSG		х	
Antoniou 2020	2012-2017	Switzerland	189	IADPSG		х	
Barnes 2013	1992-2009	Australia	1695	ADIPS		х	
Barquiel 2014	1987 - 2008	Spain	2037	NDDG		x	
Barquiel 2016	1987 - 2008	Spain	2037	NDDG		х	
Barquiel 2018	1986 - 2015	Spain	3284	NDDG		х	
Ben-Haroush 2009	1993-2004	Israel	233	CC		х	
Blickstein 2018	2003-2012	Slovenia	6229	CC		х	
Catalano 2012	2000-2006	Multinational ¹	3746	IADPSG		х	
Collins 2018	2014-2016	Australia	410	IADPSG		х	
Cosson 2016	2002-2010	France	2097	CNGOF		х	
Cremona 2020	2016	Ireland	303	IADPSG		х	
dePaulaBertoli 2020	2010 - 2018	Brazil	442	NR		x	
Fonseca 2021	2011-2017	Portugal	1085	IADPSG		x	
Fuka 2020	2013-2014	Fiji	255	Modified IADPSG		х	
García-Patterson 2004	1986-2022	Spain	2060	3rd Work-shop-Conference on GDM criteria		х	
García-Patterson 2012	1986-2006	Spain	2092	NDDG		х	
Gascho 2017	NR	Brazil	392	IADPSG		х	
Hagiwara 2018	2011-2016	Japan	675	IADPSG		x	
Hardy 1999	1993-1994	USA	213	3-hr OGTT [thresholds not provided]		x	
Hildén 2016	1998-2012	Sweden	NR	ICD-10 codes		x	

Hod 1996	1986-1990	Israel	470	ADA (1979 to 1985) & ACOG (1986)	x
Horosz 2013	2005-2011	Poland	675	Polish Gynaecological Society	х
Huet 2018	2012-2014	France	808	CNGOF (2010)	х
Ijäs 2019	2009	Finland	5680	Finnish national guidelines (2008)	х
Langer 2016	1990-1999	USA	555	CC	х
Lee 2014	2006-2013	South Korea	243	CC	х
Leng 2015	2009-2011	China	1263	Other	х
Leung 2004	2002	China	138	Other	х
Li 2021	2018-2020	China	16829	IADPSG	х
Masalin 2019	2009-2015	Finland	NR	Finnish Current Care Guidelines	х
Martin 2015	2008-2011	Australia	115	South Australian state-wide perinatal practice guidelines	x
Much 2015	1998 - 2010	Germany	856	IADPSG	х
Mustaniemi 2021	2009-2012	Finland	1055	Finnish Current Care guidelines	х
Nobumoto 2015	2001 - 2011	Japan	446	Older IADPSG	х
Olmos 2012	1998-2009	Chile	251	WHO 1999	Х
Ouzounian 2011	2000 - 2006	USA	1502	NR	х
Pezzarossa 1996	NR	Italy	60	NDDG	х
Phaloprakarn 2009	2003-2008	Thailand	813	CC	х
Philipson 1985	1979 - 1983	USA	158	NR	х
Schaefer-Graf 2011	2001-2007	Germany	1914	CC	х
Scifres 2015	2009-2012	USA	1344	CC	х
Shi 2021	2010-2020	China	1606	IADPSG	х
Simpson 2018	2012-2015	USA	413	IADPSG	х
Sun 2014	2010-2012	China	1418	IADPSG	х
Tavares 2019	2015-2017	Brazil	116	IADPSG	х
Usami 2020	2003-2009	Japan	1481	Former SOG	х
Wahabi 2014	2011-2012	Saudi Arabia	415	CC	Х
Wahabi 2014 Wang 2015	2011-2012 2012-2013	Saudi Arabia China	415 587	CC IADPSG	x x
Wahabi 2014 Wang 2015 Wang 2018	2011-2012 2012-2013 2014	Saudi Arabia China China	415 587 601	CC IADPSG IADPSG	x x x
Wahabi 2014 Wang 2015 Wang 2018 Weschenfelder 2021	2011-2012 2012-2013 2014 2012-2016	Saudi Arabia China China Germany	415 587 601 614	CC IADPSG IADPSG	x x x x
Wahabi 2014 Wang 2015 Wang 2018 Weschenfelder 2021 Yogev 2004 b	2011-2012 2012-2013 2014 2012-2016 1994-1999	Saudi Arabia China China Germany USA	415 587 601 614 1664	CC IADPSG IADPSG CC	x x x x x

Yue 2022	2016-2018	Vietnam	908	IADPSG	Х	
Chee 2020	2004-2015	Australia	1064	ADIPS (1998)	х	х
Filardi 2018	2014-2016	Italy	183	Other	x	х
Hernandez-Rivas 2013	2004-2011	Spain	456	NDDG	х	х
Matta-Coelho 2019	2011 - 2015	Portugal	10443	IADPSG	x	х
Nunes 2020	2017-2018	Portugal	301	Medical records	x	х
Pintaudi 2018	2012-2015	Italy	2736	IADPSG	x	х
Quaresima 2020	2018-2020	Italy	219	IADPSG	x	х
Yuen 2021	2007-2008	Multinational ⁴	7518	Waikato NZSSD 1995, Waikato NZMOH 2014, ADIPS 1991, IADPSG	x	х
Ajala 2018	1999-2009	Canada	848	CDA		х
Alshammari 2010	1999-2006	Canada	171	O'Sullivan or CDA		х
Anyaegbunam 1995	1990-1992	USA	418	NDDG		х
Benhalima 2019 b	2014-2017	Belgium	231	IADPSG		х
Berggren 2012	NR	USA	768	CC		х
Chen 2019	1996-2010	Canada	12110	CDA		х
Contreras 2010	2003-2006	USA	915	CC		х
Cosson 2013	2002-2010	France	2710	IADPSG; CGNOF		х
Cosson 2015	2009-2012	France	994	IADPSG; CGNOF		х
Ding 2018	2015 - 2017	China	3221	IADPSG		х
Dyck 2020	1980-2013	Canada	10514	ICD-9 codes		х
Esakoff 2011	2001-2004	USA	26411	NR		х
Fadl 2012	1998-2007	Sweden	8560	DPSG		х
Fraser 1994	1987-1988	Israel	442	NDDG		х
Hammoud 2013	2006-2009	Netherlands	249	NR		х
Kouhkan 2018	2014-2017	Iran	287	IADPSG		х
Kwong 2019	2009-2013	Canada	537	CDA & SOGC (2008)		х
Lamminpää 2016	2004 - 2008	Finland	27154	ICD-10 codes and text searching		х
Lee 2020	2018	Malaysia	418	NR		х
Li 2010	2006-2009	China	104	СС		x
Liu 2020	2014 - 2018	China	314	IADPSG		x
Makgoba 2012	1988-2000	UK	1113	Varied across sites		x
Manoharan 2020	2015-2019	Australia	1545	IADPSG; ADIPS		x

Meek 2020	2004-2008	UK	985	WHO 1999	х
Mocarski 2012	2001-2006	USA	19416	NR	x
Packer 2021	2007 - 2011	USA	170572	NR	x
Schmidt 2019	NR	Netherlands	100	NR	x
Scime 2020	2014-2017	Canada	11114	NR	x
Szymanska 2011	NR	Poland	173	NR	x
Tsai 2013	2009 - 2011	Hawaii	5925	Self-report	х
Tundidor 2012	1981-2007	Spain	2299	NR	x
Wan 2019	2010-2013	Australia	1579	ADIPS (1991)	х
Wang 2021 a	2012-2013	China	1229	IADPSG	x
Weeks 1994	1990-1992	USA	106	NDDG	x
Yogev 2004 a	1993-1999	USA	1813	СС	x
Zhang 2017	2005-2009	China	1263	IADPSG	x

Footnotes:

1 Multinational: USA, Canada, West Indies, UK, Israel, Singapore, Thailand, China, Australia 2 Multinational: Spain, UK, Austria, Belgium, Denmark, Italy, Ireland, Poland, Netherlands

3 Multinational: Bellflower, CA, USA; Cleveland, OH, USA; Brisbane, QLD, Australia; Newcastle, NSW, Australia; Hong Kong, China

4 Multinational: New Zealand & Australia

5 Multinational: HAPO (Cleveland, Bellflower, Brisbane, Newcastle, Hong Kong)

NR: not reported

References

- 1. Zhu YY, Zhang CL. Prevalence of Gestational Diabetes and Risk of Progression to Type 2 Diabetes: a Global Perspective. Current Diabetes Reports 2016;16(1). DOI: 10.1007/s11892-015-0699-x.
- 2. Diagnostic criteria and classification of hyperglycaemia first detected in pregnancy: a World Health Organization Guideline. Diabetes research and clinical practice 2014;103(3):341-63. (In eng). DOI: 10.1016/j.diabres.2013.10.012.
- 3. McIntyre HD, Catalano P, Zhang C, Desoye G, Mathiesen ER, Damm P. Gestational diabetes mellitus. Nature Reviews Disease Primers 2019;5(1):47. DOI: 10.1038/s41572-019-0098-8.
- 4. Powe CE, Hivert MF, Udler MS. Defining Heterogeneity Among Women With Gestational Diabetes Mellitus. Diabetes 2020;69(10):2064-2074. (In eng). DOI: 10.2337/dbi20-0004.
- 5. Francis EC, Kechris K, Jansson T, Dabelea D, Perng W. Novel Metabolic Subtypes in Pregnant Women and Risk of Early Childhood Obesity in Offspring. JAMA Netw Open 2023;6(4):e237030. (In eng). DOI: 10.1001/jamanetworkopen.2023.7030.
- 6. Nolan JJ, Kahkoska AR, Semnani-Azad Z, et al. ADA/EASD Precision Medicine in Diabetes Initiative: An International Perspective and Future Vision for Precision Medicine in Diabetes. Diabetes Care 2022;45(2):261-266. DOI: 10.2337/dc21-2216.
- 7. Nolan CJ. Maternal serum triglyceride, glucose tolerance, and neonatal birth weight ratio in pregnancy. Diabetes Care 1995;18. DOI: 10.2337/diacare.18.12.1550.
- 8. McArthur A, Klugárová J, Yan H, Florescu S. Innovations in the systematic review of text and opinion. Int J Evid Based Healthc 2015;13(3):188-95. (In eng). DOI: 10.1097/xeb.0000000000060.
- Knopp RH, Magee MS, Walden CE, Bonet B, Benedetti TJ. Prediction of infant birth weight by GDM screening tests. Importance of plasma triglyceride. Diabetes Care 1992;15(11):1605-13. (In eng). DOI: 10.2337/diacare.15.11.1605.
- 10. Gorban de Lapertosa S, Alvariñas J, Elgart JF, Salzberg S, Gagliardino JJ. The triad macrosomia, obesity, and hypertriglyceridemia in gestational diabetes. Diabetes Metab Res Rev 2020;36(5):e3302. DOI: 10.1002/dmrr.3302.
- 11. Herrera Martínez A, Palomares Ortega R, Bahamondes Opazo R, Moreno-Moreno P, Molina Puerta M^a J, Gálvez-Moreno MA. Hyperlipidemia during gestational diabetes and its relation with maternal and offspring complications. Nutricion hospitalaria 2018;35(3):698-706. DOI: 10.20960/nh.1539.
- 12. Grotenfelt NE, Rönö K, Eriksson JG, et al. Neonatal outcomes among offspring of obese women diagnosed with gestational diabetes mellitus in early versus late pregnancy. J Public Health (Oxf) 2019;41(3):535-542. DOI: 10.1093/pubmed/fdy159.
- Sun YY, Juan J, Xu QQ, Su RN, Hirst JE, Yang HX. Increasing insulin resistance predicts adverse pregnancy outcomes in women with gestational diabetes mellitus. Journal of diabetes 2020;12(6):438-446. DOI: 10.1111/1753-0407.13013.
- 14. Krstevska B, Velkoska Nakova V, Adamova G, et al. Association between foetal growth and different maternal metabolic characteristics in women with gestational diabetes mellitus. Prilozi 2009;30(2):103-14.
- Xiao Y, Zhang X. Association Between Maternal Glucose/Lipid Metabolism Parameters and Abnormal Newborn Birth Weight in Gestational Diabetes Complicated by Preeclampsia: A Retrospective Analysis of 248 Cases. Diabetes Therapy 2020;11(4):905-914. DOI: 10.1007/s13300-020-00792-3.
- 16. Barden A, Singh R, Walters BN, Ritchie J, Roberman B, Beilin LJ. Factors predisposing to pre-eclampsia in women with gestational diabetes. J Hypertens 2004;22(12):2371-8. DOI: 10.1097/00004872-200412000-00020.
- 17. Olmos PR, Rigotti A, Busso D, et al. Maternal hypertriglyceridemia: A link between maternal overweightobesity and macrosomia in gestational diabetes. Obesity (Silver Spring) 2014;22(10):2156-63. DOI: 10.1002/oby.20816.
- Zawiejska A, Wender-Ozegowska E, Brazert J, Sodowski K. Components of metabolic syndrome and their impact on fetal growth in women with gestational diabetes mellitus. J Physiol Pharmacol 2008;59 Suppl 4:5-18. (In eng).
- 19. Hashemipour S, Haji Seidjavadi E, Maleki F, Esmailzadehha N, Movahed F, Yazdi Z. Level of maternal triglycerides is a predictor of fetal macrosomia in non-obese pregnant women with gestational diabetes mellitus. Pediatr Neonatol 2018;59(6):567-572. DOI: 10.1016/j.pedneo.2018.01.008.

- 20. Simeonova-Krstevska S, Krstevska B, Velkoska-Nakova V, et al. Effect of lipid parameters on foetal growth in gestational diabetes mellitus pregnancies. Pril (Makedon Akad Nauk Umet Odd Med Nauki) 2014;35(2):131-6. DOI: 10.2478/prilozi-2014-0017.
- 21. Son GH, Kwon JY, Kim YH, Park YW. Maternal serum triglycerides as predictive factors for large-forgestational age newborns in women with gestational diabetes mellitus. Acta Obstet Gynecol Scand 2010;89(5):700-4. DOI: 10.3109/00016341003605677.
- 22. Zou Y, Zhang Y, Yin Z, Wei L, Lv B, Wu Y. Establishment of a nomogram model to predict macrosomia in pregnant women with gestational diabetes mellitus. BMC Pregnancy Childbirth 2021;21(1):581. DOI: 10.1186/s12884-021-04049-0.
- 23. Rao C, Ping F. Second-trimester maternal lipid profiles rather than glucose levels predict the occurrence of neonatal macrosomia regardless of glucose tolerance status: A matched cohort study in Beijing. J Diabetes Complications 2021;35(8):107948. DOI: 10.1016/j.jdiacomp.2021.107948.
- 24. Liu Y, Hou W, Meng X, et al. Heterogeneity of insulin resistance and beta cell dysfunction in gestational diabetes mellitus: a prospective cohort study of perinatal outcomes. J Transl Med 2018;16(1):289. DOI: 10.1186/s12967-018-1666-5.
- 25. Li J, Leng J, Li W, et al. Roles of insulin resistance and beta cell dysfunction in macrosomia among Chinese women with gestational diabetes mellitus. Prim Care Diabetes 2018;12(6):565-573. DOI: 10.1016/j.pcd.2018.07.010.
- 26. Benhalima K, Van Crombrugge P, Moyson C, et al. Characteristics and pregnancy outcomes across gestational diabetes mellitus subtypes based on insulin resistance. Diabetologia 2019;62(11):2118-2128. DOI: 10.1007/s00125-019-4961-7.
- 27. Wang N, Song L, Sun B, et al. Contribution of gestational diabetes mellitus heterogeneity and prepregnancy body mass index to large-for-gestational-age infants-A retrospective case-control study. Journal of diabetes 2021;13(4):307-317. DOI: 10.1111/1753-0407.13113.
- 28. Madsen LR, Gibbons KS, Ma RCW, et al. Do variations in insulin sensitivity and insulin secretion in pregnancy predict differences in obstetric and neonatal outcomes? Diabetologia 2021;64(2):304-312. DOI: 10.1007/s00125-020-05323-0.
- 29. Lin J, Jin H, Chen L. Associations between insulin resistance and adverse pregnancy outcomes in women with gestational diabetes mellitus: a retrospective study. BMC Pregnancy Childbirth 2021;21(1):526. DOI: 10.1186/s12884-021-04006-x.
- 30. Gibbons KS, Chang AMZ, Ma RCW, et al. Prediction of large-for-gestational age infants in relation to hyperglycemia in pregnancy A comparison of statistical models. Diabetes research and clinical practice 2021;178:108975. DOI: 10.1016/j.diabres.2021.108975.
- 31. Bomba-Opon DA, Horosz E, Szymanska M, Wielgos M. Maternal plasma adipokines and insulin concentrations in relation to fetal biometry in the gestational diabetes. Neuro endocrinology letters 2010;31(4):568-72.
- 32. Zhang NJ, Tao MF, Li HP, Zhao F, Wang FH. The relationship between patterns of insulin secretion and risks of gestational diabetes mellitus. International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics 2020;150(3):318-323. DOI: 10.1002/ijgo.13200.
- 33. Immanuel J, Simmons D, Harreiter J, et al. Metabolic phenotypes of early gestational diabetes mellitus and their association with adverse pregnancy outcomes. Diabet Med 2021;38(2):e14413. DOI: 10.1111/dme.14413.
- 34. Park S, Kim MY, Baik SH, et al. Gestational diabetes is associated with high energy and saturated fat intakes and with low plasma visfatin and adiponectin levels independent of prepregnancy BMI. Eur J Clin Nutr 2013;67(2):196-201. DOI: 10.1038/ejcn.2012.207.
- 35. Sun M, Zhao B, He S, et al. The Alteration of Carnitine Metabolism in Second Trimester in GDM and a Nomogram for Predicting Macrosomia. Journal of Diabetes Research 2020;2020:4085757. DOI: 10.1155/2020/4085757.
- Lu J, Wu J, Zhao Z, Wang J, Chen Z. Circulating LncRNA Serve as Fingerprint for Gestational Diabetes Mellitus Associated with Risk of Macrosomia. Cell Physiol Biochem 2018;48(3):1012-1018. DOI: 10.1159/000491969.
- 37. Zhu C, Liu Y, Wu H. Overexpression of circactr2 in gestational diabetes mellitus predicts intrauterine death, fetal malformation, and intrauterine infection. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2021;14:4655-4660. DOI: 10.2147/DMSO.S316043.

- 38. Han Y, Zheng YL, Fan YP, Liu MH, Lu XY, Tao Q. Association of adiponectin gene polymorphism 45TG with gestational diabetes mellitus diagnosed on the new IADPSG criteria, plasma adiponectin levels and adverse pregnancy outcomes. Clin Exp Med 2015;15(1):47-53. DOI: 10.1007/s10238-014-0275-8.
- 39. Bo S, Gambino R, Menato G, et al. Isoleucine-to-methionine substitution at residue 148 variant of PNPLA3 gene and metabolic outcomes in gestational diabetes. Am J Clin Nutr 2015;101(2):310-8. DOI: 10.3945/ajcn.114.095125.
- 40. Wallace TM, Levy JC, Matthews DR. Use and Abuse of HOMA Modeling. Diabetes Care 2004;27(6):1487. DOI: 10.2337/diacare.27.6.1487.
- 41. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 1999;22(9):1462-70. (In eng). DOI: 10.2337/diacare.22.9.1462.
- 42. Kirwan JP, Huston-Presley L, Kalhan SC, Catalano PM. Clinically useful estimates of insulin sensitivity during pregnancy: validation studies in women with normal glucose tolerance and gestational diabetes mellitus. Diabetes Care 2001;24(9):1602-7. (In eng). DOI: 10.2337/diacare.24.9.1602.
- 43. Stumvoll M, Van Haeften T, Fritsche A, Gerich J. Oral glucose tolerance test indexes for insulin sensitivity and secretion based on various availabilities of sampling times. Diabetes Care 2001;24(4):796-7. (In eng). DOI: 10.2337/diacare.24.4.796.
- 44. Sun M, Zhao B, He S, et al. The Alteration of Carnitine Metabolism in Second Trimester in GDM and a Nomogram for Predicting Macrosomia. J Diabetes Res 2020;2020:4085757. DOI: 10.1155/2020/4085757.
- 45. Shi P, Liu A, Yin X. Association between gestational weight gain in women with gestational diabetes mellitus and adverse pregnancy outcomes: a retrospective cohort study. BMC Pregnancy Childbirth 2021;21(1):508. DOI: 10.1186/s12884-021-03982-4.
- 46. Aiken CEM, Hone L, Murphy HR, Meek CL. Improving outcomes in gestational diabetes: does gestational weight gain matter? Diabet Med 2019;36(2):167-176. DOI: 10.1111/dme.13767.
- 47. Horosz E, Bomba-Opon DA, Szymanska M, Wielgos M. Maternal weight gain in women with gestational diabetes mellitus. J Perinat Med 2013;41(5):523-8. DOI: 10.1515/jpm-2012-0254.
- 48. Barnes RA, Edghill N, Mackenzie J, et al. Predictors of large and small for gestational age birthweight in offspring of women with gestational diabetes mellitus. Diabet Med 2013;30(9):1040-6. DOI: 10.1111/dme.12207.
- 49. Ducarme G, Desroys Du Roure F, Le Thuaut A, Grange J, Dimet J, Crepin-Delcourt I. Efficacy of maternal and biological parameters at the time of diagnosis of gestational diabetes mellitus in predicting neonatal morbidity. Eur J Obstet Gynecol Reprod Biol 2018;221:113-118. DOI: 10.1016/j.ejogrb.2017.12.036.
- 50. Thevarajah A, Simmons D. Risk factors and outcomes for neonatal hypoglycaemia and neonatal hyperbilirubinaemia in pregnancies complicated by gestational diabetes mellitus: a single centre retrospective 3-year review. Diabet Med 2019;36(9):1109-1117. DOI: 10.1111/dme.13962.
- 51. Alfadhli EM. Maternal obesity influences Birth Weight more than gestational Diabetes author. BMC Pregnancy Childbirth 2021;21(1):111. DOI: 10.1186/s12884-021-03571-5.
- 52. Fonseca L, Saraiva M, Amado A, et al. Third trimester HbA1c and the association with large-forgestational-age neonates in women with gestational diabetes. Arch Endocrinol Metab 2021;65(3):328-335. DOI: 10.20945/2359-3997000000366.
- 53. Nunes JS, Ladeiras R, Machado L, Coelho D, Duarte C, Furtado JM. The Influence of Preeclampsia, Advanced Maternal Age and Maternal Obesity in Neonatal Outcomes Among Women with Gestational Diabetes. Rev Bras Ginecol Obstet 2020;42(10):607-613. DOI: 10.1055/s-0040-1710300.
- 54. Pezzarossa A, Orlandi N, Baggi V, Dazzi D, Ricciarelli E, Coppola F. Effects of maternal weight variations and gestational diabetes mellitus on neonatal birth weight. J Diabetes Complications 1996;10(2):78-83. DOI: 10.1016/1056-8727(94)00065-4.
- 55. Usami T, Yokoyama M, Ueno M, et al. Comparison of pregnancy outcomes between women with earlyonset and late-onset gestational diabetes in a retrospective multi-institutional study in Japan. J Diabetes Investig 2020;11(1):216-222. DOI: 10.1111/jdi.13101.
- 56. Yogev Y, Langer O. Pregnancy outcome in obese and morbidly obese gestational diabetic women. Eur J Obstet Gynecol Reprod Biol 2008;137(1):21-6. DOI: 10.1016/j.ejogrb.2007.03.022.
- 57. Wang N, Ding Y, Wu J. Effects of pre-pregnancy body mass index and gestational weight gain on neonatal birth weight in women with gestational diabetes mellitus. Early Hum Dev 2018;124:17-21. DOI: 10.1016/j.earlhumdev.2018.07.008.
- 58. Yuen L, Wong VW, Wolmarans L, Simmons D. Comparison of Pregnancy Outcomes Using Different Gestational Diabetes Diagnostic Criteria and Treatment Thresholds in Multiethnic Communities between

Two Tertiary Centres in Australian and New Zealand: Do They Make a Difference? Int J Environ Res Public Health 2021;18(9). DOI: 10.3390/ijerph18094588.

- 59. de Paula Bertoli JP, Schulz MA, Ribeiro e Silva R, Nunes da Silva JO, de Souza MLR, Silva JC. Obesity in patients with gestational diabetes: Impact on newborn outcomes. Obesity Medicine 2020;20. DOI: 10.1016/j.obmed.2020.100296.
- 60. Barquiel B, Herranz L, Meneses D, et al. Optimal Gestational Weight Gain for Women with Gestational Diabetes and Morbid Obesity. Matern Child Health J 2018;22(9):1297-1305. DOI: 10.1007/s10995-018-2510-5.
- 61. Catalano PM, McIntyre HD, Cruickshank JK, et al. The hyperglycemia and adverse pregnancy outcome study: associations of GDM and obesity with pregnancy outcomes. Diabetes Care 2012;35(4):780-6. DOI: 10.2337/dc11-1790.
- 62. Ijäs H, Koivunen S, Raudaskoski T, Kajantie E, Gissler M, Vääräsmäki M. Independent and concomitant associations of gestational diabetes and maternal obesity to perinatal outcome: A register-based study. PLoS One 2019;14(8):e0221549. DOI: 10.1371/journal.pone.0221549.
- 63. Hildén K, Hanson U, Persson M, Fadl H. Overweight and obesity: a remaining problem in women treated for severe gestational diabetes. Diabet Med 2016;33(8):1045-51. DOI: 10.1111/dme.13156.
- 64. Huet J, Beucher G, Rod A, Morello R, Dreyfus M. Joint impact of gestational diabetes and obesity on perinatal outcomes. J Gynecol Obstet Hum Reprod 2018;47(9):469-476. DOI: 10.1016/j.jogoh.2018.08.003.
- 65. Langer O. Obesity or diabetes: which is more hazardous to the health of the offspring? J Matern Fetal Neonatal Med 2016;29(2):186-90. DOI: 10.3109/14767058.2014.995084.
- 66. Matta-Coelho C, Monteiro AM, Fernandes V, Pereira ML, Souto SB. Universal vs. risk-factor-based screening for gestational diabetes-an analysis from a 5-Year Portuguese Cohort. Endocrine 2019;63(3):507-512. DOI: 10.1007/s12020-018-1760-8.
- 67. Wahabi HA, Fayed AA, Alzeidan RA, Mandil AA. The independent effects of maternal obesity and gestational diabetes on the pregnancy outcomes. BMC endocrine disorders 2014;14:47. DOI: 10.1186/1472-6823-14-47.
- 68. Yue S, Thi VTK, Dung LP, et al. Clinical consequences of gestational diabetes mellitus and maternal obesity as defined by asian BMI thresholds in Viet Nam: a prospective, hospital-based, cohort study. BMC Pregnancy Childbirth 2022;22(1):195. DOI: 10.1186/s12884-022-04533-1.
- 69. Gascho CL, Leandro DM, Ribeiro EST, Silva JC. Predictors of cesarean delivery in pregnant women with gestational diabetes mellitus. Rev Bras Ginecol Obstet 2017;39(2):60-65. DOI: 10.1055/s-0037-1598644.
- Nobumoto E, Masuyama H, Hiramatsu Y, Sugiyama T, Kusaka H, Toyoda N. Effect of the new diagnostic criteria for gestational diabetes mellitus among Japanese women. Diabetology International 2015;6(3):226-231. DOI: 10.1007/s13340-014-0193-8.
- 71. Barquiel B, Herranz L, Grande C, et al. Body weight, weight gain and hyperglycaemia are associated with hypertensive disorders of pregnancy in women with gestational diabetes. Diabetes Metab 2014;40(3):204-10. DOI: 10.1016/j.diabet.2013.12.011.
- 72. Blickstein I, Doyev R, Trojner Bregar A, Bržan Šimenc G, Verdenik I, Tul N. The effect of gestational diabetes, pre-gravid maternal obesity, and their combination ('diabesity') on outcomes of singleton gestations. J Matern Fetal Neonatal Med 2018;31(5):640-643. DOI: 10.1080/14767058.2017.1293030.
- 73. Phaloprakarn C, Tangjitgamol S. Risk assessment for preeclampsia in women with gestational diabetes mellitus. J Perinat Med 2009;37(6):617-21. DOI: 10.1515/jpm.2009.108.
- 74. Weschenfelder F, Hein F, Lehmann T, Schleußner E, Groten T. Contributing factors to perinatal outcome in pregnancies with gestational diabetes—what matters most? A retrospective analysis. Journal of Clinical Medicine 2021;10(2):1-12. DOI: 10.3390/jcm10020348.
- 75. Yogev Y, Langer O, Brustman L, Rosenn B. Pre-eclampsia and gestational diabetes mellitus: does a correlation exist early in pregnancy? J Matern Fetal Neonatal Med 2004;15(1):39-43. DOI: 10.1080/14767050310001650707.
- 76. Collins K, Oehmen R, Mehta S. Effect of obesity on neonatal hypoglycaemia in mothers with gestational diabetes: A comparative study. Aust N Z J Obstet Gynaecol 2018;58(3):291-297. DOI: 10.1111/ajo.12717.
- 77. Cremona A, Saunders J, Cotter A, Hamilton J, Donnelly AE, O'Gorman CS. Maternal obesity and degree of glucose intolerance on neonatal hypoglycaemia and birth weight: a retrospective observational cohort study in women with gestational diabetes mellitus. Eur J Pediatr 2020;179(4):653-660. DOI: 10.1007/s00431-019-03554-x.

- 78. Fuka F, Osuagwu UL, Agho K, et al. Factors associated with macrosomia, hypoglycaemia and low Apgar score among Fijian women with gestational diabetes mellitus. BMC Pregnancy Childbirth 2020;20(1):133. DOI: 10.1186/s12884-020-2821-6.
- 79. García-Patterson A, Aulinas A, María M, et al. Maternal body mass index is a predictor of neonatal hypoglycemia in gestational diabetes mellitus. The Journal of clinical endocrinology and metabolism 2012;97(5):1623-8. DOI: 10.1210/jc.2011-3425.
- 80. García-Patterson A, Erdozain L, Ginovart G, et al. In human gestational diabetes mellitus congenital malformations are related to pre-pregnancy body mass index and to severity of diabetes. Diabetologia 2004;47(3):509-514. DOI: 10.1007/s00125-004-1337-3.
- 81. Lee BH, Park TC, Lee HJ. Association between fetal abdominal circumference and birthweight in maternal hyperglycemia. Acta Obstet Gynecol Scand 2014;93(8):786-93. DOI: 10.1111/aogs.12420.
- Chee C, Hibbert EJ, Lam P, Nanan R, Liu A. Sonographic and other nonglycemic factors can predict largefor-gestational-age infants in diet-managed gestational diabetes mellitus: A retrospective cohort study. Journal of diabetes 2020;12(8):562-572. DOI: 10.1111/1753-0407.13042.
- 83. Schaefer-Graf UM, Wendt L, Sacks DA, et al. How many sonograms are needed to reliably predict the absence of fetal overgrowth in gestational diabetes mellitus pregnancies? Diabetes Care 2011;34(1):39-43. DOI: 10.2337/dc10-0415.
- Antoniou MC, Gilbert L, Gross J, et al. Main fetal predictors of adverse neonatal outcomes in pregnancies with gestational diabetes mellitus. Journal of Clinical Medicine 2020;9(8):1-12. DOI: 10.3390/jcm9082409.
- 85. Simpson KJ, Pavicic M, Lee GT. What is the accuracy of an early third trimester sonogram for identifying LGA infants born to GDM patients diagnosed with the one-step approach? J Matern Fetal Neonatal Med 2018;31(19):2628-2633. DOI: 10.1080/14767058.2017.1350643.
- 86. Cosson E, Benbara A, Pharisien I, et al. Diagnostic and prognostic performances over 9 years of a selective screening strategy for gestational diabetes mellitus in a cohort of 18,775 subjects. Diabetes Care 2013;36(3):598-603. DOI: 10.2337/dc12-1428.
- 87. Hammoud NM, de Valk HW, Biesma DH, Visser GH. Gestational diabetes mellitus diagnosed by screening or symptoms: does it matter? J Matern Fetal Neonatal Med 2013;26(1):103-5. DOI: 10.3109/14767058.2012.722718.
- 88. Quaresima P, Visconti F, Chiefari E, et al. Appropriate Timing of Gestational Diabetes Mellitus Diagnosis in Medium- and Low-Risk Women: Effectiveness of the Italian NHS Recommendations in Preventing Fetal Macrosomia. J Diabetes Res 2020;2020:5393952. DOI: 10.1155/2020/5393952.
- 89. Weeks JW, Major CA, de Veciana M, Morgan MA. Gestational diabetes: does the presence of risk factors influence perinatal outcome? Am J Obstet Gynecol 1994;171(4):1003-7. DOI: 10.1016/0002-9378(94)90023-x.
- 90. Benhalima K, Van Crombrugge P, Moyson C, et al. Risk factor screening for gestational diabetes mellitus based on the 2013 WHO criteria. Eur J Endocrinol 2019;180(6):353-363. DOI: 10.1530/eje-19-0117.
- 91. Kouhkan A, Khamseh ME, Pirjani R, et al. Obstetric and perinatal outcomes of singleton pregnancies conceived via assisted reproductive technology complicated by gestational diabetes mellitus: a prospective cohort study. BMC Pregnancy Childbirth 2018;18(1):495. DOI: 10.1186/s12884-018-2115-4.
- 92. Li G, Fan L, Zhang L, Zhang W, Huang X. Metabolic parameters and perinatal outcomes of gestational diabetes mellitus in women with polycystic ovary syndrome. J Perinat Med 2010;38(2):141-6. DOI: 10.1515/jpm.2010.034.
- 93. Liu J, Song G, Meng T, Zhao G. Epicardial adipose tissue thickness as a potential predictor of gestational diabetes mellitus: a prospective cohort study. BMC Cardiovasc Disord 2020;20(1):184. DOI: 10.1186/s12872-020-01480-7.
- 94. Meek CL, Devoy B, Simmons D, et al. Seasonal variations in incidence and maternal-fetal outcomes of gestational diabetes. Diabet Med 2020;37(4):674-680. DOI: 10.1111/dme.14236.
- 95. Szymanska M, Horosz E, Szymusik I, Bomba-Opon D, Wielgos M. Gestational diabetes in IVF and spontaneous pregnancies. Neuro endocrinology letters 2011;32(6):885-8.
- 96. Tundidor D, García-Patterson A, María MA, et al. Perinatal maternal and neonatal outcomes in women with gestational diabetes mellitus according to fetal sex. Gend Med 2012;9(6):411-7. DOI: 10.1016/j.genm.2012.09.002.
- 97. Zhang S, Wang L, Leng J, et al. Hypertensive disorders of pregnancy in women with gestational diabetes mellitus on overweight status of their children. J Hum Hypertens 2017;31(11):731-736. DOI: 10.1038/jhh.2017.17.

- 98. Alshammari A, Hanley A, Ni A, Tomlinson G, Feig DS. Does the presence of polycystic ovary syndrome increase the risk of obstetrical complications in women with gestational diabetes? J Matern Fetal Neonatal Med 2010;23(6):545-9. DOI: 10.3109/14767050903214566.
- 99. Manoharan V, Wong VW. Impact of comorbid polycystic ovarian syndrome and gestational diabetes mellitus on pregnancy outcomes: a retrospective cohort study. BMC Pregnancy Childbirth 2020;20(1):484. DOI: 10.1186/s12884-020-03175-5.
- 100. Esakoff TF, Caughey AB, Block-Kurbisch I, Inturrisi M, Cheng YW. Perinatal outcomes in patients with gestational diabetes mellitus by race/ethnicity. J Matern Fetal Neonatal Med 2011;24(3):422-6. DOI: 10.3109/14767058.2010.504287.
- 101. Mocarski M, Savitz DA. Ethnic differences in the association between gestational diabetes and pregnancy outcome. Matern Child Health J 2012;16(2):364-73. DOI: 10.1007/s10995-011-0760-6.
- 102. Contreras KR, Kominiarek MA, Zollinger TW. The impact of tobacco smoking on perinatal outcome among patients with gestational diabetes. J Perinatol 2010;30(5):319-23. DOI: 10.1038/jp.2009.175.
- 103. Berggren EK, Mele L, Landon MB, et al. Perinatal outcomes in Hispanic and non-Hispanic white women with mild gestational diabetes. Obstet Gynecol 2012;120(5):1099-104. DOI: 10.1097/aog.0b013e31827049a5.
- 104. Tsai PJ, Roberson E, Dye T. Gestational diabetes and macrosomia by race/ethnicity in Hawaii. BMC Res Notes 2013;6:395. DOI: 10.1186/1756-0500-6-395.
- 105. Ajala O, Chik C. Ethnic differences in antepartum glucose values that predict postpartum dysglycemia and neonatal macrosomia. Diabetes research and clinical practice 2018;140:81-87. DOI: 10.1016/j.diabres.2018.03.025.
- 106. Kwong W, Ray JG, Wu W, Feig DS, Lowe J, Lipscombe LL. Perinatal Outcomes Among Different Asian Groups With Gestational Diabetes Mellitus in Ontario: A Cohort Study. Can J Diabetes 2019;43(8):606-612. DOI: 10.1016/j.jcjd.2019.06.006.
- 107. Makgoba M, Savvidou MD, Steer PJ. The effect of maternal characteristics and gestational diabetes on birthweight. Bjog 2012;119(9):1091-7. DOI: 10.1111/j.1471-0528.2012.03388.x.
- 108. Wan CS, Abell S, Aroni R, Nankervis A, Boyle J, Teede H. Ethnic differences in prevalence, risk factors, and perinatal outcomes of gestational diabetes mellitus: A comparison between immigrant ethnic Chinese women and Australian-born Caucasian women in Australia. Journal of diabetes 2019;11(10):809-817. DOI: 10.1111/1753-0407.12909.
- 109. Chen L, Wang WJ, Auger N, et al. Diabetes in pregnancy in associations with perinatal and postneonatal mortality in First Nations and non-Indigenous populations in Quebec, Canada: population-based linked birth cohort study. BMJ Open 2019;9(4):e025084. DOI: 10.1136/bmjopen-2018-025084.
- 110. Dyck RF, Karunanayake C, Pahwa P, Stang M, Osgood ND. Epidemiology of Diabetes in Pregnancy Among First Nations and Non-First Nations Women in Saskatchewan, 1980 □2013. Part 2: Predictors and Early Complications; Results From the DIP: ORRIIGENSS Project. Can J Diabetes 2020;44(7):605-614. DOI: 10.1016/j.jcjd.2019.11.001.
- 111. Iwabu M, Okada-Iwabu M, Yamauchi T, Kadowaki T. Adiponectin/adiponectin receptor in disease and aging. NPJ Aging Mech Dis 2015;1:15013. (In eng). DOI: 10.1038/npjamd.2015.13.
- 112. Pan WW, Myers MG, Jr. Leptin and the maintenance of elevated body weight. Nat Rev Neurosci 2018;19(2):95-105. (In eng). DOI: 10.1038/nrn.2017.168.
- 113. Hinkle SN, Rawal S, Liu D, Chen J, Tsai MY, Zhang C. Maternal adipokines longitudinally measured across pregnancy and their associations with neonatal size, length, and adiposity. International journal of obesity (2005) 2018 (In eng). DOI: 10.1038/s41366-018-0255-2.
- 114. Francis EC, Li M, Hinkle SN, et al. Maternal Proinflammatory Adipokines Throughout Pregnancy and Neonatal Size and Body Composition: A Prospective Study. Curr Dev Nutr 2021;5(10):nzab113. (In eng). DOI: 10.1093/cdn/nzab113.
- 115. Guasch-Ferre M, Hruby A, Toledo E, et al. Metabolomics in Prediabetes and Diabetes: A Systematic Review and Meta-analysis. Diabetes Care 2016;39(5):833-46. (Review) (In eng). DOI: 10.2337/dc15-2251.
- 116. White SL, Pasupathy D, Sattar N, et al. Metabolic profiling of gestational diabetes in obese women during pregnancy. Diabetologia 2017;60(10):1903-1912. (In eng). DOI: 10.1007/s00125-017-4380-6.
- 117. Zhao L, Wang M, Li J, Bi Y, Li M, Yang J. Association of Circulating Branched-Chain Amino Acids with Gestational Diabetes Mellitus: A Meta-Analysis. Int J Endocrinol Metab 2019;17(3):e85413-e85413. (In eng). DOI: 10.5812/ijem.85413.

- 118. Scholtens DM, Muehlbauer MJ, Daya NR, et al. Metabolomics reveals broad-scale metabolic perturbations in hyperglycemic mothers during pregnancy. Diabetes Care 2014;37(1):158-66. (In eng). DOI: 10.2337/dc13-0989.
- 119. Liu T, Li J, Xu F, et al. Comprehensive analysis of serum metabolites in gestational diabetes mellitus by UPLC/Q-TOF-MS. Anal Bioanal Chem 2016;408(4):1125-35. (In eng). DOI: 10.1007/s00216-015-9211-3.
- 120. Hajduk J, Klupczynska A, Derezinski P, et al. A Combined Metabolomic and Proteomic Analysis of Gestational Diabetes Mellitus. Int J Mol Sci 2015;16(12):30034-45. (In eng). DOI: 10.3390/ijms161226133.
- 121. Dudzik D, Zorawski M, Skotnicki M, et al. Metabolic fingerprint of Gestational Diabetes Mellitus. J Proteomics 2014;103:57-71. (In eng). DOI: 10.1016/j.jprot.2014.03.025.

	bias		cted from the same I with the same	(er measured participants	tainment of precision	actors identified	ccount for tated	ker measured prior to	outcome	dn w	atistical analysis
	all risk of	le size	/pes sele lation and ia	sion mar ^j arly in all	ble ascert er	ounding f	egies to a ounding s	sion mar ^j	reliable c urement	uate follo	opriate st
Author	Overa	Samp	Subt popu criter	Preci	Relia. marke	Confi	Stretu	Preciontco	Valid. meas	Adeq	Appr
Aiken 2019											
Ajala 2018 Alfadhli 2021											
Alshammari 2010											<u> </u>
Antoniou 2020											
Anyaegbunam 1995											
Barden 2004		-									
Barnes 2013 Barnuiel 2014											
Barquiel 2016											
Barquiel 2018											
Benhalima 2019 a											
Benhalima 2019 b											
Ben-Haroush 2009		_									
Blickstein 2018											
Bo 2015											
Bomba-Opon 2010											
Catalano 2012											
Chee 2020		_									
Chen 2020											
Collins 2018											
Contreras 2010											
Cosson 2013											
Cosson 2015	_	_									
Cosson 2016											
dePaulaBertoli 2020											
Ding 2018											
Ducarme 2018											
Dyck 2020											
Esakoff 2011		_									
Fadi 2012											
Fonseca 2021											
Fraser 1994											
Fuka 2020											
García-Patterson 2004											
García-Patterson 2012											
Gascho 2017											
Gorban de Lapertosa 2020											
Grotenfelt 2019											
Hagiwara 2018											
Hammoud 2013											
Han 2015											
Hardy 1999 Hasheminour 2019											
Hernandez-Rivas 2013											
HerreraMartínez 2018											
Hildén 2016											
Hod 1996											
Horosz 2013											
Huet 2018											
Immanuel 2021											
Kebapcilar 2016											
Knopp 1992											
Kouhkan 2018											
Krstevska 2009											
Kwong 2019											
Langer 2016											
Lee 2014											
Lee 2020											
Leng 2015											
			1	2	2		0	0.4	0.8	12	16
		low	1	2	hiah		low	0.4	0.0	1.2	hiah
		Domain	specific ris	k of bias			Overall	risk of b	as		

Leng

Author

Li 2010 Li 2018

Li 2021 Lin 2021

Liu 2018

Liu 2020

Lu 2018 Ma 2021

Shi 2021

Domain specific risk of bias