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Abstract 58 

Background and Aims. Anti-TNF therapy is widely used for treatment of inflammatory 59 

bowel disease (IBD), yet many patients are primary non-responders (PNR), failing to respond 60 

to induction therapy. We aimed to identify blood gene expression differences between 61 

primary responders (PR) and primary non-responders to anti-TNF monoclonal antibodies 62 

(infliximab and adalimumab); and to predict response status from blood gene expression 63 

and clinical data. 64 

Methods. The Personalised Anti-TNF Therapy in Crohn’s Disease (PANTS) study is a UK-wide 65 

prospective observational cohort study of anti-TNF therapy outcome in anti-TNF naive 66 

Crohn’s disease (CD) patients (ClinicalTrials.gov identifier: NCT03088449). Blood gene 67 

expression in 324 unique patients was measured by RNA-seq at baseline (week 0), and at 68 

weeks 14, 30, and 54 after treatment initiation (total sample size = 814). 69 

Results. After adjusting for clinical covariates and estimated blood cell composition, 70 

baseline expression of MHC, antigen presentation, myeloid cell enriched receptor, and other 71 

innate immune gene modules was significantly higher in anti-TNF responders. Expression 72 

changes from baseline to week 14 were generally of consistent direction across patients but 73 

with greater magnitude in responders, with the exception of interferon-related genes that 74 

were upregulated uniquely in non-responders. Expression differences between responders 75 

and non-responders observed at week 14 were maintained at week 30 and week 54. 76 

Prediction of response status from baseline clinical data, cell composition, and module 77 

expression was poor. 78 
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Conclusions. Baseline gene module expression was associated with primary response to 79 

anti-TNF therapy in PANTS patients. However, these expression differences were insufficient 80 

for clinically useful prediction of response. 81 

Keywords 82 

Anti-TNF, transcriptomics, Crohn’s disease 83 
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Introduction 85 

Crohn’s disease (CD) is a chronic immune-mediated inflammatory disease (IMID) of the 86 

gastrointestinal tract. Along with ulcerative colitis (UC), it is one of the two main forms of 87 

inflammatory bowel disease (IBD). The development of anti-TNF biologic therapies has 88 

revolutionised patient care for CD and a number of other IMIDs over the last two decades. 89 

Two major anti-TNF drugs, infliximab and adalimumab, are IgG1 monoclonal antibodies that 90 

bind both soluble and transmembrane TNF, inhibiting their interactions with TNF 91 

receptors.1,2 Two main mechanisms of action have been proposed: induction of CD4+ T cell 92 

apoptosis in the gut mucosa by inhibiting the TNF-TNFR2 interaction; and binding of the 93 

antibody tail (Fc region) of the drug to Fc receptors on monocytes, inducing their 94 

differentiation into wound-healing M2 macrophages.3,4 95 

 96 

Unfortunately, anti-TNF therapy is not always effective at treating IBD. Various types of 97 

treatment failure can occur: primary non-response (PNR) within the induction period (the 98 

first 12–14 weeks for infliximab and adalimumab), secondary loss of response (LOR) during 99 

maintenance therapy after an initial response, failure to achieve remission after the 100 

treatment course, or adverse events that lead to treatment discontinuation.5 For IBD 101 

patients, the incidence of PNR is 10–40%, and the incidence of secondary LOR among initial 102 

responders is 24–46% in the first year of treatment.6–8 The ability to predict PNR and LOR 103 

could help guide changes in treatment regimens, such as dose intensification or switching to 104 

a drug class with a different mechanism of action.2,6 Reliable baseline prediction would be 105 

especially valuable, allowing stratification of patients to effective therapies from treatment 106 

initiation, minimising healthcare costs and patient burden. 107 
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 108 

Clinical variables reported to be associated with anti-TNF response include age, disease 109 

duration, body mass index (BMI), smoking, C-reactive protein (CRP) levels, faecal 110 

calprotectin levels, serum drug concentrations, and anti-drug antibody concentrations. 111 

These associations have mostly been reported in small retrospective cohorts and have 112 

rarely been independently validated.7,9–13 In the Personalised Anti-TNF Therapy in Crohn’s 113 

Disease (PANTS) study, the largest study of infliximab and adalimumab response in CD 114 

patients to date (enrolment n = 1610), baseline obesity, smoking, and greater disease 115 

activity were associated with low serum drug concentration after induction. Low drug 116 

concentration was in turn associated with PNR and non-remission, suggesting 117 

immunogenicity may be mediating treatment failure by increasing drug clearance rate.8 118 

 119 

Multiple studies have attempted to define transcriptomic predictors for anti-TNF 120 

response.12–20 Reported associations include TREM1 expression, identified as a marker of 121 

anti-TNF response in different studies with inconsistent directions of effect. Gaujoux et al.16 122 

found TREM1 expression was lower in gut biopsies from infliximab responders than in non-123 

responders (total cohort size n = 72), but higher in responders in a separate cohort 124 

measuring baseline whole blood expression (n = 22). By contrast, Verstockt et al.18 reported 125 

lower TREM1 expression in responders to infliximab and adalimumab in both baseline gut 126 

biopsies (n = 44) and baseline whole blood (n = 54). Proposed reasons for the discrepancy 127 

include false positives due to small sample sizes, differences in patient ethnicity, and 128 

differing definitions of response.12,21 In general, small sample sizes, and variation among 129 

studies in analysis methods, anti-TNF drug, response definition, tissues sampled, and 130 

disease subtype make a consensus hard to establish. Few markers for anti-TNF response of 131 
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any type, clinical or transcriptomic, have been validated in independent studies, and none 132 

have yet been translated to routine clinical practice.13 133 

 134 

To identify novel transcriptomic associations with primary response to anti-TNF therapy, we 135 

generated longitudinal RNA-seq data from peripheral blood samples taken from a subset of 136 

the PANTS cohort (182 PR, 142 PNR) during the first year of follow-up. Differential gene 137 

expression (DGE) between primary responders and non-responders was performed at 138 

baseline (week 0), post-induction (week 14), and during maintenance (week 30 and week 139 

54). We detected differences in gene module expression that may reflect differences in 140 

disease characteristics or severity that influence risk of primary non-response. As this is one 141 

of the largest datasets currently available for assessing transcriptomic associations with 142 

anti-TNF response in IBD, we also examined the significance of previously reported 143 

transcriptomic markers from the literature. Finally, we evaluated the utility of measuring 144 

module expression for prediction of primary response status.  145 
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Materials and Methods 146 

Study design 147 

PANTS is a UK-wide, multicentre, prospective observational cohort study reporting the 148 

treatment failure rates of the anti-TNF drugs infliximab (originator, Remicade [Merck Sharp 149 

& Dohme, Hertfordshire, UK] and biosimilar, CT-P13 [Celltrion, Incheon, South Korea]), and 150 

adalimumab (Humira [AbbVie, Cambridge, MA]) in 1610 anti-TNF-naive patients with active 151 

luminal CD. The study design has been described in detail previously.8,55 In brief, patients 152 

were recruited at the time of first anti-TNF exposure between February 2013 and June 2016, 153 

and evaluated for 12 months or until drug withdrawal. Eligible patients were aged ≥ 6 years 154 

with evidence of active luminal Crohn's disease involving the colon and/or small intestine. 155 

Four major study visits were scheduled at first dose (baseline, week 0), post-induction (week 156 

14), week 30, and week 54. Additional visits were scheduled at treatment failure or exit. At 157 

baseline, clinical and demographic data were recorded, including sex, ethnicity, BMI, 158 

smoking status, age at diagnosis, disease duration, Montreal classification, prior medical and 159 

drug history, and previous Crohn’s disease-related surgeries. At every visit, disease activity 160 

score, weight, current therapy, and adverse events were recorded. 161 

RNA-seq sample selection 162 

A subset of PANTS patients was selected for RNA-seq, with the inclusion criteria: age ≥ 16 163 

years; and baseline CRP ≥ 4 mg/L and/or baseline calprotectin > 100 µg/g. The target sample 164 

size was 200 patients on infliximab and 200 patients on adalimumab, with an even split 165 
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between PR and PNR within each drug group. PR and PNR were defined based on Kennedy 166 

et al.8 patient outcome criteria: 167 

• Primary non-response (assessed at week 14): exit before week 14 because of 168 

treatment failure (including resectional inflammatory bowel disease surgery) or 169 

corticosteroid use at week 14 (new prescriptions or if previous dose had not been 170 

stopped). Patients whose CRP did not decrease to 3 mg/L or less or by 50% or more 171 

from baseline (week 0), and whose HBI score did not decrease to 4 points or less or 172 

by 3 points or more from baseline, were also classified as having a primary non-173 

response. 174 

• Primary response (assessed at week 14): decrease in CRP to 3 mg/L or less or by 50% 175 

or more from baseline (week 0) and a decrease in HBI to 4 points or less or by 3 176 

points or more from baseline. 177 

• Remission (assessed at weeks 14, 30, 54; implies primary response): CRP of 3 mg/L or 178 

less and HBI score of 4 points or less, no ongoing steroid therapy, and no exit due to 179 

treatment failure. 180 

Steroid use was defined as any systemic therapy, either oral or intravenous (including use of 181 

steroids for other conditions), but excluding single pre-infusion dosing with hydrocortisone. 182 

 183 

PNR were required to exhibit primary non-response at week 14 and non-remission at week 184 

54. PR were required to exhibit primary response or remission at week 14, and be in 185 

remission at week 54 (or week 30 if week 54 status was unknown). Furthermore, within 186 

infliximab-treated patients, PNR and non-PNR were matched based on baseline 187 

immunomodulator use, baseline steroid use, age at first dose, baseline albumin, sex, and 188 

weight at study entry. 189 
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Whole blood RNA-seq 190 

Whole blood was collected in RNA Tempus tubes (Applied Biosystems) and stored at -80°C 191 

until extraction (QIAsymphony PAXgene Blood RNA Kit, Qiagen). RNA was quantified using 192 

the QuBit BR RNA (ThermoFisher), and RNA integrity was assessed with the 4200 193 

TapeStation (Agilent). RNA-seq libraries were prepared using the Kapa mRNA HyperPrep Kit, 194 

with depletion of ribosomal RNA (rRNA) and globin mRNA using the QIAseq FastSelect RNA 195 

Removal Kit, and adapter ligation with IDT xGEN Dual Index UMI adapters. A total of 1 141 196 

samples from 396 patients were sequenced. Raw sequencing data was demultiplexed with 197 

Picard22 and aligned to the reference genome (GRCh38) using STAR (v2.6.1d)23. Reads were 198 

deduplicated using UMI-tools24 and quantified against the Ensembl 96 gene annotation with 199 

featureCounts (v1.6.4).25 200 

 201 

Outlier samples were excluded, defined as > 2 standard deviations from the mean based on 202 

percentage of aligned reads in coding regions reported by Picard, percentage of unique 203 

reads and number of unique reads. Samples with sex mismatch against documented sex 204 

were removed. As gene expression measured from bulk tissue is heavily dependent on cell 205 

composition,26 cell proportions of six common cell types in whole blood (CD4+ T cells, CD8+ T 206 

cells, B cells, NK cells, monocytes, and granulocytes) were estimated using the Houseman 207 

method27 from paired DNA methylation data.28 Samples missing clinical data and/or cell 208 

proportion estimates were removed. A total of 814 samples remained after filtering. To 209 

accommodate variability in sampling day, samples were mapped to timepoints based on 210 

Kennedy et al.8 windows around major visits: week 0 (week −4–0), week 14 (week 10–20), 211 

week 30 (week 22–38), and week 54 (week 42–66). Samples taken at additional visits (LOR 212 
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or exit) falling within one of the windows were mapped to that timepoint, unless the patient 213 

also had a major visit sample inside that window. The mapping of samples to timepoints is 214 

shown in Fig. S1a. The number of samples per patient ranged from one to four, with a 215 

median of three (Fig. S1b). 216 

 217 

Counts were normalised for library size using edgeR (v3.28.1).29 Globin genes and short non-218 

coding RNAs were removed, and genes with low expression were filtered, requiring genes to 219 

have at least 1.25 counts per million in > 10% of samples and non-zero expression in > 90% 220 

of samples. Expression data from 15 511 genes remained after filtering. Finally, log2 221 

expression values were generated using variancePartition/voom.30,31 222 

Statistical analyses 223 

A full description of the statistical analyses can be found in the Supplementary Methods. In 224 

brief, DGE analyses were performed in R (v3.6.2),32 with the significance threshold set at 225 

false discovery rate (FDR) < 0.05. Variance components analysis was used to identify 226 

influential variables for inclusion in DGE models (Fig. S2). Cell proportion estimates were 227 

found to explain large fractions of expression variance, and adjusting for cell proportions 228 

reduced the number of significant associations but improved consistency between drug 229 

subgroups, with fewer highly significant modules showing significant drug-by-response 230 

interaction effects compared to the unadjusted results (Fig. S3). As this study was not 231 

designed to compare between drug subgroups, we focused on models adjusted for cell 232 

composition, where the improved consistency allows us to pool expression data from both 233 

subgroups for greater statistical power. For all DGE models, cell proportions, sequencing 234 

batch, age of onset (the patient’s age at disease diagnosis), disease duration, body mass 235 
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index (BMI), anti-TNF drug type, prior surgery, and smoking were included as fixed effects; 236 

and patient was included as a random effect. 237 

 238 

Per-gene linear mixed-effects models fit using DREAM (variancePartition v1.16.1)33 were 239 

used to detect pairwise DGE between study groups. Additionally, natural cubic splines 240 

(splines::ns)32 were fit to explore non-linear expression trajectories over all four timepoints, 241 

modelling expression as a function of study day in each group (first drug dose = study day 0). 242 

Different expression trajectories were detected by testing for differences in spline 243 

parameters between groups. Significant genes from the spline analysis were hierarchically 244 

clustered by their mean expression in PR and PNR at each timepoint, and the gap statistic34 245 

was used to define clusters of genes with distinct trajectories. The spline analyses were only 246 

performed with drug subgroups pooled, as relatively small sample sizes at week 30 and 247 

week 54 precluded stratification by drug. 248 

 249 

Rank-based gene set enrichment analyses (tmod::tmodCERNOtest, v0.46.2),35 using blood 250 

transcriptomic modules (BTMs) were performed to identify coordinately up or 251 

downregulated gene sets. These modules are sets of genes that are coexpressed in whole 252 

blood, derived by Li et al.36 (module names prefixed with “LI”) and Chaussabel et al.37 253 

(prefixed “DC”) from publicly available expression datasets. Gene set overrepresentation 254 

analyses were run for BTMs (tmod::tmodHGtest) and other publicly-available gene sets 255 

(gprofiler2::gost, v0.2.0).38 256 

 257 

Single-sample gene set enrichment scores (ssGSEA, 258 

https://github.com/broadinstitute/ssGSEA2.0/) were computed as a summary measure of 259 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 24, 2023. ; https://doi.org/10.1101/2023.04.19.23288234doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.19.23288234
http://creativecommons.org/licenses/by/4.0/


14 

14 

module expression in a sample, both at baseline and at week 14. Predictive models using 260 

clinical variables, cell proportions, and module expression scores (baseline or week 14) to 261 

predict response status were constructed using caret (v6.0-86).39 Multiple predictive 262 

algorithms were evaluated: penalised and regularised logistic regression methods, parallel 263 

random forest, eXtreme Gradient Boosting, support vector machines with a radial basis, k-264 

nearest neighbours, naive Bayes, and Gaussian process models. Bootstrapping (50 265 

replicates) with the AUC metric was used to tune models, evaluate internal performance, 266 

and perform model selection. Pairwise tests for the difference in AUCs were performed with 267 

pROC.40 268 

Ethical statement 269 

The South West Research Ethics committee approved the study (Research Ethics Committee 270 

reference: 12/SW/0323) in January 2013. Patients were included after providing informed, 271 

written consent. The study is registered with ClinicalTrials.gov identifier NCT03088449, and 272 

the protocol is available at https://www.ibdresearch.co.uk/pants/. 273 

  274 
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Results 275 

Baseline expression modules are associated with post-276 

induction primary non-response 277 

After RNA-seq quantification and quality control, expression data was available for 15 511 278 

genes and 814 samples. These samples were from 324 patients, whose characteristics are 279 

shown in Table 1. No single gene had a significant association between week 0 expression 280 

and response in the infliximab subgroup (86 PR, 59 PNR). Expression of NK cell (LI.M7.2) and 281 

T cell (LI.M7.1, LI.M7.0) gene modules (BTMs)36 was significantly lower in responders. 282 

Exclusively in the adalimumab subgroup (66 PR, 57 PNR), PDIA5 (log2 fold change (FC) = -283 

0.3512, FDR = 0.006777), KCNN3 (log2 FC = -0.8798, FDR = 0.006777), and IGKV1-9 (log2 FC 284 

= -1.223, FDR = 0.04518) had significantly lower expression in responders (Fig. 1a). This was 285 

accompanied by lower expression of plasma cell/immunoglobulin (LI.M156.0, LI.M156.1) 286 

and cell cycle (LI.M4.0, LI.M4.1) modules (Fig. 1b). This heterogeneity between drug 287 

subgroups was robust to model form (Fig. S4) and differences in sample size between 288 

subgroups (Fig. S5). A pooled analysis was performed to identify modules consistently 289 

differentially expressed in both drug subgroups (152 PR, 116 PNR). MHC-TLR7-TLR8 cluster 290 

(LI.M146), antigen presentation (LI.M71, LI.M95.0), and myeloid cell enriched receptor and 291 

transporter (LI.M4.3) modules were found to be upregulated at baseline in responders. We 292 

also examined previously reported baseline markers in gut mucosal biopsies and blood from 293 

the literature,14,15,18,41 and did not find them to be significant in this study (Fig. 1a). 294 
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Expression changes from baseline to post-induction are 295 

largely amplified in primary responders 296 

To characterise the changes in gene expression induced by anti-TNF therapy, we compared 297 

expression at baseline to expression post-induction, and also estimated the difference 298 

between expression changes in responders and non-responders (the timepoint-by-response 299 

interaction). As expression changes from week 0 to week 14 were relatively consistent 300 

between patients on infliximab and adalimumab after adjusting for cell composition (Fig. 301 

S6), we pooled drug subgroups for these models. We found that 5 572 and 626 genes were 302 

differentially expressed in responders and non-responders respectively, with 179 genes 303 

having a significant timepoint-by-response interaction. Of the genes differentially expressed 304 

between week 14 and week 0 in both responders and non-responders, and with a significant 305 

timepoint-by-response interaction, nearly all (31/32 genes) had an expression change that 306 

was amplified in responders (Fig. 2a). For example, CD177, a neutrophil marker upregulated 307 

during inflammation, was downregulated at week 14 in responders to a much greater 308 

extent (log2 FC = -2.225, FDR = 4.104 × 10-17) than in non-responders (log2 FC = -0.8981, FDR 309 

= 0.004598; interaction FDR = 0.008247). Modules differentially expressed between week 0 310 

to week 14 included upregulation of B cell (LI.M47.0), plasma cell (LI.M156.0), and T cell 311 

activation (LI.M7.1) modules; and downregulation of immune activation (LI.M37.0), 312 

monocyte (LI.M11.0), neutrophil (LI.M37.1), and TLR and inflammatory signalling (LI.M16) 313 

modules (Fig. 2b). Amplification of expression changes in responders was also observed at 314 

the module level, with nearly all module expression changes aligned in the same direction in 315 

responders and non-responders, but with larger effects in responders. 316 

 317 
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In contrast, GBP2 (a member of a family of guanylate-binding proteins induced by 318 

interferons42) was downregulated from week 0 to week 14 in responders (log2 FC = -0.1783, 319 

FDR = 0.004878), but upregulated in non-responders (log2 FC = 0.1849, FDR = 0.04502; 320 

interaction FDR = 0.005977). At the module level, upregulation of type I interferon response 321 

(LI.M127), activated dendritic cell (LI.M165), and antiviral IFN signature (LI.M75) modules 322 

was observed in non-responders but not in responders (Fig. 2b). Further gene set 323 

enrichment analyses using modules from Chaussabel et al.37 also revealed annotated 324 

interferon gene modules to be significantly upregulated at week 14 in non-responders: 325 

DC.M3.4, containing STAT2, GBP5, and PARP14 (FDR = 3.447 × 10-21); as well two modules 326 

containing IFIT3 and GBP2, DC.M1.2 (FDR = 9.492 × 10-16) and DC.M5.12 (FDR = 1.355 × 10-327 

13). None of these modules were differentially expressed from week 0 to week 14 in 328 

responders (Fig. 2c), suggesting upregulation of interferon pathways at week 14 occurs 329 

uniquely in primary non-responders to anti-TNF. 330 

Sustained expression differences between responders and 331 

non-responders during maintenance 332 

As PANTS was an observational study, it was possible to retain patients who continued with 333 

anti-TNF therapy even after meeting the study definition of PNR at week 14, enabling us to 334 

sample the blood transcriptome at week 30 and week 54 during the maintenance period. 335 

Leveraging all 814 samples over the four study timepoints, we tested for general differences 336 

in expression trajectory over time, detecting 210 differentially expressed genes between 337 

responders and non-responders after adjustment for cell composition. To visualise the 338 

expression of these genes and identify common patterns of expression change during anti-339 
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TNF therapy, significant genes were hierarchically clustered by their expression. Six clusters 340 

were identified (Fig. 3a), each with distinct expression trajectories for responders and non-341 

responders (Fig. 3b). Cluster 1 largely comprised genes previously found to have a significant 342 

difference in expression change from week 0 to week 14 between responders and non-343 

responders (97/132 genes). The most significant gene was KREMEN1 (FDR = 4.287 × 10-4), 344 

part of an inflammatory apoptotic pathway in gut epithelium.43 Cluster 1 genes were 345 

enriched in modules associated with myeloid cells and monocytes (LI.M81, hypergeometric 346 

test, FDR = 2.115 × 10-6), platelet activation (LI.M196, 1.348 × 10-5), immune activation 347 

(LI.M37.0, 1.436 × 10-4), and TLR and inflammatory signalling (LI.M16, FDR = 2.365 × 10-3) 348 

(Fig. 3c). Expression trajectories showed cluster 1 genes were more downregulated from 349 

baseline in responders than non-responders, likely representing a lower inflammatory state 350 

in responders by week 14 that is also maintained at week 30 and week 54. An opposing 351 

trend was observed in cluster 5, which contained genes enriched for B cell 352 

development/activation (LI.M58, FDR = 0.01653) that were more upregulated from baseline 353 

in responders than non-responders. 354 

 355 

Cluster 3 was uniquely enriched for type I interferon response genes (LI.M127, FDR = 356 

0.005681, Fig. 3c). Subsequent enrichment analyses using publicly-available gene sets38 357 

revealed enrichments for type II interferon signalling (WP:WP619, adj. p = 0.0002826), and 358 

for genes containing putative transcription factor (TF) binding motifs for interferon 359 

regulatory factors IRF7 (TF:M00453_1, adj. p = 0.004768) and IRF8 (TF:M11684_1, adj. p = 360 

0.006853; TF:M11685_1, adj. p = 0.01136) (Fig. 3d). The genes in cluster 3 showed opposing 361 

directions of expression change from week 0 to week 14 in responders versus non-362 

responders, generating expression differences at week 14 that were sustained at week 30 363 
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and week 54. Of the nine genes in the cluster, eight genes (STAT1, BATF2, GBP1, GBP5, IRF1, 364 

TAP1, APOL1, APOL2) had a significant interaction between week 0 to week 14 expression 365 

change and response status in the per-gene differential expression analyses. IRF1 and STAT1 366 

are key transcription factors for interferon signalling.44,45 Unlike the majority of genes that 367 

followed trajectories of greater expression change in responders, genes in interferon 368 

response pathways were uniquely upregulated in non-responders. 369 

Prediction of primary non-response from gene expression 370 

and clinical variables 371 

Given there were multiple significant module-level associations with primary response 372 

status, we evaluated the ability to predict response from module expression, as well as cell 373 

proportions and clinical variables. Single-sample gene set enrichment scores (ssGSEA) were 374 

computed to summarise module expression per sample. Using baseline module scores, the 375 

median resampling AUCs over all combinations of algorithms and predictor sets ranged 376 

between 0.5541 and 0.6686 (Fig. S7). The best-performing model was regularised logistic 377 

regression (regLogistic; hyperparameters: cost = 0.25, loss = L1, epsilon = 0.01) using clinical 378 

variables, cell proportions, and module scores as predictors, giving a median resampling 379 

AUC of 0.6686, a median sensitivity of 0.5392, and a median specificity of 0.6852, where 380 

non-response was the positive class, with a prevalence of 43% (116/268). Including cell 381 

proportions and module scores improved predictive performance compared to the model 382 

using only clinical variables (bootstrap p = 0.02629), but the increase in AUC was only 2.5% 383 

(Fig. 4a). This suggests that clinical variables provided the greatest contributions to baseline 384 
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prediction, especially those variables with high importance in all three models (high 385 

absolute t-statistics): smoking history, BMI, and baseline steroid usage (Fig. 4b). 386 

 387 

Performance for predicting primary non-response could be improved by using week 14 cell 388 

proportions and module scores (median resampling AUC range 0.6216-0.7957, Fig. S8). The 389 

prevalence of non-response at week 14 was 42% (104/246). The best performing predictor 390 

was again regularised logistic regression incorporating clinical variables, cell proportions, 391 

and module scores as predictors (median resampling AUC = 0.7957, sensitivity = 0.6248, 392 

specificity = 0.7961). Here the addition of module scores to the predictor dataset had a 393 

larger benefit on predictive performance, with a 6.5% increase in AUC comparing the full 394 

model to the model including only clinical variables and cell proportions (bootstrap p = 395 

2.306 × 10-10), with a (Fig. 4c). The week 14 modules with the highest variable importance 396 

included TLR and inflammatory signalling (LI.M16), chaperonin mediated protein folding 397 

(LI.M204.0, LI.M204.1) and translation initiation factor 3 complex (LI.M245) modules (Fig. 398 

4d). Greater predictive performance at week 14 likely reflects the larger clinical and 399 

expression differences observed between responders and non-responders after the 400 

induction period. 401 

  402 
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Discussion 403 

We found substantial differences in whole blood gene expression between anti-TNF primary 404 

responders and non-responders in the PANTS cohort. At baseline, three single-gene 405 

associations detected in the adalimumab subgroup implicated similar cell types; IGKV1-9 406 

encodes the immunoglobulin light chain variable region that forms part of antibodies 407 

produced by plasma cells, KCNN3 is annotated to a plasma cell surface signature module 408 

from Li et al.36 (LI.S3), and the expression of both KCNN3 and PDIA5 is high in plasma cells 409 

(www.proteinatlas.org/humanproteome/immune+cell, v21.1) and positively correlated with 410 

plasmablast frequencies in blood.46 These genes were downregulated in responders, as was 411 

the expression of plasma cell and immunoglobulin modules. In keeping with our 412 

observations, Martin et al.17 identified plasma cells as part of a correlated module of cell 413 

populations, where lower module expression in gut biopsies was associated with better 414 

response to anti-TNFs. Baseline plasma cell abundances in gut biopsies have also been 415 

reported to be lower in responders, albeit in relatively small cohorts of infliximab patients.16 416 

Our findings lend credence that associations driven by immune cells observed in gut 417 

biopsies may also be observable in blood, a more accessible tissue. 418 

 419 

Previously reported single-gene baseline markers in gut biopsies and blood were non-420 

significant in this study. For example, TREM1
16,18 was not significantly differentially 421 

expressed between responders and non-responders in blood samples from PANTS patients. 422 

Our observation is consistent with two recent trials of comparable sample size, SERENE-CD 423 

and SERENE-UC, where baseline blood TREM1 expression was not predictive of response in 424 

either CD or UC patients.47 A variety of factors could explain failures to replicate reported 425 
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markers from study to study. Many existing studies pool heterogeneous cohorts of patients 426 

taking different anti-TNF drugs due to the scarcity of large datasets; even between arms of 427 

the PANTS study, we observe within-study differences in expression. Additional between-428 

study variation arises from differences in clinical setting, tissues sampled (e.g. blood versus 429 

gut biopsies), and definition of primary response (e.g. endoscopic versus clinical 430 

parameters). Any two studies are unlikely to have adjusted for the same combinations of 431 

covariates in modelling, including covariates such as cell composition that are influential for 432 

bulk expression data. Finally, small sample sizes have considerable sampling error. Despite 433 

only finding a small number of single-gene associations in PANTS, we detected multiple 434 

novel module-level associations, such as baseline upregulation of MHC-mediated antigen 435 

presentation modules in responders. We highly recommend the use of set-based methods 436 

that draw on changes in multiple genes, as they are not only better powered, but may be 437 

more reproducible compared to single-gene association tests. 438 

 439 

Leveraging the longitudinal design of PANTS, we characterised the changes in blood gene 440 

expression post-induction. Reduced expression of immune activation modules in responders 441 

at week 14 is consistent with successful drug inhibition of TNF-mediated inflammation. 442 

Decreased inflammation correlates with reduced neutrophil activation and reduced 443 

monocyte recruitment,48 and apoptosis of monocytes induced by anti-TNF in CD patients 444 

has been previously described.43 Certain B cell subsets are reduced in the blood of IBD 445 

patients compared to controls,49 so upregulation of B cell modules at week 14 may also 446 

represent a shift towards health. Similar expression changes were observed in responders 447 

and non-responders, but with greater magnitude in responders, potentially supporting the 448 

hypothesis that response is a continuum. Gaujoux et al.16 found changes in cell proportions 449 
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in response to anti-TNF treatment were amplified in responders; here we demonstrate a 450 

similar trend at the transcriptional level in PANTS. Post-induction expression differences 451 

between responders and non-responders were sustained at week 30 and week 54 during 452 

the anti-TNF maintenance period. Kennedy et al.8 found that “continuing standard dosing 453 

regimens after primary non-response was rarely helpful” for inducing remission by week 54. 454 

This phenomenon may also be reflected in the blood transcriptome, although non-455 

responders in the PANTS RNA-seq data were selected to exclude patients in remission by 456 

week 54, so trajectories for non-responders at week 14 that eventually achieved remission 457 

could not be observed. Thus, the observed difference in trajectories between responders 458 

and non-responders is likely exaggerated. 459 

 460 

Unlike the majority of baseline versus post-induction associations, expression changes in 461 

genes and modules in the interferon pathway were uniquely upregulated in PANTS non-462 

responders. Previous studies in IBD are conflicting, with Samie et al.50 reporting elevated 463 

expression of interferon pathway genes in colonic biopsies from non-responders compared 464 

to responders, with no significant change pre- versus post-treatment (n ≈ 40); and 465 

Mavragani et al.20 reporting a post-treatment reduction in blood interferon expression only 466 

in non-responders (n = 30). In studies of rheumatoid arthritis (RA), another IMID with 467 

licensed anti-TNF therapies, increases in type I interferon-regulated gene expression in 468 

blood after infliximab treatment were associated with poor clinical response (discovery n = 469 

15, validation n = 18).51 A systematic review of our study with other studies reporting similar 470 

associations between interferon pathway genes and anti-TNF response would not only help 471 

resolve the direction of effect, if any, but provide an opportunity to consider the shared 472 

biology of anti-TNF response in IBD, RA, and other immune-mediated diseases. 473 
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 474 

An important limitation of our analyses is that PANTS was not designed to compare 475 

between drug subgroups. Differences between patients on different anti-TNF drugs can 476 

arise from patient and physician preference, influenced by cost, disease severity, location, 477 

and comorbidities. Unsurprisingly, many associations with response had significantly 478 

different effect sizes in infliximab and adalimumab patient subgroups. We found that 479 

adjusting DGE models for estimated proportions of major cell types as a proxy for these 480 

uncontrolled factors alleviated heterogeneity between subgroups. However, the adjustment 481 

is unlikely to work well for rare cell types, thus the associations we report may reflect 482 

differences in cell proportions rather than per-cell expression. Given the myriad of other 483 

factors that could drive the remaining heterogeneity, we strongly caution against 484 

interpreting associations with different effects in the PANTS infliximab and adalimumab 485 

subgroups as drug-driven differences with biological significance, and recommend that 486 

future transcriptomic studies consider influential factors such as cell composition. 487 

 488 

We were unable to build clinically useful predictive models of response incorporating 489 

expression data. Using only baseline clinical variables, Kennedy et al.8 used logistic 490 

regression with stepwise variable selection based on Akaike information criterion (AIC) to 491 

predict response in the full PANTS cohort, achieving AUCs of 0.53 (95% CI 0.46–0.59) for 492 

infliximab patients and 0.54 (0.46–0.62) for adalimumab patients. Whilst our best-493 

performing baseline model represents an improvement, expression data only contributed a 494 

small amount of predictive power on top of clinical variables and cell composition. 495 

Unsurprisingly, models had greater predictive power when provided with week 14 496 

expression and cell composition data, and adding expression data also provided a 497 
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comparatively large increase in AUC. This suggests that when expression differences 498 

between responders and non-responders are sufficiently large, transcriptomic markers do 499 

provide unique information, and are not simply proxies for clinical variables or coarse 500 

estimates of blood cell composition. A potential route to more effective prediction is to 501 

consider whether expression differences arising early in the induction period can 502 

discriminate between responders and non-responders. For example, Mesko et al.52 found 503 

that week 2 blood gene expression was predictive of infliximab response in CD (discovery n 504 

= 20, validation n = 20) and RA (discovery n = 19, validation n = 15) patients. More recently, 505 

Mishra et al.53 trained random forest models using blood DNA methylation and gene 506 

expression measured in IBD patients receiving infliximab (n = 37). They did not find 507 

consistent baseline-only predictive signatures, but a model combining baseline with week 2 508 

measurements predicted response in the Mesko et al. cohort with 85% accuracy (95% CI: 509 

62–97%). As we observed in PANTS, expression differences between responders and non-510 

responders were far greater by week 14 than at baseline. Post-induction associations were 511 

also more consistent between drug subgroups, as baseline differences are diluted by the 512 

large transcriptomic perturbation from taking an anti-TNF. Expression changes in the innate 513 

immune system are observable within hours of treatment initiation,53 and robust prediction 514 

of non-response within that timeframe may be more valuable than a less reliable prediction 515 

at baseline. 516 

 517 

In conclusion, we observed significant differences in gene module expression between 518 

responders and non-responders to anti-TNF therapy in the whole blood of PANTS CD 519 

patients at baseline and post-treatment timepoints. Interferon-induced genes were 520 

uniquely upregulated post-induction in non-responders, going against the general trend of 521 
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amplified transcriptomic change in responders versus non-responders. However, there is 522 

not yet a consensus on the direction of these effects, and we were unable to robustly 523 

predict response with our current sample size. To obtain accurate prediction, especially 524 

from baseline data, leveraging large upcoming datasets with paired drug response 525 

phenotypes and transcriptomic data such as the 1000IBD project will be essential.54 526 

  527 
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Figure Captions 776 

Figure 1. Baseline expression associated with primary response, adjusted for cell 777 

composition. 778 

a. Volcano plots of DGE between responders (PR) and non-responders (PNR) at week 0; 779 

for infliximab (IFX), adalimumab (ADA), or with drug subgroups pooled. Annotated 780 

genes show significant associations from this study, and previously reported 781 

associations from the literature in both blood and gut biopsies. Dashed line shows 782 

significance threshold at FDR = 0.05. 783 

b. Top gene modules differentially expressed between PR and PNR at week 0. Columns 784 

correspond to results for infliximab (IFX), adalimumab (ADA), difference between IFX 785 

and ADA (IFX − ADA i.e. drug-by-response interaction), and pooled drug analyses. 786 

The top 30 modules ranked by minimum FDR in any column are shown. Dashed lines 787 

show significance thresholds at FDR = 0.05. 788 

 789 

Figure 2. Expression changes from baseline to post-induction are amplified in responders. 790 

a. Expression log2 fold changes from week 0 to week 14 in primary responders (PR) and 791 

non-responders (PNR), for genes that differentially expressed from week 0 to week 792 

14 in both responders and non-responders, with a significantly different effect size 793 

between responders and non-responders (top 10 labelled). The identity line is shown 794 

by the dashed line. 795 

b. Top modules differentially expressed between week 14 and week 0, adjusted for cell 796 

composition. Columns show effects in primary responders (PR), non-responders 797 

(PNR), and the primary responder minus non-responder difference. The top 30 798 
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modules ranked by minimum FDR in any column are shown. Vertical dashed line 799 

shows significance threshold at FDR = 0.05. 800 

c. Barcode plots showing interferon modules (LI/DC) specifically upregulated from 801 

week 0 to week 14 in primary non-responders (PNR), but not in primary responders 802 

(PR). Genes were ranked in ascending order by week 14 versus week 0 DGE z-803 

statistic. Curves show the cumulative fraction of genes in each module. Effect sizes 804 

are represented by the area under the curves (AUCs). Diagonal line shows the null of 805 

randomly-distributed ranks. 806 

 807 

Figure 3. Sustained expression differences between responders and non-responders 808 

during maintenance. 809 

a. Gap statistic versus cluster number k from hierarchical clustering of genes with 810 

significant expression differences between PR and PNR over all timepoints. Error 811 

bars derived from 500 bootstraps. The optimal cluster number was selected to be k = 812 

6 by the factoextra::fviz_nbclust firstSEmax criteria 813 

(https://rpkgs.datanovia.com/factoextra/index.html). 814 

b. Normalised expression over study timepoints for genes in each cluster. 95% 815 

confidence intervals for expression are shown for each group at each timepoint. 816 

c. Gene modules enriched in each cluster from gene set overrepresentation analyses 817 

using tmod::tmodHGtest. Modules significantly enriched in any cluster are shown. 818 

Vertical dashed line shows significance threshold at FDR = 0.05. 819 

d. Gene sets enriched in cluster 3 from gene set overrepresentation analyses using 820 

gprofiler2::gost. Vertical dashed line shows significance threshold at adjusted p-821 

value = 0.05 (gost g:SCS multiple testing correction method). 822 
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  823 

Figure 4. Prediction of response status from clinical variables, cell proportions, and 824 

expression data. 825 

ROC curves for the regLogistic method trained on each predictor dataset are shown at 826 

baseline (a) and week 14 (c). ROC curves were plotted after merging all 50 resamples. 827 

Primary non-response was used as the positive class. DeLong 95% confidence intervals for 828 

the AUC are shown. 829 

The ten most important variables from models trained on each predictor dataset are shown 830 

for baseline (b) and week 14 (d) models. The overall variable importance score is computed 831 

from the absolute value of the t-statistic for each predictor from the final tuned models. 832 

Missing bars denote variable that were not in the predictor dataset for that model. 833 

Tables  834 
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Table 1. Baseline patient characteristics for the PANTS RNA-seq subcohort. 835 

Characteristics are stratified by drug subgroup. Values shown are count and percentage for 836 

categorical variables, and mean and standard deviation for continuous variables. Nominal p-837 

values are reported for the comparison between drug subgroups. 838 

adalimumab (ADA) infliximab (IFX) drugs pooled p-value 

Sex 

(Col %) 
  0.317 

Fisher exact 

FEMALE 78 (48.4%) 89 (54.6%) 167 (51.5%) 

MALE 83 (51.6%) 74 (45.4%) 157 (48.5%) 

Age of onset (years) 

   0.774 

Mean (SD) 33.3 (15.4) 32.8 (15.3) 33.1 (15.3) Wilcoxon rank-sum 

Missing 0 0 0  

Disease duration (years) 

   0.546 

Mean (SD) 6.1 (8.1) 5.9 (7.7) 6.0 (7.9) Wilcoxon rank-sum 

Missing 0 0 0  

Smoking status 

(Col %) 
Current 

 

28 (17.4%) 

 

36 (22.1%) 

 

64 (19.8%) 

0.263 

Fisher exact 

Ex 55 (34.2%) 43 (26.4%) 98 (30.2%) 

Never 78 (48.4%) 84 (51.5%) 162 (50.0%) 

Crohn’s-related surgery 

(Col %) 
NO 

 

114 (70.8%) 

 

110 (67.5%) 

 

224 (69.1%) 

0.549 

Fisher exact 

YES 47 (29.2%) 53 (32.5%) 100 (30.9%) 

On immunomodulator ever 

(Col %) 

NO 

 

23 (14.3%) 

 

28 (17.2%) 

 

51 (15.7%) 

0.543 

Fisher exact 

YES 138 (85.7%) 135 (82.8%) 273 (84.3%) 

On immunomodulator at baseline 

(Col %) 

   0.912 
Fisher exact 

NO 79 (49.1%) 81 (49.7%) 160 (49.4%) 

YES 82 (50.9%) 82 (50.3%) 164 (50.6%) 

On corticosteroids at baseline 

(Col %) 

   0.011 
Fisher exact 

NO 113 (70.2%) 92 (56.4%) 205 (63.3%) 

YES 48 (29.8%) 71 (43.6%) 119 (36.7%) 

Baseline BMI    0.237 

Mean (SD) 25.2 (6.2) 24.3 (5.5) 24.8 (5.9) Wilcoxon rank-sum 

Missing 0 0 0  

Primary response status 

(Col %) 

   0.263 
Fisher exact 

Primary non-response 76 (47.2%) 66 (40.5%) 142 (43.8%) 

Primary response 85 (52.8%) 97 (59.5%) 182 (56.2%) 

CD8
+

 T cell (%)    0.380 

Mean (SD) 2.8 (4.2) 2.8 (5.2) 2.8 (4.7) Wilcoxon rank-sum 

Missing 38 18 56 

CD4
+

 T cell (%s)    0.752 

Mean (SD) 9.2 (6.3) 9.2 (6.8) 9.2 (6.5) Wilcoxon rank-sum 

Missing 38 18 56 

B cell (%s)    0.094 

Mean (SD) 1.9 (2.0) 1.5 (1.9) 1.7 (1.9) Wilcoxon rank-sum 

Missing 38 18 56 

Monocyte (%s)    0.497 

Mean (SD) 8.9 (3.5) 9.2 (3.7) 9.0 (3.6) Wilcoxon rank-sum 

Missing 38 18 56 

NK cell (%s)    0.683 

Mean (SD) 1.9 (3.2) 1.9 (3.8) 1.9 (3.5) Wilcoxon rank-sum 

Missing 38 18 56 

Granulocyte (%s) 

Mean (SD) 74.3 ( 9.7) 74.3 (10.8) 74.3 (10.3) 

0.911 

Wilcoxon rank-sum 

Missing 38 18 56 

 839 
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Figures 840 
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