
 1 

Multi-organ imaging-derived polygenic indexes for brain and body health 1 

 2 

Running title: Brain and body IDP index  3 

 4 

Xiaochen Yang1*, Patrick F. Sullivan2, Bingxuan Li3, Zirui Fan4, Dezheng Ding5, Juan Shu1, 5 

Yuxin Guo6, Peristera Paschou6, Jingxuan Bao7,8, Li Shen7, Marylyn D. Ritchie9,10, Gideon 6 

Nave11, Michael L. Platt11-13, Tengfei Li14,15, Hongtu Zhu2,15-18*, and Bingxin Zhao4,10,19-22*# 7 

 8 

1Department of Statistics, Purdue University, West Lafayette, IN 47907, USA.  9 

2Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. 10 

3UCLA Samueli School of Engineering, Los Angeles, CA 90095, USA.  11 

4Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104, 12 

USA. 13 

5Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 14 

19104, USA.  15 

6Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA. 16 

7Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 17 

Philadelphia, PA 19104, USA.  18 

8Graduate Group in Genomics and Computational Biology, University of Pennsylvania, 19 

Philadelphia, PA, USA. 20 

9Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA.  21 

10Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, 22 

Philadelphia, PA 19104, USA.  23 

11Marketing Department, University of Pennsylvania, Philadelphia, PA 19104, USA.  24 

12Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA.  25 

13Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA. 26 

14Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. 27 

15Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel 28 

Hill, Chapel Hill, NC 27599, USA.  29 

16Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, 30 

USA.  31 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2024. ; https://doi.org/10.1101/2023.04.18.23288769doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.04.18.23288769
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

17Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 1 

27599, USA.  2 

18Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, 3 

Chapel Hill, NC 27599, USA.  4 

19Applied Mathematics and Computational Science Graduate Group, University of Pennsylvania, 5 

Philadelphia, PA 19104, USA. 6 

20Center for AI and Data Science for Integrated Diagnostics, Perelman School of Medicine, 7 

University of Pennsylvania, Philadelphia, PA 19104, USA.   8 

21Population Aging Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA. 9 

22Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, 10 

PA 19104, USA. 11 

 12 

*Corresponding authors: 13 

Xiaochen Yang (yang1641@purdue.edu), Hongtu Zhu (htzhu@email.unc.edu), and 14 

Bingxin Zhao (bxzhao@upenn.edu) 15 

 16 

#Lead contact: 17 

Bingxin Zhao 18 

413 Academic Research Building 19 

265 South 37th Street, Philadelphia, PA 19104. 20 

E-mail: bxzhao@upenn.edu Phone: (215) 898-8222  21 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2024. ; https://doi.org/10.1101/2023.04.18.23288769doi: medRxiv preprint 

mailto:yang1641@purdue.edu
mailto:htzhu@email.unc.edu
mailto:bxzhao@upenn.edu
mailto:bxzhao@upenn.edu
https://doi.org/10.1101/2023.04.18.23288769
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

Abstract 1 

The UK Biobank (UKB) imaging project is a crucial resource for biomedical research, but is 2 

limited to 100,000 participants due to cost and accessibility barriers. Here we used genetic 3 

data to predict heritable imaging-derived phenotypes (IDPs) for a larger cohort. We 4 

developed and evaluated 4,375 IDP genetic scores (IGS) derived from UKB brain and body 5 

images. When applied to UKB participants who were not imaged, IGS revealed links to 6 

numerous phenotypes and stratified participants at increased risk for both brain and 7 

somatic diseases. For example, IGS identified individuals at higher risk for Alzheimer's 8 

disease and multiple sclerosis, offering additional insights beyond traditional polygenic 9 

risk scores of these diseases. When applied to independent external cohorts, IGS also 10 

stratified those at high disease risk in the All of Us Research Program and the Alzheimer's 11 

Disease Neuroimaging Initiative study. Our results demonstrate that, while the UKB 12 

imaging cohort is largely healthy and may not be the most enriched for disease risk 13 

management, it holds immense potential for stratifying the risk of various brain and body 14 

diseases in broader external genetic cohorts.  15 

 16 

Keywords: Abdominal MRI; Brain MRI; Cardiovascular magnetic resonance; Disease risk 17 

assessment; OCT imaging; Genetic prediction; Alzheimer’s disease  18 
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 4 

The large-scale imaging data from the UK Biobank (UKB) imaging study has proven to be 1 

an immensely valuable resource for characterizing the structural and functional 2 

organizations of the human brain and body1-4. These data have been used to establish 3 

links with clinical biomarkers5,6, predict biological aging7-9, study socioeconomic 4 

outcomes10,11, and facilitate early disease detection12. Launched in 2014, the UKB imaging 5 

project reached a milestone in 2022 by completing the multimodal brain magnetic 6 

resonance imaging (MRI) of its 60,000th participant. Although it is already the world’s 7 

largest imaging study, the UKB imaging study will ultimately include nearly 100,000 8 

participants4, or about 20% of all UKB participants. Given the cost and difficulty of 9 

collecting additional imaging data, it is crucial to develop strategies that extend the utility 10 

of the existing UKB imaging data.  11 

 12 

Polygenic indices13 (also known as genetic scores, polygenic scores, or polygenic risk 13 

scores [PRS]) can be used to predict traits or disease genetic risk by aggregating genetic 14 

information across the genome14-21. The development of numerous prediction methods22, 15 

reporting standards23, genetic data resources24, and data sharing platforms25 has enabled 16 

the application of these indices to a wide variety of complex diseases and traits. Both 17 

family and population-based studies have shown that variations in brain and body, as 18 

measured by structural and functional MRI, are heritable2,26-32. Recent genome-wide 19 

association studies (GWAS)2,29,33-41 have identified many genetic loci associated with brain 20 

and body imaging-derived phenotypes (IDPs). Given the cost and complexity of imaging 21 

phenotypes, it is natural to ask whether genetic data can be used to predict IDPs for UKB 22 

participants who are not imaged or who are part of other cohorts of interest (e.g., another 23 

biobank-scale cohort, or a cohort dedicated to Alzheimer’s disease). Several GWAS have 24 

reported the prediction accuracy (out-of-sample R2) of genetically predicted brain 25 

IDPs33,42,43 in small-scale independent testing data, indicating that genetic predictors 26 

could partially recover imaging variations. These pilot studies demonstrate that IDP 27 

genetic scores (IGS) can serve as valuable proxy biomarkers of the brain and body in the 28 

absence of readily available imaging data29,40,44. In particular, since IGS are genetic 29 

predictions of imaging traits, we expect to see links between IGS and various phenotypes 30 

when there are shared genetic effects.  31 

 32 
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 5 

Here, we systematically developed and evaluated IGS for UKB brain and body images. We 1 

examined 4,206 brain IDPs from various imaging modalities and independent processing 2 

pipelines, including 3,905 traits generated by the UKB brain imaging team1,2,34 (referred 3 

to as UKB-Oxford data hereafter) and 301 traits processed by the Brain Imaging Genetics 4 

Knowledge Portal (BIG-KP)33,35,37. These imaging biomarkers spanned major brain MRI 5 

categories, including structural MRI (sMRI) such as regional brain volumes45, cortical 6 

thicknesses, and surface areas1; diffusion MRI (dMRI) such as diffusion tensor imaging 7 

(DTI) parameters46,47; resting-state functional MRI (rfMRI) such as independent 8 

component analysis (ICA)1,2,48,49 or parcellation-based50 functional connectivity and 9 

activity/amplitude51 traits; task-based functional MRI (tfMRI) such as activation z-10 

statistics1; and susceptibility weighted brain MRI, incorporating regional median T2*5. 11 

Moreover, we analyzed 169 body IDPs, including 82 from cardiovascular magnetic 12 

resonance (CMR)3,29, 41 from abdominal MRI52-54 (covering organs such as liver, kidney, 13 

and lung), and 46 from optical coherence tomography (OCT) imaging40. The Methods 14 

section provides more detailed information of these 4,375 IDPs (4,206 brain + 169 body) 15 

(Table S1). Figure 1A presents an overview of the study design.  16 

 17 

RESULTS 18 

Genetic scores for 4,206 brain IDPs and 169 body IDPs 19 

To develop the genetic scores for IDPs, we used data from UKB individuals of British 20 

ancestry with both imaging and genotyping array for training (average n = 34,293 for MRI 21 

and 54,761 for OCT). An independent hold-out dataset containing participants of non-22 

British European ancestry served as a testing dataset to evaluate the predictive 23 

performance of the IGS (average n = 5,116 for MRI and 4,801 for OCT). We generated 24 

GWAS summary statistics for each IDP, which were then used as input to derive IGS for 25 

all UKB participants without imaging data.  We used PRS-CS55 to construct the IGS with 26 

genotyping data, and 461,488 genetic variants were included in the prediction model 27 

after standard genetic data quality controls (Methods).  28 

 29 

We found that 68.14% (2,866/4,206) of brain IDPs and 95.27% (161/169) of body IDPs 30 

were significantly predicted in the UKB European testing dataset (Benjamini-Hochberg 31 

false discovery rate [FDR] < 5%; Table S2). Among the IDPs showing significant prediction, 32 
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 6 

the average R2 was 1.40% (range = [0.10%, 7.62%]) for brain MRI, 0.85% (range = [0.06%, 1 

6.32%]) for heart CMR, 1.80% (range = [0.26%, 5.67%]) for abdominal MRI, and 4.99% 2 

(range = [1.10%, 10.01%]) for eye OCT. In the brain, we observed genetically predictable 3 

IDPs in both UKB-Oxford and BIG-KP across all brain MRI modalities, and IDPs from the 4 

same imaging modality exhibited similar predictive accuracy ranges in the two separate 5 

processing pipelines (Fig. S1A).  6 

 7 

Among BIG-KP sMRI regional brain volumes, the highest prediction accuracy was 8 

observed for brain stem volume (R2 = 7.01%). Similarly, the UKB-Oxford sMRI IDP with the 9 

highest prediction accuracy (R2 = 7.62%) was the volume of pons by subcortical volumetric 10 

sub-segmentation of the brain stem. Among BIG-KP dMRI DTI parameters, the highest 11 

prediction accuracy was the mean fractional anisotropy (FA) of the posterior limb of 12 

internal capsule (R2 = 4.72%). For rfMRI IDPs, the highest prediction accuracy was 13 

observed on one ICA-based global functional connectivity trait that captured the central 14 

executive, salience, and default mode networks (R2 = 5.04%). In addition, the IDP with the 15 

highest prediction accuracy was the ascending aorta minimum area for heart CMR (R2 = 16 

6.32%) and the liver iron corrected T1 for abdominal MRI (R2 = 7.38%). For eye OCT, the 17 

thickness from the inner nuclear layer (INL) to the retinal pigment epithelium of the right 18 

eye had the highest prediction accuracy (R2 = 10.01%). 19 

 20 

UKB has smaller numbers of non-European participants with imaging data. In an 21 

exploratory analysis, we found that many developed IGS exhibited predictive utility for 22 

individuals of Asian and African ancestries (average n = 460 and 252, respectively), 23 

although the prediction accuracy was generally smaller in these cohorts (Figs. 1B-1D, S1B-24 

S1D, and Tables S3-S4). To ensure the robustness of our prediction models, we also 25 

conducted the same analyses on all 4,375 IDPs using DBSLMM56 and evaluated the 26 

consistency of prediction performance (Figs. S2A-S2B). Moreover, we performed 27 

prediction using imputed genetic data, which required far greater computational 28 

resources. We observed similar patterns with improved prediction accuracy (Figs. S2C-29 

S2D). In summary, our results provide converging evidence that multi-organ IGS can be 30 

reliably developed using different prediction methods and genetic data types, and these 31 

IGS can be potentially applied to diverse populations. 32 
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 1 

IGS can stratify participants with a higher risk of brain and body diseases 2 

Stratifying participants into different disease risk groups and identifying high-risk 3 

individuals is crucial in clinical research and has potential for clinical translation57-59. 4 

Various factors and biomarkers have been examined for risk stratification, such as disease 5 

polygenic risk scores (dPRS)60-63, lifestyle factors64,65, and imaging traits66,67. Here we 6 

evaluated the performance of IGS in disease risk stratification for 871 phecode-based68,69 7 

diseases (Table S5). Considering the comparable prediction accuracy and association 8 

results (Supplementary Note, Figs. S3-S7, and Tables S6-S9) between BIG-KP and UKB-9 

Oxford brain IGS, we focused on a selected set of 383 multi-modality brain IGS together 10 

with 41 abdominal IGS, 82 heart IGS, and 46 eye IGS in the following stratification analysis. 11 

For both brain and body IGS, we randomly divided 318,781 unrelated UKB discovery (non-12 

imaging) participants into three groups (after removing the effects of covariates): the 13 

lowest 10%, the highest 10%, and the middle 80%. We then compared the difference in 14 

disease case rate of these three IGS-stratified groups using a chi-squared test70 (Methods).  15 

 16 

We conducted a stratification analysis of 69 brain disorders using 383 brain IGS, which 17 

consisted of 101 sMRI IGS (BIG-KP regional brain volumes33), 110 dMRI IGS (BIG-KP DTI 18 

parameters35), and 172 rfMRI IGS (82 ICA-based2 and 90 parcellation-based37 traits). After 19 

controlling FDR at 5% (69 × 383 tests), on UKB discovery cohort, we found that 141 brain 20 

IGS stratified 25 disorders into groups with significantly different disease case rates, 21 

resulting in a total of 294 IGS-disease pairs, and 247 of them were replicated on the UKB 22 

replication cohort (P range = [5.31 × 10-45, 5.49 × 10-4]) (Figs. 2A-2C and S8, and Table S10, 23 

Methods). Among them, we found that rfMRI IGS accounted for almost two-thirds of the 24 

identified stratifications with brain disorders (167/247, 67.61%). The majority (150/167, 25 

89.82%) of the rfMRI IGS-brain disorder stratifications involved delirium, dementia, and 26 

Alzheimer’s disease (IGS tail case ratio range = [1.16, 2.46], P range = [5.31 × 10-45, 5.43 × 27 

10-4]) (Supplementary Note), and the rest mainly related to multiple sclerosis and 28 

cerebrovascular diseases (IGS tail case ratio range = [1.06, 1.92], P range = [2.34 × 10-7, 29 

5.06 × 10-4]). Besides, both the ICA-based and parcellation-based rfMRI IGS displayed a 30 

consistent pattern in stratifying delirium, dementia, and Alzheimer’s disease, with the 31 

ICA-based traits exhibiting higher power. For example, 14 parcellation-based rfMRI IGS 32 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2024. ; https://doi.org/10.1101/2023.04.18.23288769doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.18.23288769
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

had 38 stratification pairs with delirium, dementia, and Alzheimer’s disease, while 39 ICA-1 

based rfMRI IGS had 119 such pairs, representing 67.86% (38/56) and 90.84% (119/131) 2 

of all parcellation-based rfMRI and ICA-based stratification results, respectively (Table 3 

S10).  4 

 5 

The IGS derived from dMRI and sMRI also stratified multiple brain disorders. Out of the 6 

110 dMRI IGS, 33 significantly stratified 14 disorders (IGS tail case ratio range = [1.04, 7 

2.10], P range = [1.65 × 10-8, 5.12 × 10-4]), corresponding to 54 IGS-disease pairs, including 8 

multiple sclerosis, dementia, Alzheimer’s disease, and cerebrovascular diseases such as 9 

intracranial hemorrhage, cerebral ischemia, and occlusion of cerebral arteries (Fig. 2B). 10 

Among the 101 sMRI IGS, 14 significantly stratified 9 disorders (IGS tail case ratio range = 11 

[1.09, 1.98], P range = [3.50 × 10-11, 5.49 × 10-4]), with a total of 26 IGS-disease pairs (Fig. 12 

2C). We found that both dMRI and sMRI IGS showed strong stratifications with multiple 13 

sclerosis, a heritable common neurodegenerative disease and a leading cause of 14 

nontraumatic disability among young adults71-73. For example, the IGS of the cingulum 15 

axial diffusivity was found to have significantly more MS patients in its lower 10% tail than 16 

its upper 10% tail (IGS tail case ratio = 1.76, P = 3.45 × 10-8), consistent with results of 17 

previous association analysis using dMRI data74. Participants with the smallest 10% IGS of 18 

the left and right thalamus proper volumes contained 1.73 and 1.96-fold (P < 5.37 × 10-5) 19 

more MS cases than those with the largest 10% IGS, respectively. Similarly, IGS of the left 20 

and right putamen and the accumbens area volumes all stratified MS patients such that 21 

the lower 10% IGS tail had a significantly higher case number than the upper 10% IGS tail 22 

(IGS tail case ratio range = [1.55, 1.85], P range = [2.09 × 10-10, 4.11 × 10-4]). These findings 23 

are in line with previous studies identifying decreased brain volume in the thalamus75,76, 24 

putamen77, and accumbens78 in multiple sclerosis patients, highlighting the potential of 25 

these brain IGS in identifying individuals at high risk for multiple sclerosis without actual 26 

imaging data. 27 

 28 

Body IGS also stratified diseases in their corresponding organs and systems. Using the 41 29 

abdominal IGS, we stratified 104 digestive system diseases and 100 genitourinary system 30 

diseases (204 × 41 tests) and identified 280 significant IGS-disease pairs after controlling 31 

FDR at 5% level, where 229 of them were replicated on the UKB replication cohort, 32 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2024. ; https://doi.org/10.1101/2023.04.18.23288769doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.18.23288769
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

associated with 37 abdominal IGS and 51 diseases (P range = [4.80 × 10-250, 1.66 × 10-3]) 1 

(Fig. S9A). For example, we found that chronic renal failure patients were significantly 2 

stratified by the IGS of kidney volume and kidney parenchyma volume (IGS tail case ratio 3 

range = [1.25, 1.37], P range = [2.05 × 10-18, 6.42 × 10-10]). The lower 10% IGS tail contained 4 

more patients, and indeed the kidney volume and kidney parenchyma volume have been 5 

found associated with kidney function (such as positive correlation with as glomerular 6 

filtration rate and negative correlation with creatinine)79,80. In addition, patients with 7 

chronic liver disease and cirrhosis were significantly stratified by the IGS of several 8 

abdominal MRI traits, including liver proton density fat fraction and total abdominal fat 9 

(IGS tail case ratio range = [1.22, 1.99], P range = [4.88 × 10-40, 1.55 × 10-3]), consistent 10 

with previous studies on the association between liver disease risk and liver/abdominal 11 

fat81-83. Furthermore, we examined the stratification of 90 circulatory system diseases 12 

using 82 heart IGS (90 × 82 tests), discovered 202 IGS-disease pairs after controlling FDR 13 

at 5% level, and replicated 180 pairs between 54 heart IGS and 40 diseases (P range = 14 

[2.40 × 10-34, 1.37 × 10-3]) (Fig. 2D). The strongest stratifications were found between 15 

aortic aneurysms and the IGS of ascending/descending aorta maximum area, and 16 

ascending/descending aorta minimum area (IGS tail case ratio range = [1.32, 1.75], P 17 

range = [5.71 × 10-14, 6.75 × 10-4]), which is the area of the region where aortic aneurysm 18 

occurs84. We found that aortic aneurysm was monotonely stratified across all values of 19 

the IGS of the ascending aorta maximum area such that larger IGS corresponded to higher 20 

risk (Figs. 2E-2F). MRI-measured aortic dimensions are frequently used for diagnosis of 21 

aortic aneurysms85, and large aortic diameters are considered abnormal and even 22 

diagnostic of aortic aneurysms86. Similarly, we stratified 38 eye and adnexa-related 23 

disorders using 46 eye IGS (38 × 46 tests) and replicated 67 of the 107 IGS-disease pairs 24 

with significant stratifications, corresponding to 27 eye IGS and 13 eye disorders (P range 25 

= [5.65 × 10-49, 2.25 × 10-3]) (Fig. S9B). For example, we found significantly more glaucoma 26 

cases presented in the 10% upper tail of the IGS of the raw vertical cup-to-disc ratio (VCDR) 27 

of the left eye and the VCDR regressed on disc diameter87 (IGS tail case ratio range = [1.51, 28 

1.98], P range = [3.41 × 10-22, 3.77 × 10-9]). The large value of observed VCDR has been 29 

used clinically as a robust indicator for glaucoma88. 30 

 31 
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 10 

We also evaluated the performance of IGS in cross-organ applications. First, we stratified 1 

69 brain disorders by the 41 abdominal IGS, 82 heart IGS, and 46 eye IGS. We identified 2 

and replicated 19 pairs between 19 IGS (6 heart IGS and 13 abdominal IGS) and 9 brain 3 

disorders (P range = [4.16 × 10-13, 9.97 × 10-5]) (Fig. S9C and Table S11). For example, the 4 

IGS of the right ventricular ejection fraction had 1.62-fold more multiple sclerosis patients 5 

in its lower 10% tail than its upper 10% tail (P = 7.03 × 10-6). This result matched previous 6 

findings that multiple sclerosis patients had decreased ventricular ejection fractions89,90. 7 

Second, we stratified 90 circulatory system diseases by the 383 brain IGS, 41 abdominal 8 

IGS, and 46 eye IGS. After controlling FDR at 5% level and replicating on UKB replication 9 

cohort, we found that 27 circulatory system diseases were significantly stratified by 13 10 

abdominal IGS, 79 brain IGS, and 3 eye IGS (P range = [1.04 × 10-10, 2.78 × 10-4]) (Fig. S9D). 11 

Among these, peripheral vascular disease was widely stratified by all modalities of brain 12 

IGS (IGS tail case ratio range = [1.10, 1.36], P range = [2.25 × 10-8, 2.71 × 10-4]), with the 13 

majority of signals in dMRI IGS (56.36%, 31/55). For example, the FA IGS of the body of 14 

corpus callosum and anterior corona radiata both had more cases in their upper 10% tail, 15 

and the mean diffusivity IGS of these two had fewer cases in their upper 10% tail, 16 

consistent with prior findings on the associations between dMRI traits and peripheral 17 

vascular diseases91. Additionally, the IGS of the thickness of the inner nuclear of both eyes 18 

significantly stratified hypertension patients, consistent with the reported associations 19 

between higher blood pressure and thicker INL92, as well as our association results 20 

between eye IGS and quantitative measures of blood pressure (Supplementary Note).  21 

 22 

IGS broadly contribute to disease stratification in addition to disease genetic risk 23 

Following disease stratification by IGS, we measured the predictive power of IGS for 24 

disease by area under the curve (AUC), as AUC was widely used to measure power of 25 

PRS93,94 and allowed us to better measure the clinical utility of IGS. For each IGS-disease 26 

pair that showed significant stratification (Figs. 2A-2D and S9, and Tables S10-S11), we 27 

evaluated the AUC gain by including the IGS for disease prediction, compared to a 28 

baseline model. Since dPRS is a frequently used genetic risk measure, we also analyzed 29 

the AUC gain from the additional inclusion of IGS when FinnGen95-derived dPRS was 30 

already incorporated (Methods).  31 

 32 
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As previously shown, brain and body IGS demonstrated marginal stratification capability 1 

for diseases in both same-organ and cross-organ applications (Figs. 2A-2D and S10). To 2 

measure the AUC gain from IGS, for each of the 110 diseases significantly stratified by IGS 3 

and for each IGS that significantly stratified the disease, we constructed two logistic 4 

regression models to measure the AUC gain: a baseline model that predicts disease status 5 

using basic covariates only, and an IGS model that additionally uses an IGS. The increment 6 

in the AUC of the IGS model relative to the baseline model is defined as the AUC gain of 7 

IGS. Out of the 919 pairs IGS-disease pairs showing replicated stratification patterns, 916 8 

pairs had positive AUC gain for disease prediction from the IGS. Comparing the baseline 9 

model to the IGS model using DeLong test96, after controlling for FDR at level 5%, 80.52% 10 

(740/919) pairs had significant AUC gain with the median being 0.0208 (range = [7.25 × 11 

10-5, 2.11 × 10-1], Figs. 3A-3C and S10, and Tables S12-S13). For example, in Figure 3A, the 12 

largest AUC gain from brain IGS for brain disorder prediction was achieved by 13 

Net25_Node9 IGS for Alzheimer’s disease (AUC gain = 0.0858, P = 8.04 × 10-23), whose 14 

disease stratification patterns were visualized in Figure S8. All dMRI IGS that stratified 15 

Alzheimer’s disease in Figure 2B also had significant AUC gain (Fig. 3B). The IGS of the 16 

ascending aorta maximum area predicted aortic aneurysm with AUC gain 0.0462 (P = 5.93 17 

× 10-9), the largest among heart IGS that significantly stratified circulatory system diseases 18 

(Fig. 3C). Overall, the AUC gains of IGS suggest that the majority of disease-stratifying IGS 19 

not only stratify subsets of subjects at high risk but also contribute to disease prediction 20 

at the cohort level. 21 

 22 

We further assessed the contribution of IGS to disease prediction and stratification 23 

beyond that provided by dPRS. Briefly, we constructed dPRS using FinnGen GWAS 24 

summary statistics of phecode-based diseases. We manually mapped 105 of the 110 UKB 25 

diseases that had IGS stratification signals to 78 FinnGen disease endpoints (case number 26 

range = [216, 111,581], median = 7,576) following the FinnGen-phecode mapping in Sun 27 

et al97 and disease description in FinnGen R995 (Table S14). After Bonferroni correction at 28 

5% level, 98 out of the 105 diseases gained significantly in AUC from inclusion of IGS on 29 

top of dPRS (AUC gain range = [5.85 × 10-5, 3.16 × 10-2], AUC gain median = 4.26 × 10-3, P 30 

range = [7.24 × 10-35, 2.27 × 10-3]) (Fig. 3D and Table S15). The largest AUC gain (0.0316) 31 

was achieved for nephrotic syndrome (without mention of glomerulonephritis, phecode 32 
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580.20), a kidney disorder associated with excessive protein in the urine. Examining the 1 

AUC from dPRS alone and the additional AUC gain from IGS in Figure 3D, diseases can be 2 

categorized into three types: (1) those with uninformative dPRS and large relative AUC 3 

gains from IGS, (2) those with moderate dPRS and moderate AUC gains from IGS, and (3) 4 

those with informative dPRS and minimal AUC gains from IGS. This suggests that IGS can 5 

help disease stratification, even if it does not always substantially boost the AUC. It makes 6 

sense because AUC primarily reflects overall predictive performance across the entire 7 

cohort and might not capture variations within specific subgroups (e.g., subjects with 8 

high/low risk). Multiple diseases from each category were discussed in Supplementary 9 

Note, and below we highlight a few examples spanning all categories.  10 

 11 

For diseases with "uninformative dPRS," where subjects may have similar disease risks 12 

across all dPRS percentile groups, IGS can still effectively stratify these subjects into high 13 

and low risk within each dPRS group (Fig. 3E). Typically, these diseases lack large GWAS 14 

data resources, and incorporating IGS could substantially improve the AUC. For example, 15 

the dPRS of nephrotic syndrome had an AUC gain of 0.0083 and was generated using 16 

FinnGen GWAS (FinnGen ID: N14_NEPHROTICSYND), which had a limited sample size of 17 

853 patients but was already large among the existing GWAS of this disease98,99. Cerebral 18 

degeneration (phecode 331.90) had a dPRS AUC gain of 0.0084 (G6_DEGENOTH) and 19 

gained additional AUC of 0.0188 by including three brain IGS. As the predictive 20 

performance of dPRS improved, resulting in "moderate dPRS," the stratification ability of 21 

the IGS-dPRS model remained consistent on top of dPRS across almost all dPRS groups  22 

(Figs. 3F-3G). IGS AUC gain remained nontrivial for some diseases, such as delirium 23 

(phecode 290.20, AUC gain 0.0122) and aortic aneurysm (phecode 442.10, AUC gain 24 

0.0101). Furthermore, Alzheimer’s disease and multiple sclerosis had “informative dPRS” 25 

such that the dPRS AUC gain was 0.1707 and 0.1503, respectively, and thus the further 26 

AUC gain from IGS was significant yet small, both being 0.0022. Nevertheless, individuals 27 

with high Alzheimer’s disease dPRS, especially the top 10% individuals with highest dPRS, 28 

were stratified into subgroups of distinct disease risk by IGS (Fig. 3H).  Similar stratification 29 

trends from the IGS-dPRS model were observed across multiple sclerosis and various 30 

other diseases (Fig. S11).  31 

 32 
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In summary, we conducted a comprehensive AUC analysis of IGS prediction of diseases. 1 

Most disease-stratifying IGS showed significant AUC contribution, and various diseases, 2 

such as nephrotic syndrome, cerebral degeneration, delirium, and aortic aneurysms, had 3 

nontrivial AUC gain from IGS in addition to dPRS. Besides, even for diseases with 4 

informative dPRS and seemingly minimal AUC gain from IGS, IGS still stratified individuals 5 

with high disease genetic risk into subgroups with distinct risk. We will conduct detailed 6 

analyses of IGS stratification for Alzheimer’s disease and multiple sclerosis in the next 7 

section to provide more insights into the IGS contribution to disease stratification in 8 

scenarios with minimal AUC gains. It is important to note that these cases may represent 9 

the lower bound of IGS utility, as their contribution would likely be greater if the AUC 10 

gains were more substantial.  11 

 12 

IGS stratification of Alzheimer’s disease and multiple sclerosis: in-depth analysis and 13 

generalizability 14 

As presented earlier, Alzheimer’s disease and multiple sclerosis are the two 15 

neurodegenerative disorders that were most frequently stratified by brain IGS on UKB 16 

discovery cohort, with 55 and 27 stratifying brain IGS, respectively. In this section, we 17 

provide an in-depth analysis of the stratification patterns of these two diseases using all 18 

stratifying brain IGS. Furthermore, we constructed IGS for participants from two 19 

independent cohorts: the All of Us research program (AOU, n = 245,394)100 and 20 

Alzheimer's Disease Neuroimaging Initiative study (ADNI, n = 1,152)101 (Methods). We 21 

showed that the Alzheimer’s disease stratification patterns observed on UKB can be 22 

replicated on AOU and ADNI. Moreover, we considered APOE status, and found that IGS 23 

can effectively stratify Alzheimer’s disease among participants of same APOE haplotypes. 24 

APOE is known to be the strongest genetic factor risk for Alzheimer’s disease and its 25 

homozygote is considered a form of Alzheimer’s disease102. Similar to Alzheimer’s disease, 26 

multiple sclerosis stratification patterns on UKB were replicated on AOU as well.  27 

 28 

We have observed the marginal stratification of Alzheimer’s disease on UKB participants 29 

by many brain IGS (Figs. 2A-2B). To stratify Alzheimer’s disease using all the stratifying 30 

IGS, we constructed an IGS burden score by counting the number of IGS high-risk tails a 31 

subject was in, across the 55 IGS that were marginally stratifying (Methods). As expected, 32 
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Alzheimer’s disease risk rose as IGS burden score increased (Fig. S12). Two additional risk 1 

factors, age and dPRS, were then evaluated. Ageing is known to be closely related to 2 

Alzheimer’s disease progression103,104. Upon grouping participants by age, participants of 3 

similar age were further stratified into “lower IGS burden score” or “higher IGS burden 4 

score” groups if their IGS burden scores fell within the lower or upper 20% extremes for 5 

their respective stratum. We found a consistent rise in the percentage of disease cases 6 

with increasing age. Within each age group, particularly beginning from around age 60 on 7 

the UKB cohorts and from around age 65 on the AOU and ADNI cohorts, participants with 8 

higher IGS burden score always had much higher disease percentage than those with 9 

lower IGS burden score (Figs. 4A-4D and Table S16).  10 

 11 

For Alzheimer’s disease dPRS, we first verified that the FinnGen-derived dPRS effectively 12 

stratified patients in UKB, AOU, and ADNI cohorts (Fig. S13). We found that the IGS burden 13 

score further stratified participants from the same dPRS percentile group. For example, 14 

in Figure 4E, among the 31,797 participants with the top 10% dPRS, 2.38% had developed 15 

Alzheimer’s disease. The subgroup with higher IGS burden scores had an disease 16 

percentage of 3.09% and the one with lower IGS burden scores had a disease percentage 17 

of 1.85%. That is, inside this dPRS group, the higher IGS burden score subgroup contained 18 

1.67-fold of cases, compared with the lower IGS burden score subgroup (P = 2.58 × 10-6). 19 

Similar patterns were observed in UKB replication and AOU cohorts (Figs. 4F-4G). In ADNI, 20 

we also found that within each dPRS percentile group, the subgroup of higher IGS burden 21 

score always had a higher dementia percentage than the lower IGS burden score 22 

subgroup (Fig. 4H). These results demonstrated the contribution of IGS stratification on 23 

top of dPRS and the generalizability of UKB-derived IGS on external genetic cohorts.  24 

 25 

We then examined APOE and found the IGS stratification power was not dominated by 26 

APOE status. In the UKB discovery cohort, we focused on subjects of age at least 55, and 27 

belong to one of the four common APOE haplotypes (n = 202,304): ε2 carriers, ε3 28 

homozygotes, ε4 heterozygotes, and ε4 homozygotes (Methods). ε3 homozygotes were 29 

the most common APOE haplotype, ε2 carriers had lower disease risk, ε4 heterozygotes 30 

had higher risk, and ε4 homozygotes were recently considered a genetic form of 31 

Alzheimer’s disease102. ε4 heterozygotes and ε4 homozygotes were also combined into 32 
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ε4 carriers. In Figure 5A, we found that IGS burden score stratified disease risk among 1 

participants of same APOE haplotypes, and IGS stratification power remained when both 2 

disease dPRS and APOE status were considered (Figs. 5B-5F). These results demonstrated 3 

that IGS stratification of Alzheimer’s disease was not simply driven by APOE, suggesting 4 

that IGS could be useful for risk stratification when combined with other genetic risk 5 

factors.  6 

 7 

Brain IGS and burden scores also stratified multiple sclerosis on both UKB and AOU 8 

cohorts. For example, the IGS of the left putamen volume had 1.85-fold of multiple 9 

sclerosis patients in its lower 10% tail than its upper 10% tail (Fig. 2C and Table S10). 10 

Decreased putamen volume was observed among multiple sclerosis patients in previous 11 

studies77. Further examining participants across all IGS percentile groups, we found that 12 

both UKB discovery participants and AOU European participants had roughly monotone 13 

decreasing disease percentage as the left putamen volume IGS increased, with the 14 

monotone trend more visible among females (Figs. 6A-6B and Table S17). We then 15 

included dPRS as an additional risk factor to stratify multiple sclerosis. Similar to 16 

Alzheimer’s disease dPRS, we first verified that multiple sclerosis dPRS were able to 17 

stratify multiple sclerosis patients in UKB and AOU cohorts (Fig. S14). IGS burden score 18 

was then constructed and was able to further stratify participants of similar dPRS into 19 

subgroups of different disease percentage (Methods). Among both UKB and AOU 20 

participants, further stratification of multiple sclerosis by IGS burden score on top of dPRS 21 

was observed, and the stratification was weaker on non-European cohorts as expected 22 

(Figs. 6C-6F). The multiple sclerosis stratification patterns on UKB and AOU using UKB-23 

derived IGS provided evidence that stratification patterns by UKB-derived IGS could 24 

generalize well to external cohort, especially when the ancestry of the external cohort is 25 

close the IGS development cohort. We also examined stratification of bipolar disorder in 26 

the AOU study (Supplementary Note and Table S18), which represents a scenario where 27 

the external cohort has a much larger number of disease cases compared to the UKB study.  28 

 29 

DISCUSSION  30 

In this study, we developed 4,375 brain and body IGS and evaluated their performance in 31 

disease risk stratification for UKB participants without imaging data and external 32 
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participants from UKB-independent studies. We confirmed that these IGS can provide 1 

biologically relevant information to complex traits and diseases. Brain and body IGS 2 

effectively stratified the risk of various diseases not only within their respective organ 3 

systems but also in other organs, such as the pair of right ventricular ejection fraction and 4 

multiple sclerosis. These results reflect both intra- and inter-organ connections between 5 

IGS and clinical outcomes. We also conducted AUC analysis of IGS and found IGS can 6 

stratify disease risk on top of disease genetic risk score, regardless of the overall AUC gain.  7 

These results highlight differences in AUC measures and stratification capabilities, 8 

suggesting the potential of IGS for clinical utility. We conducted a thorough analysis of 9 

Alzheimer’s disease, detailing age-related trends, replication of findings in both UKB and 10 

independent cohorts, and the distinct contributions of IGS beyond dPRS and APOE. Our 11 

IGS data resources have been made publicly available, facilitating similar in-depth 12 

analyses for numerous brain and somatic diseases. We also provide a second example of 13 

this application to multiple sclerosis. 14 

 15 

Ageing is well-recognized for its close association with the progression of Alzheimer’s 16 

disease. Our findings indicate that IGS burden score consistently stratifies individuals at 17 

higher risk of Alzheimer’s disease in those aged over 55 in UKB and over 65 in AOU and 18 

ADNI (Figs. 4A-4D). The IGS burden score was derived from multiple brain MRI IDPs, many 19 

of which have been previously associated with Alzheimer’s disease in studies with actual 20 

imaging. Given that IGS was constructed solely from genotyping data, it can be readily 21 

applied to participants with genetic data, enabling a quick and efficient assessment of 22 

disease risk in older individuals, without undergoing real imaging data collection. We 23 

further demonstrated that IGS, when combined with dPRS, offered a multi-layered 24 

stratification of disease risk, which had better performance than using only the disease 25 

genetic risk score (Figs. 4E-4H). Moreover, IGS contributed to Alzheimer’s disease 26 

stratification when both APOE status and dPRS were considered (Figs. 5A-5F), suggesting 27 

stratification power of IGS was not purely driven by APOE. These results indicate that 28 

although the UKB imaging study, with its largely healthy participant base, may not have 29 

direct proven applicability for disease risk management, it possesses the capacity to 30 

stratify disease risk in broader external genetic cohorts. We anticipate that the IGS 31 
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developed in our study can be widely applied in the stratification and management of 1 

Alzheimer’s disease risk.  2 

 3 

When real imaging data are not available, IGS can be used as genetically predicted 4 

variables for brain and body structures and functions. In addition to contribute to disease 5 

stratification and prediction, established IGS provides an objective pseudo-imaging 6 

biomarker associated with a specific organ region, which may serve as informative 7 

measure of diseases such as early-stage Alzheimer’s disease105,106, early-stage multiple 8 

sclerosis107,108, and bipolar disorder109.  Furthermore, IGS may also contribute to ongoing 9 

efforts on disease subtyping and integration110,111. However, as shown in our prediction 10 

analysis, IGS was typically only able to partially reconstruct the imaging phenotypes. It has 11 

generally been observed that IGS has demonstrated imperfect performance in most 12 

complex traits and diseases, which can be attributed to many factors, including a limited 13 

number of training samples, heritability, and weak genetic effects112-114. Another 14 

challenge in IGS applications lies in ancestry and population differences115-117. As the 15 

current UKB imaging cohort had the majority of the participants of European ancestry, 16 

generating IGS in non-UKB and/or non-European studies may have further reduced 17 

performance113. In our UKB replication cohort, comprising non-British and non-European 18 

participants, we observed that the IGS demonstrated consistent performance similar to 19 

that in the discovery cohort (for example, Figs. 4B, 4F, and 6E). More powerful IGS 20 

methods that better account for these IGS limitations and cohort differences may result 21 

in more informative IGS for potential clinical applications. In addition, we expect to see 22 

improvement in IGS prediction accuracy and stratification when more imaging samples 23 

and IDPs are released by the UKB and other large imaging genetic studies.  24 

 25 

METHODS 26 

Methods are available in the Methods section. 27 
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The imaging data used in our study were obtained from the UKB study, which recruited 1 

around 500,000 individuals between the ages of 37 and 73 (229,114 males) between 2006 2 

and 2010118 (https://www.ukbiobank.ac.uk/). The ethics approval of the UKB study was 3 

obtained from the North West Multicentre Research Ethics Committee (approval number: 4 

11/NW/0382). We used a total of 4,206 brain MRI IDPs, 41 abdominal MRI IDPs, 82 heart 5 

CMR IDPs, and 46 eye OCT IDPs. The brain MRI IDPS consisted of 301 BIG-KP33,35,37 and 6 

3,905 UKB-Oxford1,2,34 traits. The BIG-KP traits were from our previous studies on three 7 

brain MRI modalities. First, we obtained 101 regional brain volumes33 from sMRI by 8 

applying the advanced normalization tools45. Second, we generated 110 tract-averaged 9 

DTI parameters35 from dMRI using the ENIGMA-DTI pipeline46,47. Third, for rfMRI, we 10 

partitioned the cerebral cortex into 360 brain areas using the Glasser360 parcellation50. 11 

We obtained 90 functional activity (amplitude) and functional connectivity (edge) traits37 12 

for 12 functional networks119. The UKB-Oxford had 1,437 IDPs from sMRI (including 13 

susceptibility-weighted structural imaging), 675 from dMRI, 1,777 from rfMRI, and 16 14 

from task-based tfMRI. Specifically, the sMRI IDPs consisted of FIRST (Category 1102), 15 

FAST (Category 1101), FreeSurfer ASEG (Category 190), FreeSurfer BA exvivo (Category 16 

195), FreeSurfer a2009s (Category 197), FreeSurfer DKT (Category 196), FreeSurfer 17 

desikan gw (Category 194), FreeSurfer desikan pial (Category 193), FreeSurfer desikan 18 

white (Category 192), FreeSurfer subsegmentation (Category 191), regional T2* (Category 19 

109), and white matter hyperintensity volume (Category 112). The 675 dMRI IDPs 20 

included 432 TBSS-processed IDPs from Category 134 and 243 ProbtrackX-processed IDPs 21 

from Category 135. The 1,777 rfMRI IDPs consisted of 76 activity amplitude (node) traits 22 

and 1,701 functional connectivity (edge) traits (Category 111). They were parcellation-23 

free and generated by whole brain spatial ICA1,2,48,49. Lastly, there were 16 tfMRI IDPs 24 

from Category 106. The details of the image acquisition, preprocessing procedures, and 25 

quality controls were available in the UKB Brain Imaging Documentation 26 

(https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf). The 41 abdominal 27 

MRI IDPs53,120-128 were from abdominal organ composition (Category 158), kidney-derived 28 

measures (Category 159), liver MRI (Category 126), and abdominal composition (Category 29 

149). For the 82 heart CMR IDPs, the details of the image acquisition, preprocessing 30 

procedures, and quality controls were described in previous studies3,29. The 46 eye OCT 31 
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IDPs were all from derived OCT measures40 (Category 100079). A list of these IDPs can be 1 

found in Table S1. 2 

 3 

IGS and dPRS constructions. 4 

We performed the following genetic quality controls (QCs) for the set of participants with 5 

both IDP and genetic data37: 1) removed individuals with missing genotype rate > 0.1; 2) 6 

removed variants with missing genotype rate > 0.1; 3) removed variants with minor allele 7 

frequency (MAF) < 0.01; and 4) removed variants that failed the Hardy-Weinberg test for 8 

equilibrium at 1 × 10-7 level. Using individuals of British European ancestry, the GWAS was 9 

performed using linear mixed effect models via fastGWA129 (average n = 34,286 for brain, 10 

average n = 31,875 for heart, average n = 39,830 for abdomen, and average n = 54,761 11 

for eye). The adjusting covariates included age (at imaging), age-squared, sex, the 12 

interaction between age and sex, the interaction between age-squared and sex, first 40 13 

genetic principal components130 (PCs) for all organs; and additionally the estimated total 14 

intracranial volume (eTIV), head motion measurements and their squares, brain position 15 

measurements and their squares, and volumetric scaling for brain IDPs. Additionally, for 16 

BIG-KP regional brain volumes, the total brain volume (TBV) was included as an adjusting 17 

covariate to remove global effects33. For TBV, the eTIV and volumetric scaling were not 18 

included as covariates due to their high linearity. With the GWAS summary statistics as 19 

input, we used PRS-CS55 and DBSLMM56 to obtain the weights for IGS. The 20 

hyperparameters of both methods were the default values and/or the automatically 21 

tuned values. We then used PLINK131 to generate risk scores in testing data by 22 

summarizing across genetic variants, weighed by their weights. 23 

 24 

The prediction accuracy of IGS was measured by the incremental R2, which was the 25 

additional phenotypic variation that can be explained by the IGS while adjusting for the 26 

effects of covariates in a linear regression model. The covariates included age, age-27 

squared, sex, the interaction between age and sex, the interaction between age-squared 28 

and sex, and the first 40 genetic PCs. The prediction accuracy was estimated separately in 29 

three independent hold-out datasets corresponding to European, Asian, and African 30 

ancestries. The European hold-out dataset consisted of UKB individuals of British or non-31 

British European ancestry with IDP data and unrelated to the IGS training set used to 32 
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generate IDP GWAS (average n = 4,541). The Asian hold-out dataset consisted of UKB 1 

individuals of Bangladeshi, Chinese, Indian, or Pakistani ancestry with IDP data (average 2 

n = 460). The African hold-out dataset consisted of UKB individuals of African or Caribbean 3 

ancestry with IDP data (average n = 252). 4 

 5 

We also used PRS-CS55 to construct dPRS. Out of the 110 phecode-based diseases that 6 

had IGS stratification signals on UKB (Tables S10-S11), we mapped 105 diseases to 75 7 

FinnGen R9 disease endpoints that had publicly available GWAS summary statistics (Table 8 

S14). We used the FinnGen-phecode mapping in Sun et al97 and disease description from 9 

the FinnGen release R9. For the bipolar disorder analysis on AOU, we used GWAS 10 

summary statistics from the Psychiatric Genomics Consortium132 to construct BD dPRS.  11 

 12 

IGS-phenotype associations. 13 

We used a discovery-replication design to examine associations between IGS and 14 

phenotypes in UKB participants without brain or body IDPs. We randomly selected 70% 15 

of UKB unrelated British European individuals (average n = 202,893) as the discovery 16 

dataset for IGS-phenotype associations, while the remaining 30% of UKB unrelated British 17 

European individuals, all UKB unrelated non-British European individuals, and all 18 

unrelated non-European individuals (average n = 129,333) were used as the replication 19 

dataset. We treated the values greater than five times the median absolute deviation 20 

from the median as outliers and removed these values. A total of 189 UKB phenotypes 21 

were tested, which represented a wide range of traits from various domains. Specifically, 22 

the 189 UKB phenotypes included 24 mental health traits (Category 100060), 5 cognitive 23 

traits (Category 100026), 12 physical activity traits (Category 100054), 6 electronic device 24 

use traits (Category 100053), 8 sun exposure traits (Category 100055), 3 sexual factor 25 

traits (Category 100056), 3 social support traits (Category 100061), 21 diet traits (Category 26 

100052), 9 alcohol drinking traits (Category 100051), 6 smoking traits (Category 100058), 27 

34 blood biochemistry biomarkers (Category 17518), 3 blood pressure traits (Category 28 

100011), 3 spirometry traits (Category 100020), 17 early life factors (Categories 135, 29 

100033 and 100072), 9 greenspace and coastal proximity (Category 151), 2 hand grip 30 

strength (Category 100019), 13 residential air pollution traits (Category 114), 5 residential 31 

noise pollution traits (Category 115), 2 body composition traits by impedance (Category 32 
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100009), 3 female specific factors (Category 100069), and 1 education trait (Category 1 

100063) (Table S6). 2 

 3 

Association testing was then conducted to examine the linear relationship between the 4 

4,375 IDP-derived IGS and the 189 UKB phenotypes. We adjusted for the same set of 5 

covariates separately in the discovery set and the replication set, including age, age-6 

squared, sex, the interaction between age and sex, the interaction between age-squared 7 

and sex, and 40 genetic PCs. Specifically, we regressed the IDP-derived IGS onto the UKB 8 

phenotypes and calculated P-values using a two-sided t-test. We prioritized the results 9 

that met the following three criteria: 1) significant at 0.05 level after Bonferroni correction 10 

in the discovery dataset; 2) significant at a nominal significance level of 0.05 in the 11 

replication dataset; and 3) had regression coefficients with matching directions in both 12 

the discovery and replication datasets. 13 

 14 

Disease risk stratifications. 15 

We used IGS to stratify 871 phecode-based68,69 diseases (Table S5) separately on the UKB 16 

discovery cohort and the UKB replication cohort. The UKB discovery cohort consisted of 17 

unrelated British European participants without brain or body IDPs (average n = 318,781). 18 

The UKB replication cohort consisted of unrelated non-British European participants and 19 

unrelated non-European participants, all without brain or body IDPs (average n = 48,015). 20 

In each cohort, we residualized IGS with the same covariates used in the association 21 

analysis, standardized the residualized IGS to mean 0 and standard deviation 1, sorted all 22 

participants according to the value of the standardized IGS, and split participants into 23 

three groups: the group of smallest 10% IGS, the group of largest 10% IGS, and the group 24 

of middle 80% IGS. The group of the smallest 10% IGS was referred to as the lower 10% 25 

tail, and the group of the largest 10% IGS was referred to as the upper 10% tail. For each 26 

disease, the number of disease cases was counted, and a chi-squared test of three levels 27 

of IGS-based groups (the smallest 10%, middle 80%, and the largest 10%) and two levels 28 

of disease status (case/control) was conducted. The original IGS tail case ratios between 29 

the two 10% tails were computed for all IGS-disease pairs and were reported in 30 

supplementary tables (Tables S10-S11), which were defined as (the number of patients 31 

in IGS upper 10% tail) / (the number of patients in IGS lower 10% tail). In Figures 2 and S9, 32 
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we visualized the maximum of the original IGS tail case ratio and its inverse, that is, a 1 

number always greater than or equal to 1. We also only visualized the IGS-disease pairs 2 

whose IGS tails contained above-average disease patients. That is, one or both of the two 3 

10% tails of IGS contained at least 10% of all cases on the UKB discovery cohort. In total, 4 

6 pairs between brain IGS and brain/mental disorders, 3 pairs between abdominal IGS 5 

and genitourinary/digestive diseases, 3 pairs between heart IGS and circulatory system 6 

diseases, and 2 pairs between brain/abdominal/eye IGS and circulatory systems diseases 7 

were not visualized because of this.  8 

 9 

For Alzheimer’s disease/dementia analysis on AOU, unlike UKB age distribution (Fig. 10 

S15A), AOU had a bimodal distribution (Fig. S15B), and thus we restricted our AOU 11 

analysis to participants of age between 60 and 90 (at the age of incidence for patients and 12 

at the time of survey otherwise), and only included those self-identified as European 13 

(‘White’) (n = 59,261, 26,881 males at birth). For the Alzheimer’s disease/dementia 14 

patients, we used age at incidence for the analysis in Figure 4C, and age at survey for the 15 

controls. Due to the lower disease percentage in AOU, we used both Alzheimer’s disease 16 

(ICD-10 code: G30) and dementia (ICD-10 code: F01-F03) for cases, and the rest as 17 

controls. For multiple sclerosis analysis on AOU, we used all participants self-identified as 18 

European (n = 128,515, 51,390 males at birth, age range = [17, 113]) and all participants 19 

self-identified as African (‘Black’), or Hispanic, or Asian(African n = 50,139, 21,684 males 20 

at birth, age range = [17, 104]; Hispanic n = 41,575, 13,461 males at birth, age range = [17, 21 

100]; Asian n = 7,603, 3,066 males at birth, age range = [17, 100]). For bipolar disorder 22 

analysis on AOU, we used all participants self-identified as European. Multiple sclerosis 23 

patients were those diagnosed with ICD-10 G35, and bipolar disorder patients were those 24 

diagnosed with ICD-10 F31. Using PLINK, we developed IGS and dPRS using the Allele 25 

Count/Allele Frequency threshold genotyping data prepared by AOU and the UKB weights 26 

generated from PRS-CS. We removed the effects of age, sex and 16 genetic PCs from IGS 27 

and dPRS, where the genetic PCs were prepared by AOU as well133. 28 

 29 

For ADNI, we used participants of age at least 60 (n = 1,116, 656 males, age range = [60, 30 

91]), the participants whose final diagnosis was dementia were used as cases and the rest 31 

as controls (dementia percentage = 42.92%). After performing the standard genetic QCs33, 32 
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we developed the IGS and dPRS using UKB-derived weights and removed the effects of 1 

age and sex .  2 

 3 

AUC analysis. 4 

To measure the contribution from a single IGS to disease prediction, we trained the 5 

following logistic regression models: (1) a baseline model that predicts disease status 6 

using age and sex as predictors, and (2) an IGS model that predicts disease status using 7 

age, sex, and one IGS. We constructed an IGS model for each IGS-disease pair that had 8 

significant stratification (Tables S12-S13), a total of 919 IGS models. The increment in the 9 

AUC of the IGS model compared with the baseline model is the AUC gain by including a 10 

single IGS and visualized in Figures 3A-C and S9. DeLong test96 was used to test for the 11 

difference in AUC between the baseline model and the IGS model. All AUC was obtained 12 

using case-control matched individuals. For each disease, each patient was matched with 13 

five participants free of this disease134, of same age and sex, and of British European 14 

ancestry. 15 

 16 

To measure the contribution from IGS when dPRS was included, we considered two 17 

logistic regression models for disease status prediction: (1) a baseline-dPRS model that 18 

included age, sex, and the corresponding dPRS, and (2) an IGS-dPRS model that included 19 

age, sex, dPRS, and IGS that marginally stratified this disease. The IGS-dPRS model was 20 

selected from the better one between using all stratifying IGS and using only the IGS with 21 

the largest stratification tail case ratio. The difference between the AUC of the IGS-dPRS 22 

model and the AUC of the baseline-dPRS model was the measure of IGS contribution to 23 

disease prediction given dPRS. We averaged the AUC across repeated 100 runs with two-24 

fold cross-validation. The increment in the average AUC of the IGS-dPRS model compared 25 

with the average AUC of the baseline-dPRS model is the AUC gain visualized in Figure 3D. 26 

Wilcoxon rank sum test was used to test for the difference in AUC between the baseline-27 

dPRS model and the IGS-dPRS model across all cross-validation replications. 28 

 29 

IGS burden scores.  30 

The brain IGS for Alzheimer’s disease stratification on UKB cohorts was selected according 31 

to four criteria below: (1) on the UKB discovery cohort, the IGS stratified disease cases so 32 
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that the chi-squared test was significant after controlling the FDR at a 5% level; (2) the IGS 1 

had one of its two 10% tails containing at least 10% of all disease cases of UKB discovery 2 

cohort; (3) the IGS had one of its two 10% tails containing at most 10% of all disease cases 3 

of UKB discovery cohort; and (4) the IGS tail case ratio direction was consistent between 4 

the UKB discovery cohort and the UKB replication cohort (that is, the 10% tail that 5 

contained more  disease cases was consistent on both cohorts). There were 55 IGS that 6 

satisfied these conditions and were selected for Alzheimer’s disease stratification (Table 7 

S16). In Figures 4A-4B, 4E-4F and 5, within each group (defined by age, or by dPRS, or by 8 

APOE status, or by both APOE status and dPRS), brain IGS were selected with the following 9 

two criteria: (1) the IGS was selected for disease stratification on the entire cohort (that 10 

is, among the 55 selected IGS above); and  (2) the 10% IGS tail in the group that contained 11 

more cases was also the 10% IGS tail that had contained more cases on the entire cohort 12 

(that is, the IGS high-risk tail that contained more  disease cases remained consistent in 13 

this age/dPRS/APOE-defined group). 14 

 15 

IGS burden score of a participant was the number of “IGS high-risk tails” a participant was 16 

in. The “IGS high-risk tail” for IGS burden score was the 20% top tail of an IGS that 17 

contained more patients compared to the lower 20% tail. We constructed an IGS burden 18 

score by counting the number of IGS high-risk tails a subject was in, across the selected 19 

IGS. For example, if a subject was ranked in the top 20% for five out of the selected brain 20 

IGS, they would be assigned an IGS burden score of five. As IGS burden score is an integer 21 

as small as zero, for each group, we selected the “Low IGS burden score” to be the 22 

smallest nonnegative integer values that corresponded to around 20% of all participants 23 

in this group, and the “Higher IGS burden score” to be the largest integer values that 24 

corresponded to around 20% of all participants in this group. Within a group, the 25 

participants with IGS burden score among the “Lower IGS burden score” values were 26 

categorized as “Lower IGS burden score”, and likewise, those with IGS burden score 27 

among the “Higher IGS burden score” values were categorized as “Higher IGS burden 28 

score”. Due to smaller sample size and higher dementia percentage in ADNI, ADNI IGS 29 

burden score used 10% tail for “IGS high-risk tail”. Besides, ADNI had “Lower IGS burden 30 

score” cutoff at 10% for age analysis (Fig. 4D). 31 

 32 
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Similar to UKB analysis, we grouped AOU participants of European ancestry into different 1 

groups (by age as in Fig. 4C or by dPRS as in Fig. 4G). For each stratum, we again calculated 2 

the IGS tail case ratio for the 55 selected IGS and only kept the IGS that had case ratio 3 

direction consistent with the UKB discovery cohort, and categorized participants inside 4 

each stratum into “Lower IGS burden score” and “Higher IGS burden score”. Similar 5 

analysis was performed for ADNI participants (Figs. 4D and 4H). 6 

 7 

For multiple sclerosis stratification on UKB and AOU, similar to Alzheimer’s disease, we 8 

applied the following criterion to select the brain IGS for IGS burden score: (1) on the UKB 9 

discovery cohort, the IGS stratified multiple sclerosis cases so that the chi-squared test 10 

was significant after controlling the FDR at a 5% level; (2) the IGS had one of its two 10% 11 

tails containing at least 10% of all multiple sclerosis cases of UKB discovery cohort; (3) the 12 

IGS had one of its two 10% tails containing at most 10% of all multiple sclerosis cases of 13 

UKB discovery cohort; and (4) the IGS tail case ratio direction was consistent between the 14 

UKB discovery cohort and the UKB replication cohort (that is, the 10% tail that contained 15 

more cases was consistent on both cohorts). There were 25 IGS that satisfied these 16 

conditions and were selected for IGS burden score of multiple sclerosis (Table S17), and 17 

then stratification within group defined by multiple sclerosis  dPRS were carried out using 18 

IGS burden score, similar to Alzheimer’s disease analysis described above. 19 

 20 

APOE status. 21 

We extracted APOE genotypes for UKB participants based on the genetic variants 22 

rs429358 and rs7412. Following prior studies on APOE135, we considered five common 23 

APOE genotypes (ε4ε4, ε3ε4, ε3ε3, ε2ε3 and ε2ε2) and mapped the alleles of rs429358 24 

and rs7412 as follows: rs429358 CC and rs7412 CC to ε4ε4, rs429358 TC and rs7412 CC to 25 

ε3ε4, rs429358 TT and rs7412 CC to ε3ε3, rs429358 TT and rs7412 TC to ε2ε3, and 26 

rs429358 TT and rs7412 TT to ε2ε2. Here ε4ε4 are ε4 homozygotes, ε3ε4 are ε4 27 

heterozygotes, ε3ε3 are ε3 homozygotes, and ε2ε2 and ε2ε3 are ε2 carriers. We also 28 

combined ε4 homozygotes and ε4 heterozygotes as “ε4 carriers” in Figures 5A and 5E. 29 

 30 

Code availability. 31 
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We made use of publicly available software and tools. The list of genetic variants and their 1 

weights used for the construction of IGS for UKB brain and body IDPs are available at 2 

https://github.com/xcyang17/IPRS_UKB. 3 

 4 

Data availability. 5 

The individual-level data used in this study can be obtained from 6 

https://www.ukbiobank.ac.uk/ and http://adni.loni.usc.edu/data-samples/.  The disease 7 

GWAS data can be downloaded from https://www.finngen.fi/en/access_results and 8 

https://figshare.com/articles/dataset/bip2021_noUKBB/22564402. Our IGS data 9 

resources can be downloaded at Zenodo (https://doi.org/10.5281/zenodo.7709788).  10 

 11 

Figure legends. 12 

Fig. 1 Study overview and prediction analysis. 13 

(A) An overview of the study design. (B) The incremental prediction R2 of brain and body 14 

IGS in the hold-out UK Biobank (UKB) testing sets of European, Asian, and African 15 

ancestries. The structural MRI (sMRI) modality consisted of 101 BIG-KP regional brain 16 

volumes, the diffusion MRI (dMRI) modality consisted of 110 BIG-KP DTI parameters, and 17 

the resting functional MRI (rfMRI) modality consisted of 90 BIG-KP parcellation-based 18 

traits and 82 UKB-Oxford ICA-based rfMRI traits. The abdominal MRI (Abd MRI) modality 19 

consisted of 41 abdominal MRI traits, the eye OCT modality consisted of 46 eye traits, and 20 

the heart CMR modality consisted of 82 UKB heart CMR traits. The results of other IGS 21 

can be found in Figure S1. We display the IGS that significantly predicted the 22 

corresponding IDPs in the European dataset after controlling the FDR rate at a 5% level. 23 

(C) The incremental prediction R2 of these IGS in the European and Asian testing datasets. 24 

(D) The incremental prediction R2 of these IGS in the European and African testing 25 

datasets. In (C)-(D), the IGS with the highest prediction R2 in the European testing set in 26 

each modality was marked by an arrow and text. ICA stands for independent component 27 

analysis, INL stands for inner nuclear layer, and RPE stands for retinal pigment epithelium.  28 

 29 

Fig. 2 IGS stratification of brain and heart disorders. 30 

(A)-(D) The IGS-disease pairs after controlling the FDR rate at a 5% level on UKB discovery 31 

cohort, replicated on UKB replication cohort, and with IGS tail case ratio greater than 1.1 32 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2024. ; https://doi.org/10.1101/2023.04.18.23288769doi: medRxiv preprint 

https://github.com/xcyang17/IPRS_UKB
https://www.ukbiobank.ac.uk/
http://adni.loni.usc.edu/data-samples/
https://www.finngen.fi/en/access_results
https://figshare.com/articles/dataset/bip2021_noUKBB/22564402
https://doi.org/10.5281/zenodo.7709788
https://doi.org/10.1101/2023.04.18.23288769
http://creativecommons.org/licenses/by-nc-nd/4.0/


 38 

(brain) or 1.2 (heart) are displayed. Each point represents an IGS-disease pair. The y-axis 1 

shows the disease name and the associated phecode (for example, the phecode of 2 

Alzheimer's Disease is 290.11). The x-axis shows the disease case ratio between the two 3 

IGS tails. We show the results for UKB discovery cohort. (E)-(F) For the pair between aortic 4 

aneurysm (AA) and AAo_max_area (ascending aorta maximum area), we show the 5 

disease percentage (y-axis) in quantile-based groups defined by AAo_max_area IGS (x-6 

axis) in the UKB discovery and UKB replication cohorts. The horizontal grey dashed line 7 

represents the disease percentage for the entire cohort.  8 

 9 

Fig. 3 AUC of IGS for disease prediction. 10 

(A)-(C) AUC gain of disease prediction on UKB discovery cohort by including the stratifying 11 

IGS for IGS-disease pairs that were significant on UKB discovery cohort after controlling 12 

the FDR rate at a 5% level, replicated on UKB replication cohort, and with IGS tail case 13 

ratio greater than 1.1 (brain) or 1.2 (heart). Each point represents an IGS-disease pair. The 14 

y-axis shows the disease name and the associated phecode. The x-axis shows the AUC 15 

gain from the IGS model compared with the baseline model. (D) AUC gain of disease 16 

prediction on UKB discovery cohort by including the most stratifying IGS or all stratifying 17 

IGS in the IGS-dPRS model, compared with the baseline-dPRS model. The diseases with 18 

IGS stratification patterns visualized in Figures 3E-3H and S11 was marked by an arrow 19 

and text. (E)-(H) For four select diseases, for each disease polygenic risk score (dPRS) 20 

quantile group (x-axis), we show the disease percentage (y-axis) for all participants (“All 21 

subjects”), participants in the low 10% tail of the prediction of the IGS-dPRS model of the 22 

disease (“Prediction lower tail”), and participants in the high 10% tail of the prediction of 23 

the IGS-dPRS model (“Prediction higher tail”). We show the results for UKB discovery 24 

cohort. 25 

 26 

Fig. 4 IGS stratification of Alzheimer's disease across age and disease polygenic risk 27 

score groups. 28 

(A)-(D) For each age group (x-axis), we show the Alzheimer's disease (AD) or dementia 29 

percentage (y-axis) for all participants (“All subjects”), participants in the low 20% tail of 30 

IGS burden score (“Lower IGS burden score”), and participants in the high 20% tail of IGS 31 

burden score (“Higher IGS burden score”). (E)-(H) For each dPRS quantile group (x-axis), 32 
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we show the AD or dementia percentage (y-axis) for all participants (“All subjects”), 1 

participants in the low 20% tail of IGS burden scores (“Lower IGS burden score”), and 2 

participants in the high 20% tail of IGS burden scores (“Higher IGS burden score”). We 3 

show the results for UKB discovery (left panels), UKB replication (middle-left panels), AOU 4 

European (middle-right panels), and ADNI (right panels) cohorts. 5 

 6 

Fig. 5 IGS stratification of Alzheimer's disease on the basis of APOE status and disease 7 

polygenic risk score. 8 

(A) For each APOE group (y-axis), we show the relative change in Alzheimer's Disease (AD)  9 

percentage (x-axis) in the low 20% tail of IGS burden score (“Lower IGS burden score”) 10 

and in the high 20% tail of IGS burden score (“Higher IGS burden score”) compared to the 11 

overall AD percentage of the APOE group (decimals at x=0). (B)-(F) For five APOE groups, 12 

for each dPRS quantile group (x-axis), we show the AD percentage (y-axis) for all 13 

participants (“All subjects”), participants in the low 20% tail of IGS burden score (“Lower 14 

IGS burden score”), and participants in the high 20% tail of IGS burden score (“Higher IGS 15 

burden score”). We show the results for the UKB discovery cohort. 16 

 17 

Fig. 6 IGS stratification of multiple sclerosis. 18 

(A)-(B) For the pair between multiple sclerosis (MS) and left.putamen (left putamen 19 

volume), we show the disease percentage (y-axis) in quantile-based groups defined by 20 

left.putamen IGS (x-axis) in the UKB discovery and AOU European cohorts. The horizontal 21 

grey dashed line represents the disease percentage for the entire cohort. (C)-(E) For each 22 

dPRS quantile group (x-axis), we show the MS percentage (y-axis) for all participants (“All 23 

subjects”), participants in the low 20% tail of IGS burden scores (“Lower IGS burden 24 

score”), and participants in the high 20% tail of IGS burden scores (“Higher IGS burden 25 

score”). We show the results for UKB discovery, UKB replication, AOU European, and AOU 26 

non-European cohorts. 27 
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