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 2 

Abstract 1 

The UK Biobank's brain imaging data is an essential resource for clinical research, but its 2 

cost and difficulty in obtaining limit the imaging study to only 100,000 participants, 3 

leaving the majority of UKB subjects without imaging data. However, because imaging-4 

derived phenotypes (IDPs) are heritable, and most UKB subjects have genetic information 5 

available, it's possible to predict IDPs for UKB subjects outside the imaging study using 6 

genetic data. To this end, this study systematically developed and evaluated biobank-7 

scale genetic polygenic risk scores (PRS) for 4,206 IDPs from multiple brain imaging 8 

modalities and processing pipelines. The results indicate that the majority of IDPs 9 

(64.76%, 2,774/4,206) were significantly predicted by PRS developed by subjects with 10 

both genetic and imaging data. Moreover, genetically predicted IDPs showed associations 11 

with a wide range of complex traits and diseases, with the patterns being consistent 12 

across different imaging pipelines. These findings suggest that genetic prediction through 13 

PRS is a cost-effective and practical way to make the UKB imaging study more beneficial 14 

to a broader population. The PRS data resources developed in this study have been made 15 

publicly available through Zenodo and will be returned to the UK Biobank. 16 

 17 

Keywords: Brain imaging; Imaging-derived phenotypes; Polygenic risk scores; MRI; UK 18 

Biobank   19 
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 3 

The large-scale brain imaging data from the UK Biobank (UKB) imaging study has proven 1 

to be an immensely valuable resource for characterizing brain structural and functional 2 

organizations1,2. This data has been instrumental in establishing links with clinical 3 

biomarkers3,4, predicting brain aging5-7, and facilitating early disease detection8. Launched 4 

in 2014, the UKB imaging study reached a milestone in 2022 by scanning the multimodal 5 

brain magnetic resonance imaging (MRI) of its 50,000th participant. Although it is the 6 

world's largest imaging study, the UKB imaging study will ultimately include 100,000 7 

participants9, leaving 80% (400,000) of the half a million UKB subjects without imaging 8 

data. Given the cost and difficulty of collecting additional imaging data, it is crucial to 9 

develop strategies that extend the utility of the UKB imaging study to more participants 10 

in UKB and a wider population.  11 

 12 

The polygenic risk scores (PRS) can be used to predict traits or disease risk for individuals 13 

by aggregating genetic information across the genome10,11. The development of 14 

numerous prediction methods12, reporting standards13, genetic data resources14, and 15 

data sharing platforms15 has enabled the application of PRS to a wide variety of complex 16 

diseases and heritable traits. Both family and population-based studies have shown that 17 

variation in brain structure and function, as measured by brain MRI, are heritable2,16-18. 18 

Recent genome-wide association studies (GWAS)2,19-25 have identified many genetic loci 19 

associated with brain imaging-derived phenotypes (IDPs).   Consequently, PRS methods 20 

can be employed to predict brain IDPs for UKB subjects who are not part of the imaging 21 

study.    A number of  GWAS have investigated and reported the prediction accuracy (out 22 

of sample R-squared) of PRS for brain IDPs19,26,27 in small-scale independent testing data, 23 

indicating  that genetic data could partially recover variations in brain IDPs, especially 24 

when the PRS was developed and applied to the same population or research cohort. 25 

These pilot studies demonstrate that genetically-predicted IDPs can serve as valuable 26 

proxy imaging biomarkers in the absence of readily available brain MRI data. 27 

 28 

In this study, we systematically developed and evaluated PRS for brain IDPs in UKB 29 

subjects without imaging data. We examined 4,206 brain IDPs from various imaging 30 

modalities and independent processing pipelines, including 3,905 traits generated by the 31 

UKB brain imaging team1,2,20 (UKB Data Category 100, referred to as UKB-Oxford data 32 
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 4 

hereafter, https://open.win.ox.ac.uk/ukbiobank/big40/) and 301 traits processed by BIG-1 

KP19,21,23 (https://bigkp.org/). These imaging biomarkers spanned major MRI categories, 2 

such as structural MRI (sMRI, including regional brain volumes, cortical thicknesses, and 3 

surface areas), diffusion MRI (dMRI, with diffusion tensor imaging (DTI) parameters), 4 

resting-state functional MRI (rfMRI, featuring amplitude28 and functional connectivity 5 

traits), task-based functional MRI (tfMRI, using activation z-statistics), and susceptibility 6 

weighted brain MRI (incorporating regional median T2star). The Methods section and 7 

Table S1 provide more detailed information. Figure 1 presents an overview of the study 8 

design. The list of genetic variants and their weights for constructing PRS for brain IDPs 9 

can be found at https://github.com/xcyang17/IPRS_UKB. 10 

 11 

RESULTS 12 

Developing biobank-scale PRS for 4,206 brain IDPs 13 

To develop and assess the PRS for brain IDPs in UKB subjects without imaging data, we 14 

employed data from individuals of white British ancestry with brain IDP information from 15 

UKB phases 1 to 3 data releases2,20,28 for training (average n = 34,224, released up through 16 

2020).  We generated GWAS summary statistics of brain IDPs, which were then used as 17 

input for the PRS models to create genetically predicted IDPs for all UKB subjects without 18 

imaging data (average n = 454,318).  An independent hold-out dataset containing brain 19 

IDP data served as a test set to evaluate the predictive performance of the generated IDPs 20 

(average n = 3,438).   We used PRS-CS29 to construct the PRS, incorporating genotyping 21 

data from the UKB study, and 461,488 genetic variants were included in the prediction 22 

model after standard genetic data quality controls. The details can be found in Methods. 23 

 24 

In summary, we discovered that 64.76% (2,774/4,206) of brain IDPs could be significantly 25 

predicted after controlling the false discovery rate (FDR) at 5% using the Benjamini-26 

Hochberg procedure. Significant brain IDPs were present in both UKB-Oxford and BIG-KP 27 

across all brain MRI modalities (Fig. 2A and Table S2). Brain IDPs from the same imaging 28 

modality exhibited similar prediction accuracy ranges (Fig. 2B). For instance, the sMRI 29 

modality in BIG-KP consisted of 101 regional brain volumes generated by advanced 30 

normalization tools (ANTs)19,30, with an average prediction R-squared of 1.13% 31 

(s.e.=0.10%). The UKB-Oxford contained 1,437 sMRI IDPs, and most subcategories 32 
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 5 

displayed similar prediction R-squared ranges as the BIG-KP ANTs traits. Additionally, 1 

there were variations in prediction accuracy across different modalities. Among the three 2 

modalities in BIG-KP, dMRI traits (110 DTI parameters from the ENIGMA-DTI TBSS 3 

pipeline21,31,32) demonstrated significantly higher prediction accuracy compared to sMRI 4 

traits (101 ANTs regional brain volumes) or rfMRI traits (90 rfMRI traits using the 5 

Glasser360 atlas21,31,32, P < 2.2 × 10-16, Wilcoxon rank test). Furthermore, we assessed the 6 

consistency of prediction performance across different PRS methods by conducting the 7 

same analyses on the 301 BIG-KP traits using DBSLMM21,31,32. Figure 2C reveals that the 8 

prediction accuracy of the two methods was consistent across various traits (Correlation 9 

= 0.9278, Table S2). These results suggest that brain IDPs can be consistently predicted 10 

by different PRS prediction methods. 11 

 12 

PRS of brain IDPs were widely associated with complex traits 13 

Utilizing the PRS developed for brain IDPs, we conducted association analyses with 265 14 

phenotypes (Table S3) on UKB participants who initially lacked brain imaging data 15 

(Methods). Prior studies have identified associations between various complex traits and 16 

diseases using brain imaging data, such as intelligence, blood pressure, and education3,4. 17 

Our objective is to determine whether imaging-trait relationships can also be uncovered 18 

using the PRS of IDPs in the UKB non-imaging cohort. We outline the results for the 301 19 

IDPs from the BIG-KP below.  20 

 21 

At the Bonferroni significance level (265 × 301 tests), we discovered 2,053 significant pairs 22 

between 97 complex traits and 258 PRS of brain IDPs (|𝛽| > 0.0053, P range = (1.75 × 10-23 

115, 6.27 × 10-7)). Out of the 2,053 pairs discovered, 1,922 (93.62%) were replicated in an 24 

independent hold-out dataset (Fig. S1 and Table S4). Figure 3A shows the pattern of 25 

significant IDP-trait connections across different phenotype groups and imaging 26 

modalities. The PRS of dMRI traits exhibited the highest percentage of associations, 27 

followed by those of sMRI traits and rfMRI traits. Associations were observed across a 28 

wide range of phenotypes, including blood biochemistry biomarkers, curated disease 29 

phenotypes33, spirometry, body composition by impedance, and mental health. We 30 

provide several examples below, all of which have been replicated. 31 

 32 
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 6 

Significant associations were discovered and replicated between PRS and various disease-1 

related phenotypes, including curated disease phenotypes, family health history, and 2 

health and medical history. Among the curated diseases, hyperthyroidism and 3 

hypothyroidism were found widely associated with all three imaging modalities (|𝛽| > 4 

0.0104, P < 6.02 × 10-7). These results were consistent with recent studies34,35 that 5 

reported significant changes in white matter radial diffusivity and axial diffusivity in adult 6 

patients with hyperthyroidism/hypothyroidism, which were known to be associated with 7 

memory dysfunction. In addition, hypertension and hypercholesterolemia were 8 

correlated with PRS of white matter structural connectivity traits and resting functional 9 

connectivity traits (|𝛽| > 0.0102, P < 5.30 × 10-7). Hypertension was mostly correlated with 10 

PRS of DTI parameters involving the external capsule and the anterior limb of internal 11 

capsule tracts, and there was no association between hypertension and regional brain 12 

volumes, which was consistent with a previous study using the UKB brain IDPs36. 13 

Hypertension can lead to vascular stiffness and impaired cerebral perfusion, which in turn 14 

can cause microstructural white matter disruption and stroke37. There were significant 15 

associations between diabetes and PRS of all three modalities (|𝛽| > 0.0105, P < 5.92 × 10-16 

7), especially for the DTI parameters of the superior and inferior longitudinal fasciculus 17 

tracts and the inferior fronto-occipital fasciculus tract. These findings were consistent 18 

with two recent studies that investigated the effects of type 2 diabetes (T2D) on brain 19 

white matter38,39.  20 

 21 

We found significant associations with multiple brain-related disorders and the family 22 

history of stroke and Alzheimer’s disease (|𝛽| > 0.0109, P < 2.92 × 10-7). Family history of 23 

Alzheimer's disease was significantly associated with PRS of DTI parameters of the 24 

hippocampal cingulum tracts, consistent with previous findings about changes in the DTI 25 

parameters of Alzheimer’s disease patients40-42. Multiple sclerosis was correlated with all 26 

three imaging modalities, such as PRS of DTI parameters of the cingulum and fornix-stria 27 

terminalis tracts. Previous research has linked structural damage in the cingulum with 28 

subjective fatigue perception in multiple sclerosis43, and the fornix has been found to be 29 

correlated with cognitive impairment in multiple sclerosis patients44. We also uncovered 30 

widespread associations with brain-related complex traits, including mental health, 31 

alcohol use, smoking, cognitive functions, and education. All mental health traits were 32 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.23288769doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.18.23288769
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

associated with the PRS of regional brain volumes, and several of them (nervous feelings, 1 

visits to doctors/psychiatrists, and neuroticism score) were also widely associated with 2 

multiple DTI parameters (|𝛽| > 0.0104, P < 6.18 × 10-7). Cognitive functions exhibited 3 

significant correlations with both DTI parameters and regional brain volumes ( |𝛽|  > 4 

0.0101, P < 5.93 × 10-7). For instance, fluid intelligence was positively linked with fractional 5 

anisotropy of the uncinate fasciculus, whereas higher fractional anisotropy can improve 6 

interhemispheric transfer time, boost information processing speed, and lead to more 7 

efficient cognitive functioning and faster reaction45. In summary, PRS for brain IDPs 8 

provide the opportunity to identify biologically relevant connections between the brain 9 

and complex traits and diseases. 10 

 11 

Comparison of BIG-KP and UKB-Oxford IDPs in associations with phenotypes 12 

Using the PRS of 3,905 IDPs from the UKB-Oxford database, we repeated association 13 

analyses with the 265 phenotypes (Methods). Our results confirmed the consistency in 14 

PRS-phenotype associations produced by brain IDPs from BIG-KP and UKB-Oxford 15 

pipelines. We also discovered new associations from imaging modalities exclusive to the 16 

UKB-Oxford. Below we compared the results of UKB-Oxford with those of BIG-KP and 17 

highlighted some interesting new associations between PRS and phenotypes. 18 

 19 

We found 14,541 significant pairs between 100 phenotypes and 2,814 PRS at the 20 

Bonferroni significance level (265 × 3,905 tests; |𝛽| > 0.0056, P range = (1.01 × 10-135, 4.83 21 

× 10-8)), 13,899 (95.58%) of which were replicated in an independent dataset (Figs. 3B and 22 

S2, and Table S5). Comparing Figures 3A and 3B, both BIG-KP and UKB-Oxford PRS had 23 

the most associations in blood biochemistry, curated disease phenotypes, and mental 24 

health. The 1,439 sMRI traits in the UKB-Oxford consisted of multiple subcategories, 25 

including regional volumes, cortical areas, cortical grey-white contrast, cortical thickness, 26 

regional and tissue intensity, regional T2*, and white matter hyperintensity volume (Table 27 

S1). A high correlation (0.9506) was found between the number of significant associations 28 

obtained from the BIG-KP ANTs traits and the UKB-Oxford regional volumes, suggesting 29 

that PRS of volumetric measures from the two different pipelines resulted in consistent 30 

patterns of phenotypic associations. The other subcategories of sMRI revealed additional 31 

associations that were not detected by regional volumes. For example, playing computer 32 
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 8 

games, a possibly addictive behavior, was found negatively associated with the area of 1 

the left inferior temporal (𝛽 = -0.0115, P = 4.35 × 10-8). It was reported that young male 2 

adults playing Internet video games had smaller inferior temporal gyri46. The associations 3 

detected by the 675 UKB-Oxford dMRI traits (tract-skeleton and probabilistic 4 

tractography traits) highly overlapped with those of the BIG-KP DTI parameters, with the 5 

correlation between the number of significant associations being 0.9797. The PRS of the 6 

dMRI traits had additional significant associations with rheumatoid arthritis and liver 7 

biomarkers (such as gamma-glutamyl transferase and direct bilirubin) in multiple white 8 

matter tracts (|𝛽| > 0.0117, P < 4.30 × 10-8). Both gamma-glutamyl transferase and direct 9 

bilirubin were related to rheumatoid arthritis47,48, and previous studies have shown brain 10 

atrophy in rheumatoid arthritis patients49.  11 

 12 

A wide range of phenotypes was associated with PRS of 1,777 rfMRI IDPs, including the 13 

family history of Alzheimer's disease, neuroticism, cardiovascular problems, and blood 14 

biomarkers (|𝛽| > 0.0112, P < 4.22 × 10-8). For example, the family history of Alzheimer’s 15 

disease was associated with the PRS in the visual network and the three core cognitive 16 

networks (the central executive, default mode, and salience networks) (𝛽 < -0.0115, P < 17 

4.67 × 10-8). Previous studies found that Alzheimer’s disease progressively reduced visual 18 

functional network connectivity50, and MRI of the three core cognitive networks are 19 

known to be predictive of Alzheimer’s disease51-53. We also detected multiple associations 20 

between neuroticism and the PRS of rfMRI IDPs in the cerebellum (|𝛽| > -0.0131, P < 2.08 21 

× 10-8). Cerebellum plays an important role in motion control and is involved in cognitive 22 

functions, and previous studies showed functional connectivity of the cerebellum was 23 

highly involved in neuroticism54. Overall, the BIG-KP and UKB-Oxford IDPs provide 24 

consistent association patterns across different categories of phenotypes. 25 

 26 

Concordance between brain IDPs and their PRS 27 

In this section, we conducted an analysis of phenotypic associations between IDPs and 28 

phenotypes on UKB subjects with brain imaging data (average n = 34,870, Methods). We 29 

then compared the IDP-phenotype associations in the UKB imaging cohort with the PRS-30 

phenotype associations in the UKB non-imaging cohort. At the FDR 5% level (265 × 301 31 

tests), 4,717 pairs between 206 phenotypes and 297 IDPs were discovered and replicated 32 
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 9 

(|𝛽| > 0.0076, P range = (1.18 × 10-123, 8.19 × 10-3); Figs. 4A and S3, and Table S6). Out of 1 

these 4,717 IDP-phenotype associations, 1,383 pairs between 121 phenotypes and 266 2 

PRS were significant at the FDR 5% level (Figs. 4B and S4, and Table S7). That is, PRS 3 

associations recovered 29.32% (1,383/4,717) of the IDP associations, corresponding to 4 

58.74% (121/206) of the phenotypes and 89.56% (266/297) of the imaging traits. The 5 

distribution of the IDP signals in Figure 4A was in more diverse phenotype groups than 6 

that of the PRS signals in Figure 4B. Both IDP and PRS results were most abundant in blood 7 

biochemistry, curated disease phenotypes, and mental health traits, and the distribution 8 

of signals in each imaging modality was consistent. Among the 1,383 pairs that were 9 

significant in both IDP and PRS analyses, the correlation between their regression 10 

coefficients was 0.5685, and 78.16% (1,081/1,383) had regression coefficients in the same 11 

direction. The correlation among regression coefficients reduced to 0.4389 among all the  12 

4,717 IDP-phenotype associations. These results suggest that the majority of PRS 13 

associations have the same signs as the IDP associations and their regression coefficients 14 

are partially overlapped. 15 

 16 

Significant associations with various brain disorders, including stroke, multiple sclerosis, 17 

depression, and migraine, were identified by both brain IDPs (|𝛽| > 0.0168, P < 4.62 × 10-18 

3) and their PRS (|𝛽| > 0.0064, P < 2.48 × 10-3). In multiple white matter tracts, significant 19 

positive associations with stroke were found with mean diffusivity and residual diffusivity 20 

and their PRS (IDP 𝛽 > 0.0327, P < 1.21 × 10-7; PRS 𝛽 > 0.0064, P < 2.48 × 10-3).  These 21 

findings are consistent with the known impairment of white matter and motor deficits 22 

following stroke55. Similar to a recent study56, the mean diffusivity of the superior fronto-23 

occipital fasciculus and its PRS had positive associations with depression (IDP 𝛽 = 0.0390, 24 

P = 1.24 × 10-10; PRS 𝛽 = 0.0079, P = 1.89 × 10-4). The brain-related complex traits that 25 

were associated with both brain IDPs and PRS included most mental health traits, 26 

cognitive functions, and electronic device usage, such as time spent watching TV, weekly 27 

use of mobile phone, and length of mobile phone use (IDP |𝛽| > 0.0174, P < 4.52 × 10-3; 28 

PRS |𝛽| > 0.0059, P < 4.83 × 10-3). In addition, we found that some brain orders were only 29 

significantly associated with brain IDPs, and not with PRS, such as bipolar disorder, 30 

Parkinson’s disease, and epilepsy (|𝛽| > 0.0015, P < 7.68 × 10-3). For example, there were 31 

strong negative associations between bipolar disorder and the mean fractional anisotropy 32 
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 10 

of the body and genus of corpus callosum (𝛽  < -0.0197, P < 5.82 × 10-4), which was 1 

consistent with findings reported in other studies57,58. In summary, we explored the 2 

overlaps between IDP and PRS phenotypic associations and confirmed that PRS can 3 

partially recover the imaging associations with brain-related diseases and complex traits. 4 

The PRS can be used as proxy imaging biomarkers when brain MRI data are unavailable. 5 

 6 

DISCUSSION  7 

In this study, we generated PRS for 4,206 brain IDPs for UKB subjects without imaging 8 

data. These PRS have been investigated in relation to a wide range of phenotypes and it 9 

was confirmed that they can provide biologically relevant information to brain-related 10 

complex traits and diseases. We found consistent predictive accuracy and association 11 

patterns across IDPs from different pipelines, such as the volumetric measures in UKB-12 

Oxford and BIG-KP. The PRS of brain IDPs partially recovered previously known 13 

associations generated from imaging data. It is possible to detect almost 30% of the IDP 14 

associations using their PRS proxy data, and the majority of these PRS associations have 15 

the same sign as the IDP associations. We have provided the data resources so that users 16 

can easily reconstruct PRS in the UKB database. 17 

 18 

When real brain imaging data are not available, the PRS can be used as genetically 19 

predicted variables for brain structure and function.  However, as shown in our prediction 20 

and association analyses, the PRS is only able to partially reconstruct the imaging 21 

phenotypes. It has generally been observed that PRS has demonstrated imperfect 22 

performance in predicting the most complex traits and diseases, which can be attributed 23 

to a number of factors, including a limited number of training samples, heritability, and 24 

weak genetic effects59. Another challenge in PRS applications lies in ancestry and 25 

population differences. As the current UKB imaging cohort had the majority of the 26 

subjects of European ancestry, generating PRS in non-UKB and/or non-European studies 27 

may have further reduced performance60. More powerful PRS methods that better 28 

account for PRS limitations and cohort differences may result in more informative PRS for 29 

potential clinical applications. 30 

 31 

METHODS 32 
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Methods are available in the Methods section. 1 

Note: One supplementary information pdf file and one supplementary table zip file are 2 

available. 3 
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Imaging traits. 30 
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The data used in our study was obtained from the UK Biobank (UKB) study, which 1 

recruited around 500,000 individuals between the ages of 40 and 69 between 2006 and 2 

201061 (https://www.ukbiobank.ac.uk/). The ethics approval of the UKB study was 3 

obtained from the North West Multicentre Research Ethics Committee (approval number: 4 

11/NW/0382). We used a total of 4,206 brain imaging-derived phenotypes (IDPs) from 5 

the UKB study, which consisted of 301 BIG-KP19,21,23 (https://bigkp.org/) and 3,905 UKB-6 

Oxford1,2,20 (https://open.win.ox.ac.uk/ukbiobank/big40/) traits. BIG-KP traits were 7 

divided into three groups. First, we obtained 101 regional brain volumes19 from structural 8 

MRI (sMRI) images by applying the advanced normalization tools30 (ANTs). Second, we 9 

generated 110 tract-averaged diffusion tensor imaging (DTI) parameters from diffusion 10 

MRI (dMRI) using the ENIGMA-DTI pipeline31,32. Third, for resting-state fMRI (rsfMRI), we 11 

partitioned the cerebral cortex into 360 brain areas using the Glasser360 atlas62. We 12 

obtained 90 functional activity (amplitude) and functional connectivity (edge) traits for 12 13 

functional networks63. The UKB-Oxford had 1,437 IDPs from sMRI, 675 from dMRI, 1,777 14 

from rsfMRI, and 16 from task-based functional MRI (tfMRI). The sMRI IDPs consisted of 15 

FIRST (Category 1102), FAST (Category 1101), FreeSurfer ASEG (Category 190), FreeSurfer 16 

BA exvivo (Category 195), FreeSurfer a2009s (Category 197), FreeSurfer DKT (Category 17 

196), FreeSurfer desikan gw (Category 194), FreeSurfer desikan pial (Category 193), 18 

FreeSurfer desikan white (Category 192), FreeSurfer subsegmentation (Category 191), 19 

regional T2* (Category 109), and white matter hyperintensity volume (Category 112). The 20 

675 dMRI IDPs included 432 from Category 134 and 243 from Category 135. The 1,777 21 

rsfMRI IDPs included 76 amplitude (node) traits and 1,701 functional connectivity (edge) 22 

traits from whole brain spatial independent component analysis1,64,65 (Category 111). 23 

Lastly, there were 16 tsfMRI IDPs from Category 106. The image acquisition, 24 

preprocessing procedures, and quality controls were detailed in the UKB Brain Imaging 25 

Documentation (https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf). See 26 

Table S1 for the complete ID list of all brain IDPs. 27 

 28 

PRS constructions. 29 

We performed the following genetic quality controls for the set of subjects with both 30 

brain IDPs and genetic data23: 1) removed individuals with missing genotype rate > 0.1; 2) 31 

removed variants with missing genotype rate > 0.1; 3) removed variants with minor allele 32 
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frequency (MAF) < 0.01; and 4) removed variants that failed the Hardy-Weinberg test for 1 

equilibrium at 1 × 10-7 level. Using individuals of white British ancestry, the GWAS was 2 

performed using linear mixed effect models via fastGWA66 (average n = 34,224). The 3 

adjusting covariates included age (at imaging), age-squared, sex, the interaction between 4 

age and sex, the interaction between age-squared and sex, first 40 genetic principal 5 

components28 (PCs), estimated total intracranial volume (eTIV), head motion 6 

measurements and their squares, brain position measurements and their squares, and 7 

volumetric scaling. Additionally, for regional brain volume IDPs, the total brain volume 8 

(TBV) was included as an adjusting covariate. For TBV, the eTIV and volumetric scaling 9 

were not included as covariates. With the GWAS summary statistics as input, we applied 10 

PRS-CS29 and DBSLMM67 to obtain the effect sizes. The hyperparameters of both methods 11 

were the default values and/or the automatically tuned values. We then used PLINK to 12 

generate risk scores in testing data by summarizing across genetic variants, weighed by 13 

their effect sizes estimated from PRS-CS29 and DBSLMM67. 14 

 15 

The prediction accuracy of PRS was measured by the incremental R-squared, which was 16 

the additional phenotypic variation that can be explained by the PRS while adjusting for 17 

the effects of covariates in a linear regression model. The covariates included age, age-18 

squared, sex, the interaction between age and sex, the interaction between age-squared 19 

and sex, and the first 40 genetic PCs. The prediction accuracy was estimated in a dataset 20 

consisting of unrelated UKB individuals of non-British ancestry with brain IDP data 21 

(average n = 3,200).  22 

 23 

PRS-phenotype and IDP- phenotype association analyses. 24 

We employed a discovery-replication approach to examine associations between PRS and 25 

phenotypes in UKB participants without brain IDPs. We randomly selected 70% of UKB 26 

British white individuals (average n = 202,893) as the discovery dataset for PRS-phenotype 27 

associations, while the remaining 30% of UKB British white individuals, all UKB white but 28 

non-British individuals, and all non-white individuals (average n = 129,333) were used as 29 

the replication dataset. We treated the values greater than five times the median 30 

absolute deviation from the median as outliers and removed these values. A total of 265 31 

UKB phenotypes were tested, which represented a wide range of traits from various trait 32 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.23288769doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.18.23288769
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

domains. Specifically, the 265 UKB phenotypes included 24 mental health traits (Category 1 

100060), 5 cognitive traits (Category 100026), 12 physical activity traits (Category 2 

100054), 6 electronic device use traits (Category 100053), 8 sun exposure traits (Category 3 

100055), 3 sexual factor traits (Category 100056), 3 social support traits (Category 4 

100061), 12 family history of diseases (Category 100034), 21 diet traits (Category 100052), 5 

9 alcohol drinking traits (Category 100051), 6 smoking traits (Category 100058), 34 blood 6 

biochemistry biomarkers (Category 17518), 3 blood pressure traits (Category 100011), 3 7 

spirometry traits (Category 100020), 32 early life factors (Categories 135, 100033, 8 

100034, and 100072), 9 greenspace and coastal proximity (Category 151), 2 hand grip 9 

strength (Category 100019), 13 residential air pollution traits (Category 114), 5 residential 10 

noise pollution traits (Category 115), 2 body composition traits by impedance (Category 11 

100009), 4 health and medical history traits (Category 100036), 3 female specific factors 12 

(Category 100069), 1 education trait (Category 100063), and 57 curated disease 13 

phenotypes based on Dey, et al. 33 (Table S3).  14 

 15 

Association testing was then conducted to examine the relationship between the 4,206 16 

IDP-derived PRS generated by PRS-CS and the 265 UKB phenotypes. To investigate the 17 

PRS-phenotype associations, we conducted a linear regression analysis, adjusting for the 18 

same set of covariates separately in the discovery set and the replication set. The adjusted 19 

covariates included age, age-squared, sex, the interaction between age and sex, the 20 

interaction between age-squared and sex, and 40 genetic PCs. Specifically, we regressed 21 

the IDP-derived PRS onto the UKB phenotypes and calculated P values using a two-sided 22 

t-test. We prioritized the results that met the following three criteria: 1) significant after 23 

Bonferroni correction in the discovery dataset, 2) significant at a nominal significance 24 

level (0.05) in the replication dataset, and 3) had regression coefficients with matching 25 

directions in both the discovery and replication datasets. 26 

 27 

We analyzed the associations between the 301 BIG-KP IDPs and the 265 UKB phenotypes 28 

in a discovery-replication design. Specifically, the discovery set included all unrelated 29 

white British subjects from UKB phases 1 to 3 data releases, which was similar to the 30 

training GWAS dataset. The replication set consisted of all the rest of the non-discovery 31 

unrelated subjects from UKB phases 1 to 3 data releases and all unrelated subjects from 32 
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UKB phase 4 data release.  We performed linear regression on the discovery dataset and 1 

the replication dataset, respectively, by regressing the BIG-KP IDP on the UKB phenotype. 2 

We adjusted for the same set of covariates as used in the GWAS analysis. We reported P 3 

values from the two-sided t-test and prioritized those that met the following three 4 

criteria: 1) significant in the discovery dataset after controlling the false discovery rate 5 

(FDR) at a 5% level with the Benjamini-Hochberg procedure, 2) significant at a nominal 6 

significance level in the replication dataset, and 3) had regression coefficients with 7 

matching directions in both the discovery and replication datasets. 8 

 9 

Code availability. 10 

We made use of publicly available software and tools. The list of genetic variants and their 11 

weights used to construct PRS for brain IDPs are available at 12 

https://github.com/xcyang17/IPRS_UKB. 13 

 14 

Data availability. 15 

The PRS data resources have been made publicly available at Zenodo 16 

(https://doi.org/10.5281/zenodo.7709788). The individual-level data used in this study 17 

can be obtained from https://www.ukbiobank.ac.uk/.  18 

 19 

Figure legends. 20 

Fig. 1 Study overview. 21 

An overview of the study design. From raw brain imaging data, 4,206 brain imaging-22 

derived phenotypes (IDPs) were extracted using various pipelines in previous UKB-Oxford 23 

and BIG-KP projects. Multiple brain magnetic resonance imaging (MRI) modalities were 24 

considered, including structural MRI, diffusion MRI, resting-state functional MRI (rfMRI), 25 

and task-based functional MRI (tfMRI). PRS of brain IDPs were generated for non-imaging 26 

subjects (subjects without brain MRI data) using genetic predictors. Prediction accuracy 27 

was examined and associations with a wide range of phenotypes were performed.  28 

 29 

Fig. 2 Prediction analysis. 30 

(A) The proportion of brain IDPs significantly predicted by their corresponding PRS 31 

(generated by PRS-CS) in each imaging modality, after controlling the false discovery rate 32 
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(FDR) rate at 5% by the Benjamini-Hochberg procedure and at the Bonferroni 0.05 level, 1 

respectively. (B) The incremental prediction accuracy of PRS (generated by PRS-CS) in 2 

each imaging modality. (C) Comparison of incremental prediction accuracy of PRS using 3 

PRS-CS and DBSLMM. 4 

 5 

Fig. 3 PRS-phenotype association analysis.  6 

(A) We visualized the pattern of significant PRS-phenotype associations (after Bonferroni 7 

correction for multiple testing) between various groups of UKB phenotypes (upper panel) 8 

and three imaging modalities in BIG-KP (lower panel). (B) We visualized the pattern of 9 

significant PRS-phenotype associations (after Bonferroni correction for multiple testing) 10 

between various groups of UKB phenotypes (upper panel) and four imaging modalities in 11 

UKB-Oxford (lower panel). Each segment in the upper half of the visualization represents 12 

the number of significant signals found within a phenotype group, while each segment in 13 

the lower half represents the number of significant signals found within an imaging 14 

modality. These segments are color-coded to correspond to either a phenotype group or 15 

an imaging modality. 16 

 17 

Fig. 4 Phenotypic associations with PRS and IDPs.  18 

(A) We visualized the pattern of significant IDP-phenotype associations (at a false 19 

discovery rate of 5% level) between various groups of UKB phenotypes (upper panel) and 20 

three imaging modalities in BIG-KP (lower panel). (B) We visualized the pattern of 21 

significant PRS-phenotype associations (at a false discovery rate of 5% level) between 22 

various groups of UKB phenotypes (upper panel) and three imaging modalities in BIG-KP 23 

(lower panel). Each segment in the upper half of the visualization represents the number 24 

of significant signals found within a phenotype group, while each segment in the lower 25 

half represents the number of significant signals found within an imaging modality. These 26 

segments are color-coded to correspond to either a phenotype group or an imaging 27 

modality. 28 

 29 
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