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Abstract 

Objective: Genome-wide association studies have identified 1q22 as a susceptibility locus for 

cerebral small vessel diseases (CSVDs), including non-lobar intracerebral hemorrhage (ICH) and 

lacunar stroke. In the present study we performed targeted high-depth sequencing of 1q22 in ICH 

cases and controls to further characterize this locus and prioritize potential causal mechanisms, 

which remain unknown. 

 

Methods: 95,000 base pairs spanning 1q22, including SEMA4A, SLC25A44 and PMF1/PMF1-

BGLAP were sequenced in 1,055 spontaneous ICH cases (534 lobar and 521 non-lobar) and 1,078 

controls. Firth regression and RIFT analysis were used to analyze common and rare variants, 

respectively. Chromatin interaction analyses were performed using Hi-C, ChIP-Seq and ChIA-

PET databases. Multivariable Mendelian randomization (MVMR) assessed whether alterations in 

gene-specific expression relative to regionally co-expressed genes at 1q22 could be causally 

related to ICH risk. 

 

Results: Common and rare variant analyses prioritized variants in SEMA4A 5’-UTR and PMF1 

intronic regions, overlapping with active promoter and enhancer regions based on ENCODE 

annotation. Hi-C data analysis determined that 1q22 is spatially organized in a single chromatin 

loop and that the genes therein belong to the same Topologically Associating Domain. ChIP-Seq 

and ChIA-PET data analysis highlighted the presence of long-range interactions between the 

SEMA4A-promoter and PMF1-enhancer regions prioritized by association testing. MVMR 

analyses demonstrated that PMF1 overexpression could be causally related to non-lobar ICH risk. 

 

Interpretation: Altered promoter-enhancer interactions leading to PMF1 overexpression, 

potentially dysregulating polyamine catabolism, could explain demonstrated associations with 

non-lobar ICH risk at 1q22, offering a potential new target for prevention of ICH and CSVD. 
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Introduction 

Stroke is the second leading cause of death and first cause of adult disability worldwide.1 Despite 

substantial advances in therapy and disease prevention, the risk of lifetime stroke continues to 

rise.1 Accounting for approximately 10-40% of strokes,2 spontaneous (non-traumatic) 

intracerebral hemorrhages (ICH) are responsible for 50% of stroke-related mortality.3 Caused by 

rupture of small penetrating vessels, ICH can be classified as lobar or non-lobar, depending on the 

location of the bleeding.3 Lobar ICH, affecting the cerebral cortex or cortical-subcortical junction, 

is predominantly associated with cerebral amyloid angiopathy (CAA). Non-lobar ICH originates 

in deep structures of the cerebral hemisphere, brainstem, and cerebellum, and is associated with 

hypertension and other vascular risk factors, coexisting white matter disease, and silent 

infarctions.3 

 

Genetic risk factors are estimated to account for 30% of ICH risk.4 The exploration of this genetic 

background could be crucial to the identification of pathways potentially targetable by novel 

therapeutic strategies. Large multicenter collaborations developed to advance the investigation of 

the genetic drivers of ICH culminated in the first large multicenter Genome-Wide Association 

Study (GWAS) that detected a group of variants at the 1q22 locus in association with increased 

risk of non-lobar ICH.5 The 1q22 locus spans a 95 kb region of strong linkage disequilibrium 

harboring four genes, SEMA4A, SLC25A44, PMF1 and PMF1-BGLAP, the latter coding for the 

natural read-through product between PMF1 and the neighboring gene BGLAP. 

 

Subsequent GWAS analyses of traits pathophysiologically related to ICH rediscovered variants at 

1q22 in association with small vessel ischemic strokes,6 and with white matter hyperintensities,7,8 

extending the contribution of 1q22 to susceptibility to other manifestations of cerebral small vessel 

disease (CSVD). 

 

While GWAS analyses are powerful tools to identify regions associated with a trait of interest, 

they often highlight groups of variants in areas of linkage disequilibrium (LD), prohibiting 

prioritization of specific causal variants at single-variant resolution.9 Building upon previous 

GWAS findings,5–8 in the present study we sought to further characterize the 1q22 locus with the 

goal of prioritizing potential causal mechanisms for further biological exploration. After 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 24, 2023. ; https://doi.org/10.1101/2023.04.18.23288754doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.18.23288754


5 
 

assembling a cohort of 2,133 ICH patients and healthy controls, we completed deep sequencing 

of the 95 kb region spanning the locus and analyzed the resulting data combining a variety of 

synergistic methods aimed at delving into the genetic, epigenetic, and transcriptional background 

of this susceptibility locus. 

 

Methods 

Figure 1 summarizes the analytical workflow adopted in the present study. We assembled a cohort 

of 1,055 spontaneous ICH cases (534 lobar and 521 non-lobar) and 1,078 controls (Fig 1A), which 

were deep sequenced across the 1q22 locus by the Northwest Genomics Center at the University 

of Washington (Fig 1B). Firth regression, RIFT analysis and fine mapping analyses were 

performed to detect and prioritize both common and rare single variants contributing to ICH risk 

at this region (Fig 1C). Publicly available Hi-C, ChIP-Seq and ChIA-PET data were used to further 

investigate chromatin organization and to detect the presence of long-range interactions within the 

1q22 locus (Fig 1D). Finally, multivariable Mendelian randomization analysis was computed to 

assess the causal relationship between alteration in expression of any of the 1q22 genes and risk 

of ICH (Fig 1E). 

1. Study cohort 

We included 1,055 cases and 1,078 controls recruited through the “Genes and Outcomes of 

Cerebral Hemorrhage on Anticoagulation” (GOCHA) and “Ethnic/Racial variation in 

Intracerebral Hemorrhage” (ERICH) studies.10,11 Enrollment criteria for both cases and controls 

were harmonized across the participating institutions; we note that age enrollment requirements 

did vary, with age > 55 years for GOCHA and > 18 years for ERICH. Only patients of European 

ancestry (self-reported and genetically verified by genotype data) were included in the present 

study. ICH location and case status were verified based on centralized adjudication of CT scans at 

patient presentation. Based on these criteria, 534 lobar ICH and 521 non-lobar ICH cases were 

identified for inclusion. Controls (n = 1,078) were enrolled from the same geographic region as 

the cases using random digit dialing (ERICH) and ambulatory clinics (GOCHA), and matched 

cases by age (+/- 5 years), sex, ethnicity, and race. 18 ICH patients and 176 controls overlap with 

those included in prior ICH GWAS analyses.5 An overview of the cohort is presented in Table 1. 
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2. Study approval and patients consent 

As stated in GOCHA and ERICH study protocols,10,11 all recruiting sites received IRB approval 

for enrollment. Informed consent was obtained from each participant or legally authorized 

representative. 

 

3. Targeted resequencing of the 1q22 locus 

Resequencing services were provided by the Northwest Genomics Center at the University of 

Washington, Department of Genome Sciences. The 1q22 region was sequenced in all samples, 

focusing on a 95,000 bp region (chr1: 156,118,869-156,213,964), encompassing SEMA4A, 

SLC25A44, and PMF1/PMF1-BGLAP genes, using the 96plex Nimblegen SeqCap platform, 

without fingerprint. Following sequencing, BAM files generated through the Picard data-

processing pipeline (http://broadinstitute.github.io/picard) were aligned to GRCh37 human 

genome reference. IndelRealigner and Base Recalibration tools, provided by Genome Analysis 

Toolkit (GATK),12 were used prior to variant calling to remove duplicates and to locate and realign 

indels. Finally, GATK HaplotypeCaller (v3.2) was used to jointly call samples, detecting single-

nucleotide variants (SNVs), as well as insertions or deletions. 

 

4. Quality control 

GATK Variant Quality Score Recalibration (VQSR) method was used to retain variants. Only 

SNVs/indels having a depth >= 10 were included. Variants with call rate < 0.98, case-control call-

rate difference > 0.005 were excluded from the present analysis. Samples presenting with low 

average call rate (< 0.98), low mean sequence depth (< 30), low mean genotype quality (< 85), 

differential missingness between cases and controls (P < 0.05) and P < 10-6 at Hardy-Weinberg 

Equilibrium (HWE) test, were excluded from the analysis. To avoid any possible bias due to lack 

of coverage of the sequenced region, we used Samtools (http://www.htslib.org) --depth option on 

BAM files. 

 

5. Single variant analyses 

5.1. Firth regression 

Single variant tests of association were performed using Firth regression (--glm firth), available 

through PLINK2.0 software (https://www.cog-genomics.org/plink/2.0/). Resulting data were 
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analyzed first using a standard case-control approach (lobar vs controls and non-lobar vs controls), 

after retaining only frequent variants (MAF > 1%). As a secondary analysis, because 1q22 is a 

susceptibility locus for non-lobar ICH alone, non-lobar ICH patients (n = 521) were compared 

with the pool of both lobar ICH patients and ICH-free controls together (n = 1,612). All regressions 

were adjusted for age and sex. Additional sensitivity analyses were performed including the first 

four principal components generated using smartpca and EIGENSTRAT method to account for 

the presence of population structure.  Resulting p-values and the absolute value of the natural 

logarithm of the odd ratios were used to compare our results with those obtained in previous 

GWAS analysis.5 Wald Z-scores were used in subsequent fine-mapping analyses. 

 

5.2. Rare variant analysis 

As an additional method to prioritize variants at 1q22, we used the Rare Variant Influential 

Filtering Tool (RIFT),13 a newly developed method that uses a leave-one-out strategy to evaluate 

the impact of each rare variant on the burden test (SKAT-O) results. Results are summarized as 

the change in the chi square statistics from the aggregate test. Variants were considered as outliers 

(key influential rare variants in the aggregate test) only if the results of outliers’ analysis converged 

for all the three methods used (Fence, Tukey, median absolute deviation). 

 

5.3. Fine-mapping analysis 

We leveraged multiple fine-mapping tools in our exploration of the 1q22 locus. PAINTOR14 was 

used to perform functionally informed fine-mapping. In the present analysis, variants were 

annotated using the Python utility “AnnotateLocus.py” and its annotation library that leverages 

functional data such as those generated by FANTOM5 consortium15 and the RoadMap project.16 

Statistical fine mapping was performed using FINEMAP,17 CAVIAR18 and SuSiE R package 

(https://github.com/stephenslab/susieR). These tools differ in terms of how posterior inclusion 

probabilities (PIPs) are estimated. FINEMAP uses a Shotgun Stochastic Search (SSS) algorithm 

that, after exploring a large number of possible causal configurations, assigns the highest PIPs to 

those with non-negligible probability. CAVIAR identifies the minimal set of variants that has the 

highest probability of containing the causal variant(s), after accounting for the conditional 

distribution of all association statistics in the locus. SuSiE takes advantage of an iterative Bayesian 
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stepwise selection (IBSS) model to produce a series of minimal credible sets harboring highly 

correlated variants. 

 

Fine-mapping analyses were computed using the Wald statistic scores generated as previously 

described and an LD matrix computed using the Python script “CalcLD_1kg_vcf.py”, part of 

PAINTOR framework, taking advantage of the 1000 Genomes (Phase 3) latest release as 

reference19 and selecting only individuals of European ancestry. The resulting LD matrix, 

composed of pairwise Pearson correlation coefficients for each SNP, was used as input for all the 

fine-mapping tools in the present analysis. 

 

5.4. Functional annotation 

Publicly available expression data generated in blood by the eQTLGen Consortium20 were 

downloaded to assess whether any of the variants prioritized by single variant analyses could act 

as eQTLs (i.e., variants correlated with varying levels of gene expression), potentially altering 

1q22 genes expression. 

 

ChIP-Seq assay data released as part of the ENCODE project21 were used to further characterize 

gene expression regulation at 1q22. Chromatin immunoprecipitation followed by sequencing 

(ChIP-Seq) allows detection of interactions between DNA and specific proteins of interest.22 We 

focused on the presence and interactions involving active promoters and enhancers, as well as on 

the detection of regions enriched in transcription factor binding sites. We accessed signal data 

relative to H3K27ac and H3K4me2 histone marks measured in four ICH-relevant cell types 

(GM12878, H1-hESC and HUVEC) from the UCSC Genome Browser portal 

(https://genome.ucsc.edu/). Histone modifications such as H3K27ac and H3K4me2 are indicative 

of how accessible chromatin is at a specific region. In particular, H3K27ac marks are detected in 

proximity of active promoter and enhancer regions,23 while H3K4me2 signal is enriched near 

transcription factor binding sites.24 As a final step, Ensembl database 

(https://grch37.ensembl.org/index.html) was queried to retrieve the precise location of promoters 

and enhancers within 1q22. 

 

6. Chromatin interaction analyses 
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We further pursued our dissection of the 1q22 locus by analyzing its chromatin conformation 

leveraging ChIP-Seq, Hi-C, and ChIA-PET data. Hi-C, the high throughput version of 

chromosome conformation capture technique, facilitates mapping of the chromatin folding 

patterns across the genome, capturing its 3D hierarchical organization and subdividing the genome 

into Topologically Associated Domains (TADs) by identifying regions physically interacting to 

form chromatin loops.25 We used Juicebox,26 a tool that uses publicly available Hi-C data derived 

from GM12878 cells 25 to interactively explore the genome 3D conformation and identify TADs. 

Along with TAD identification, we used Juicebox to detect chromatin loops, normally visualized 

in Hi-C maps as intense “peak” pixels that represent areas in which contact frequency is enhanced 

compared with neighboring regions.25 Chromatin peaks are usually located at the corners of 

contact domains, in proximity to convergent CTCF-binding motifs.26 The CCCTC-binding factor, 

CTCF, is one of the major mediators of DNA loop formation and plays a central role in both 

chromatin spatial organization and consequent gene expression regulation.27 

 

To explore DNA-protein interactions, we combined ChIP-Seq and ChIA-PET data analysis. The 

ChIA-PET method improves the resolution of DNA-protein and DNA-DNA interactions over 

ChIP-Seq alone.28 ChIP-Seq and ChIA-PET data targeted CTCF and RNA-polymerase II A 

(POLR2A), another essential component of genes transcription processes.29 CTCF-mediated long-

range interactions and consequent DNA loop formation, followed by POLR2A recruitment, is 

crucial for transcription initiation.30 Both ChIP-Seq and ChIA-PET data measured in K562 cells, 

a multipotential leukemia cell line of human origin31 and released by the ENCODE Consortium, 

were downloaded from UCSC Genome Browser portal to complete these analyses. 

 

7. Multivariable Mendelian randomization analyses 

Multivariable Mendelian randomization (MVMR) analyses were performed to explore whether 

variations of the expression levels of any of the genes within the 1q22 locus could be causal for 

higher risk of lobar or non-lobar ICH. After accounting for the possibility that one variant could 

be simultaneously associated with more than one exposure, MVMR allows estimation of the causal 

effects of each exposure in a single analysis model.32 Genetic instruments acting as cis-eQTLs and 

potentially influencing the expression of genes (log2 transformed) within the 1q22 locus in blood 

were thus selected using the statistically significant (FDR < 0.05) cis-eQTL results available 
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through the eQTLGen Consortium data portal.20 Only independent variants were retained, defined 

by “clumping” for LD at r2 < 0.1 using 1000 Genomes Europeans as reference population.19 

Genetic associations of the selected instruments with non-lobar ICH were derived from the 

previously published ICH GWAS.5 MVMR analyses were performed combining different MR 

methods33 (inverse weighted variance, Lasso, Egger and weighted median) available through the 

R-package MendelianRandomization (version 0.7.0). 

 

8. Data availability 

Sequencing data used in this study are available on dbGAP (https://www.ncbi.nlm.nih.gov/gap/; 

Accession ID: phs000416.v2.p1) and on the CDKP portal 

(https://cd.hugeamp.org/downloads.html). Cis-eQTL data were available on the eQTLGen 

Consortium portal (https://www.eqtlgen.org). Additional data supporting these findings are 

available by the authors, upon reasonable request. 

 

Results 

1. Coverage analysis highlights regional variation in sequencing depth 

Absence of coverage (average read depth close to 0) was detected in an interval between bp 

156,139,280 and 156,140,732, located in an intronic region of the SEMA4A gene (Supplementary 

Figure S1). Additional information regarding the quality of the alignment in the poorly covered 

SEMA4A region were retrieved from the correspondent Concise Idiosyncratic Gapped Alignment 

Report (CIGAR) string. Likely related to a polyT repeat, different segments of this small region 

did not align with the reference sequence in any of the sequenced samples. Low coverage across 

samples was also detected in the intergenic region between SEMA4A and SLC25A44 genes 

(chr1:156,147,543-156,163,730) (Supplementary Figure S1). Because this alignment failure 

affected the entire cohort, these two poorly covered regions were not included in subsequent steps 

of the analysis to reduce risk of technical bias. Excluding these low coverage regions, average read 

depth was > 290. 

  

2. Single variant analyses prioritize variants in SEMA4A 5’-UTR and PMF1 intronic 

regions 
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A combination of approaches was used to assess the association of single variants with risk of ICH 

at 1q22. Firth regression analysis comparing cases (lobar and non-lobar, separately) and controls, 

was computed to test for association of the common variants with ICH. Given the minimal overlap 

with published GWAS analyses, our results replicate the non-lobar signal previously detected in 

proximity of PMF15 (Supplementary Figure S2A, B), corroborating the role of this locus in risk 

for non-lobar ICH. When focusing on the magnitude of the effect (i.e., absolute value of the log of 

the odds ratio) rather than p-values alone, we identified an additional pool of variants within the 

SEMA4A 5’-UTR region. This signal was not previously reported because it did not reach genome-

wide significance thresholds, but in review of the prior GWAS dataset these variants displayed a 

similarly elevated odds ratio (OR)5 (Supplementary Figure S2A,B). An additional small region 

with elevated ORs was detected in SEMA4A 3’-UTR region. Because variants located between 

base pairs 156,148,200 and 156,153,800 were entirely overlapping with the low coverage 

intergenic region previously mentioned, we did not consider them in subsequent analyses due to 

concerns for genotyping accuracy. 

 

To improve our power, we performed a second analysis comparing non-lobar ICH cases against 

lobar ICH cases and controls pooled together, based on the prior observation that variants at 1q22 

increase the risk of non-lobar ICH alone as well as the confirmation of no significant associations 

between lobar ICH and controls (Supplementary Figure S2E); that is, for the latter, the allele 

frequencies in lobar ICH cases were comparable to the controls.  Because this yielded similar effect 

sizes with smaller standard errors, hence greater statistical power, compared to the non-lobar vs 

controls-only analysis (Supplementary Figure S2B, C), we retained this analytic approach in all 

following analyses. Regressions performed adjusting, or not, for principal components produced 

similar results, excluding the presence of population stratification (Supplementary Figure 

S2C,D). We note that examining the eQTLGen Consortium data for this region, the associated 

variants in this newly detected SEMA4A 5’-UTR were predicted to be PMF1 eQTLs in blood (Fig 

2A). 

 

We pursued our single rare variant analysis using RIFT,13 that prioritized variants in the two 

regions previously identified by Firth regression, the SEMA4A 5’-UTR and PMF1 intronic region 

(Fig 2B). 
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We also used the Wald Z-scores from Firth regression to perform fine-mapping analysis combining 

functionally-informed and statistical fine-mapping approaches. Both methods further corroborated 

the results from Firth and RIFT analyses, prioritizing variants in SEMA4A 5’-UTR and PMF1 

intronic regions (Supplementary Fig S3). 

 

3. Functional annotation identifies regions overlapping with active promoter and enhancer 

elements 

We used ENCODE and Ensembl databases to investigate whether the two regions prioritized by 

the single variant analyses could have a functional role at 1q22. H3K4me2 signal analysis showed 

enrichment in transcription factor binding sites in the proximity of both SEMA4A 5’-UTR and 

PMF1 intronic regions (Fig 2C), suggesting the presence of active regulatory elements. This was 

further supported by H3K27ac marks, highlighting the presence of active promoter and enhancer 

regions overlapping with the prioritized SEMA4A 5’-UTR and PMF1 intronic regions (Fig 2D). 

Ensembl database queries corroborated these results, classifying active SEMA4A 5’-UTR promoter 

(chr1:156,115,002-156,136,199) and PMF1 enhancer (chr1:156,194,401-156,194,600) regions at 

these same locations (Fig 2D), in a variety of different cell types, including vascular cells and 

neurons. 

Taken together, common and rare single variant analyses combined with functional annotation 

suggest a role for SEMA4A 5’-UTR promoter and PMF1 enhancer regions in non-lobar ICH 

susceptibility through a mechanism of transcriptional regulation of genes at 1q22. 

 

4. 1q22 is spatially organized as a single transcriptionally active domain 

We used publicly available Hi-C data via Juicebox to evaluate 3D chromatin organization at 1q22. 

Juicebox representations demonstrated a major contact domain spanning a larger region 

surrounding 1q22 (chr1:156,045,001-156,305,000). Within this larger region, two smaller contact 

domains were detected, one of which comprised a TAD containing the 1q22 locus 

(chr1:156,115,001-156,200,000) (Fig 3A). Juicebox also localized two chromatin peaks at 

chr1:156,125,001-156,130,000 and chr1:156,190,001-156,195,000, suggesting the formation of a 

chromatin loop containing 1q22 (Fig 3B). 
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Seeking additional evidence on the presence of physical interactions within 1q22, we examined 

ENCODE ChIP-Seq and ChIA-PET data generated in K562 cells. ChIP-Seq data showed two 

CTCF peaks in proximity to the SEMA4A 5’-UTR and PMF1 intronic regions (Fig 4A), indicating 

enrichment of CTCF binding sites to these two regions which is indicative of loop formation. Next, 

we examined ChIA-PET data for CTCF motifs and POLR2A binding sites to attempt to identify 

the presence of long-range looping interactions within 1q22. These data highlighted the presence 

of CTCF (chr1:156,115,504-156,116,593 and chr1:156,194,906-156,195,948) and POLR2A 

binding regions (chr1:156,128,270-156,132,924 and chr1:156,182,023-156,185,783), further 

supporting the presence of long-range interactions at 1q22. 

 

Taken together, the analyses of 1q22 chromatin organization show that the genes belonging to this 

locus are within the same TAD, indicating that they are likely co-expressed. In addition, the 

combination of Hi-C, ChIP-Seq and ChIA-PET data analyses detected the presence of long-range 

interactions between the SEMA4A 5’-UTR promoter and PMF1 enhancer regions previously 

prioritized (Fig 4A). Interestingly, all variants previously prioritized fell within or in close 

proximity of the two regions involved in long-range interactions and chromatin loop formation 

(Fig 4B-C). Thus, we hypothesized that variants modifying these interactions, as well as altering 

chromatin loop formation, could have an impact on 1q22 genes’ expression, potentially causing 

the higher non-lobar ICH risk observed at this locus. 

 

5. PMF1 over-expression is causally associated with higher non-lobar ICH risk at 1q22 

Building upon the evidence from chromatin conformation analyses that there is a TAD across the 

sequenced gene region at 1q22, we assessed the causal role of the 1q22 genes on non-lobar ICH 

susceptibility, using variants associated with expression of those genes in multivariable Mendelian 

randomization analysis. Blood expression data released by the eQTLGen Consortium were 

screened to select genetic instruments associated with increased expression for each gene. 

Estimates from the GWAS analysis by Woo et al5 provided the effects of the selected genetic 

instruments on the outcome. MVMR was performed including variants influencing SEMA4A, 

SLC25A44 and PMF1 genes expression (cis-eQTLs data were not available for PMF1-BGLAP 

gene). Exposure and outcome data harmonization yielded a total of 13 variants that were used as 
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instruments in subsequent MVMR analyses (Supplementary Table 1). Only PMF1 

overexpression was significantly associated with non-lobar ICH risk (Fig 5), suggesting a potential 

causal role within the base assumptions of the MVMR models used. 

 

Discussion 

We sought to identify potential causal genetic mechanisms within the non-lobar ICH susceptibility 

1q22 region identified in prior GWAS studies of ICH and related CSVD traits.5–8 After performing 

deep resequencing of the region, we identified common and rare variants in the SEMA4A promoter 

and PMF1 enhancer regions associated with non-lobar ICH. Despite their physical distance, these 

associated variants in the SEMA4A promoter region were predicted to act as PMF1 eQTLs, altering 

PMF1 expression levels. Exploring epigenetic datasets to investigate the locus 3D organization, 

we identified evidence that 1q22 is spatially organized within a single chromatin loop and that the 

encoded genes belong to the same TAD, reflecting potentially shared expression regulation 

processes. The presence of long-range interactions involving the SEMA4A promoter and PMF1 

enhancer regions prioritized by the single variant analyses further support a shared gene expression 

regulatory process across these two regions and provide insight into the mechanism of how 

variants in the SEMA4A promoter region may act as PMF1 eQTLs. The complementary MVMR 

analyses controlling for coexpression across 1q22 are consistent with a potential causal role for 

PMF1 overexpression in mediating non-lobar ICH risk. 

The identification of non-coding variants conferring disease susceptibility is common in GWAS 

studies.34 Such variants can express their pathogenic effect by altering expression regulation 

processes, as they modify promoter and enhancer activity.35 The increasing availability of public 

epigenetic datasets has enhanced the toolkit available for investigating non-coding variant effects, 

extending beyond eQTL libraries and into resources to explore 3D chromatin architecture as a 

means to develop testable hypotheses for biological investigation. The presence of variants capable 

of altering long-range chromosomal interactions, leading to transcriptional changes, has already 

been reported as a pathological mechanism in neurologic disorders such as schizophrenia, 

Alzheimer’s disease, and major depressive disorder.34,36 An elegant demonstration of this 

pathological mechanism was provided by a recent study that dissected a GWAS locus for 

frontotemporal lobar degeneration, showing that the risk haplotype is associated with increased 
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CTCF recruitment and chromatin loop formation, leading to overexpression of TMEM106B and 

ultimately cytotoxicity.36 This demonstrated role of alteration in chromatin architecture as a 

pathogenetic mechanism in the etiology of sporadic neurological diseases supports our 

observations in ICH, with variants altering long-range interactions between 1q22 promoter and 

enhancer regions potentially leading to dysregulation of PMF1. 

Encoding for polyamine modulating factor-1, PMF1 plays an active role in the catabolic pathway 

of polyamine metabolism. Polyamines (putrescine, spermidine and spermine) are essential for 

normal cellular growth and development, and activation of their catabolic pathway has been linked 

with tissue damage associated with pathological conditions, including stroke.37 PMF1 is directly 

involved in inducing the transcription of spermidine/spermine-N(1)-acetyltransferase (SSAT), one 

of the pathway’s rate-limiting enzymes,38 essential to prevent polyamine accumulation.38 This 

preventive pathway occurs at the expense of reactive oxygen species (ROS) production, as well as 

of other potential toxic metabolic byproducts, such as acrolein,39 a highly reactive compound 

reported to be more toxic than common ROS.40 Cytotoxic and neurotoxic effects of acrolein have 

been extensively reported, and high acrolein levels have been proposed to mediate pathological 

mechanisms underlying brain infarction in mouse models,41–43 as well as blood vessel rupture in 

cellular models.44–47 Elevated levels of acrolein and SSAT have also been detected in the plasma 

of stroke patients and have been proposed as candidate stroke biomarkers.48–50 Overall, this prior 

evidence contextualizes our observations at 1q22, and provides some clues as to how dysregulation 

of a gene such as PMF1 might lead to a complex disease like ICH. A testable hypothesis supported 

by our observations and these previous studies is that PMF1 overexpression caused by chromatin 

loop alteration could enhance SSAT transcription. Higher SSAT levels could, in turn, increase 

acrolein production and consequent accumulation. High acrolein levels could then induce 

oxidative stress and exert a cytotoxic effect by increasing small vessels’ susceptibility to injury, 

ultimately resulting in non-lobar ICH. While additional research is clearly needed to further probe 

this mechanism and understand why it appears to be less relevant to the lobar ICH phenotype, we 

posit that our results provide a lens to help focus downstream in vitro and in vivo work focusing 

on the role of PMF1 in non-lobar ICH. 

The combination of multiple complementary methods empowered by a variety of publicly 

available datasets greatly facilitated our exploration of the genetic architecture of 1q22 in non-
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lobar ICH, with implications that extend to other CSVD phenotypes that share this susceptibility 

locus. Collectively, our results support a role for PMF1 as the mediator of non-lobar ICH observed 

at this locus, potentially acting through its known role in polyamine regulation which would 

represent a novel therapeutic target. However, our work has several limitations. First, limited 

statistical power to discover or rediscover variants reaching genome-wide significance led to 

nominal statistical associations at the single variant level, motivating much of our study design. 

Additional follow-up studies, including larger and multi-ancestral sample sizes and more narrowly 

refined regions motivated by this research will be fundamental to confirm our findings at 1q22 and 

identify variants or haplotypes potentially implicated in enhancing or repressing loop formation. 

While publicly available ChIP-Seq and ChIA-PET datasets were crucial in corroborating our 

observations, dedicated epigenetic work focused on the 1q22 locus is needed to replicate and 

extend our findings. While MVMR can support causal directional associations in the appropriate 

context, its results must be tested in future transcript and protein-level experiments. Engineered 

cell lines harboring specific variants in the SEMA4A 5’-UTR promoter and PMF1 enhancer regions 

are likely to be useful in furthering several of the testable hypotheses arising from this work, 

building towards novel therapeutic targets for ICH and related common diseases of the cerebral 

small vessels for which no specific treatment currently exists. 
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Tables 

Table 1. Cohort overview. Age at event/recruitment, relative standard deviation (sd) and age 

range, and sex proportions are reported for all the ICH patients and controls included in the 

present study. 

 

Age, mean (sd; 

range) Sex (F) 

Lobar (n=534) 73 (12.6; 21-100) 51% (272/534) 

Non lobar 

(n=521) 69 (13.3; 29-98) 39% (205/521) 

Controls 

(n=1078) 70 (12.3; 21-95) 45% (484/1078) 
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Figures 

Figure 1. Overview of the analytical workflow adopted in the present study. A cohort of 1,055 

ICH patients and 1,078 controls was recruited (A) and submitted to deep sequencing targeting 

locus 1q22, a susceptibility locus for non-lobar ICH previously discovered by Woo et al.5 A black 

asterisk indicates the genomic location of the GWAS top hits (B). Resulting data were analyzed 

leveraging multiple approaches to assess the impact of single variants (C), and to understand 1q22 

3D chromatin conformation (D). Finally, multivariable Mendelian randomization analysis was 

performed to understand whether dysregulation of 1q22 gene expression could be causally related 

to the higher ICH risk associated with this locus (E). 
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Figure 2. Single variant analysis and ENCODE/Ensembl annotation at 1q22. A) Firth 

analysis results prioritize variants falling in proximity of SEMA4A 5’-UTR and PMF1 intronic 

region.  Absolute values of natural logarithm of Odds ratio and genomic position are plotted for 

each variant included in Firth regression analysis. Red triangles identify variants reported acting 

as PMF1 eQTL in blood after eQTLGen data query, while grey dots represent variants not acting 

as PMF1 eQTLs. An arrow indicates the location of the top hit previously prioritized by the 

GWAS analysis of non-lobar ICH performed by Woo et al.5 B) RIFT analysis identifies 

potentially causal variants falling in SEMA4A 5’-UTR and PMF1 intronic regions. Delta-Chi 

square values resulting from RIFT analysis are plotted for each variant against together with its 

genomic position. Outliers are colored in red. C) Analysis of ENCODE H3K4me2 histone marks 

highlight that 1q22 is a transcriptionally active region. H3K4me2 score levels measured in 

GM12878, H1-hESC, HepG2 and NHLF cell types. Higher peaks indicate the presence of 

enrichment in transcription factor binding sites. D) ENCODE H3k27ac marks analysis points out 

the presence of active promoter and enhancer regions, as shown by high H3k27ac score signals. 

E) Red and green dashed rectangles define the regions identified as active promoter and enhancer 

following Ensembl database query.  
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Figure 3. Hi-C data allow to explore 1q22 3D chromatin conformation, highlighting that 

1q22 is organized as a single TAD. A) Juicebox analysis highlights the presence of contact 

domains (yellow squares) and chromatin peaks (blue squares) within 1q22 and led us to 

hypothesize that the region surrounding the locus is organized as a major transcriptionally active 

domain (TAD) harboring two sub-TADs, one adjacent to 1q22 (sub-TAD 1) and one 

encompassing 1q22 (B). 
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Figure 4. ENCODE ChIP-Seq and ChIA-Pet data analysis allow to identify the presence of 

long-range interactions within 1q22.  A) ChIP-Seq ad ChIA-Pet results highlight the presence 

of CTCF enrichment and long-range interactions within 1q22. B) Variants previously prioritized 

by Firth and RIFT analysis fall within, or in close proximity, to the regions involved in long-

range interactions. C) Dashed blue rectangles delimit the two regions interacting to form 

chromatin loops, as predicted by Juicebox.  
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Figure 5. Multivariable Mendelian randomization analyses highlight that PMF1 

overexpression is causally associated to higher non-lobar ICH risk. Odd ratios, 95% 

confidence intervals, and p-values resulting from multivariable Mendelian randomization 

analyses are reported for each gene tested. 
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