¹ Do people with disabilities experience

- ² disparities in cancer care?
- ³ A systematic review
- 4
- 5 Irene Tosetti¹¶*, Hannah Kuper²¶
- 6
- 7 ¹ M.Sc. Public Health, London School of Hygiene & Tropical Medicine, London,
- 8 United Kingdom
- 9 https://orcid.org/0000-0001-5800-9153
- 10
- 11 ² International Centre for Evidence in Disability, London School of Hygiene &
- 12 Tropical Medicine, London, United Kingdom
- 13 https://orcid.org/0000-0002-8952-0023
- 14
- 15 * Corresponding Author
- 16 E-mail: lonit5@student.london.ac.uk

17 Abstract

Background: Over 1.3 billion people, or 16% of the world's population, live with some form of disability. Recent studies have reported that people with disabilities (PwD) might not be receiving state-of-the-art treatment for cancer as their non-disabled peers; our objective was to systematically review this topic.

22 Methods: A systematic review was undertaken to compare cancer outcomes and 23 quality of cancer care between adults with and without disabilities (NIHR Prospero 24 register ID number: CRD42022281506). A search of the literature was performed in 25 July 2022 across five databases: EMBASE, Medline, Cochrane Library, Web of 26 Science and CINAHL databases. Peer-reviewed quantitative research articles, 27 published in English from 2000 to 2022, with interventional or observational study 28 designs, comparing cancer outcomes between a sample of adult patients with 29 disabilities and a sample without disabilities were included. Studies focused on 30 cancer screening and not treatment were excluded, as well as editorials, 31 commentaries, opinion papers, reviews, case reports, case series under 10 patients 32 and conference abstracts Studies were evaluated by one reviewer for risk of bias 33 based on a set of criteria according to the SIGN 50 guidelines. A narrative synthesis 34 was conducted according to the Cochrane SWiM guidelines, with tables 35 summarizing study characteristics and outcomes. This research received no external 36 funding.

37 Results: Thirty-one studies were included in the systematic review. Compared to 38 people without disabilities, PwD had worse cancer outcomes, in terms of poorer 39 survival and higher overall and cancer-specific mortality. There was also evidence 40 that PwD received poorer quality cancer care, including: lower access to state-of-the-

art care or curative-intent therapies, treatment delays, undertreatment or excessively
invasive treatment, worse access to in-hospital services, less specialist healthcare
utilization, less access to pain medications and inadequate end-of-life quality of care.

44 Discussion: Limitations of this work include the exclusion of qualitative research, no 45 assessment of publication bias, selection performed by only one reviewer, results 46 from high-income countries only, no meta-analysis and a high risk of bias in 15% of included studies. In spite of these limitations, our results show that PwD often 47 48 experience severe disparities in cancer care with less guideline-consistent care and 49 higher mortality than people without disabilities. These findings raise urgent 50 questions about how to ensure equitable care for PwD; in order to prevent avoidable 51 morbidity and mortality, cancer care programs need to be evaluated and urgently 52 improved, with specific training of clinical staff, more disability inclusive research, 53 better communication and shared decision-making with patients and elimination of 54 physical, social and cultural barriers.

55

57 Introduction

Cancer is a leading cause of death worldwide, resulting in nearly ten million deaths 58 59 in 2020 according to WHO data.(1) In spite of this enormous burden of disease, late-60 stage presentation and lack of diagnosis and treatment remain common, leading to 61 much higher mortality rates.(2) Each cancer type requires a different treatment 62 regimen, so a correct diagnosis is essential to receiving the best treatment and 63 reducing mortality.(1-3)(1) Good quality of care can also improve quality of life (e.g. 64 through pain management), even when cure is no longer possible. Access to 65 appropriate treatment is therefore of crucial importance, but inequalities in access 66 have been observed for several groups, including PwD.(4–10) 67 Over 1.3 billion people, or 16% of the world's population, live with some form of 68 disability, according to the 2022 World Report on Disability. (11) This figure is 69 expected to grow further in the coming decades, as the population ages and chronic 70 health conditions increase globally. On average, PwD are more likely to experience 71 poor health, because of their underlying health condition/impairment and their socio-72 economically excluded position in society. (14-15) They also face a range of barriers 73 to accessing care, including long waiting times, high costs, ableist discrimination by 74 health professionals, inaccessible buildings, inconvenient locations, and lack of 75 communication among different parts of the healthcare team. (12) As a 76 consequence, unmet healthcare needs are greater for PwD, contributing towards 77 poorer health and higher mortality. (11) This general pattern of disability-related 78 healthcare exclusion is reflected in known disparities in the use of cancer prevention 79 services, as PwD have lower cancer screening rates than those without disabilities. 80 (13–18) This gap may also exist with respect to cancer care, as several studies have

medRxiv preprint doi: https://doi.org/10.1101/2023.04.18.23288733; this version posted July 31, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.

81 recently reported that patients with disabilities might not be receiving state-of-the-art 82 treatment standards for their cancers. (19–23)Furthermore, several studies suggest 83 that cancer may be diagnosed at a later stage in patients with disabilities, and that 84 they experience treatment disparities resulting in higher cancer-specific mortality 85 rates. (24,25) A recent meta-analysis from the USA showed that women with 86 disabilities have 0.78 (95% CI: 0.72-0.84) lower odds of attending breast cancer 87 screening and have 0.63 (95% CI: 0.45-0.88) lower odds of attending cervical cancer 88 screening, compared to women without disabilities. A recent study from Taiwan 89 reported that the probability of receiving colorectal cancer screening in people in the 90 four categories of disability (intellectual and developmental disability, dementia, 91 multiple disabilities, and moving functional limitation; OR = 0.53, 0.55, 0.62 and 0.81, 92 respectively) was significantly lower than that in the general population. (25,26)Two 93 recent scoping reviews found that patients with intellectual disabilities may be at risk 94 of experiencing inequities at various points during cancer clinical pathways, which as 95 a consequence could have an impact on their overall and cancer-specific mortality 96 and quality of life; it is thus of the outmost importance to identify and address these 97 disparities. (24,35) Consequently, the aim of this study is to conduct a systematic 98 literature review to compare cancer outcomes and quality of cancer care between adults with and without disabilities. 99

100

101 Materials and methods

A systematic review of the literature was conducted describing differences in cancer related care between patients with and without disabilities, according to the PRISMA
 reporting guidelines; the study was recorded on the NIHR Prospero register of

systematic reviews with ID number CRD42022281506. (27, 28)

106 Search Strategy

107 We used a systematic literature review to achieve our aim and objectives. The review was performed on July 1st 2022, across 5 databases: EMBASE, Medline, 108 109 Cochrane Library, Web of Science and CINAHL databases. We included search 110 terms on: disability (physical, sensory, psychological, communication and/or 111 cognitive disability; measured clinically or through self-report); and cancer treatment 112 (surgery, radiotherapy, chemotherapy, palliative care for any type of cancer), limited 113 to the past 22 years (2000-June 2022), and to English language because of resource 114 challenges with respect to costs, time, and expertise in non-English languages. The 115 full search strategy can be found in the supporting information S1 file.

116 Eligible studies included quantitative studies (observational or interventional), 117 conducted in adults aged 18+, allowing comparison of cancer outcomes between 118 PwD (of any type) and those without disabilities. The disability definition had to be in 119 agreement with the International Classification of Functioning, Disability and Health 120 (ICF) framework (i.e. including impairment, activity limitations or participation 121 restriction due to an underlying health condition in interaction with personal and 122 environmental barriers).(29) Studies had to include one or more measures of 123 outcomes along the cancer clinical pathway of diagnosis, treatment, and follow-up or 124 end of-life care. Eligible outcomes were overall mortality after cancer diagnosis, 125 cancer-related mortality, survival, access to state-of-the-art treatment (defined as 126 intent-to-cure treatment when feasible or guideline-consistent stage-appropriate 127 treatment), type of treatment received (medical vs surgical vs radiation vs. 128 hormonal), invasiveness of treatment, delay of treatment, specialist care utilization,

access to pain control prescription and end-of-life hospital use for palliative care.
Studies focused on screening for cancer were not eligible, as this question was
recently reviewed(33-36) There were no geographic restrictions.

Types of study excluded were editorials, commentaries, opinion papers, reviews, case reports, case series under 10 patients and conference abstracts. Studies with patients under age 18 in a pediatric setting, studies without a measure of disability, studies that did not include a sample of patients with disabilities and a sample of patients without disabilities and studies without outcome measures for cancer care were also excluded. According to these criteria, studies with ineligible design, comparator, population, outcomes, intervention or setting were excluded. (Figure 1)

139

140 Study selection

All studies identified through the searches were exported to a Mendeley bibliographic
database for deduplication and to Covidence software for screening. One author (IT)
screened studies by title and abstract and full text to determine eligibility. Decisions
to include were made according to inclusion criteria.

145

146 **Data extraction and analysis:**

A table was created for data extraction (Table 1 in Supplement1) listing authors, year of publishing, country where the study was undertaken, study design, type of cancer, type of disability, type of outcome, population size and overall risk of bias. One author (IT) extracted the data. A summary of study characteristics can be found in

151 Table 1.

We also created a table with a summary of primary and secondary outcomes of each study (Table 2); where possible, odds or prevalence ratios as a measure of association or *p*-values comparing measures in people with and without disabilities were extracted. Each study was also classified as "better", "worse" or "null", when outcomes respectively showed a better, worse or equal situation in quality of cancer care for PwD in comparison to people without disabilities.

158 A narrative synthesis was conducted according to the Cochrane SWiM guidelines.

159

160 **Determining risk of bias:**

161 Studies were evaluated for risk of bias based on a set of criteria according to the 162 SIGN 50 (Scottish Intercollegiate Guidelines Network) checklists as explained in 163 Supplement 1. (37)

164 Overall Ratings were summarised as follows (figure 2) with RobVis tool:(38)

165- Low risk of bias: all or almost all of the above criteria were fulfilled, and those that

were not fulfilled were thought unlikely to alter the conclusions of the study;

167- Medium risk of bias: some of the above criteria were fulfilled, and those not fulfilled

168 were thought unlikely to alter the conclusions of the study;

169- High risk of bias: few or no criteria were fulfilled, and those that were not fulfilled

170 were thought likely or very likely to alter the conclusions of the study.

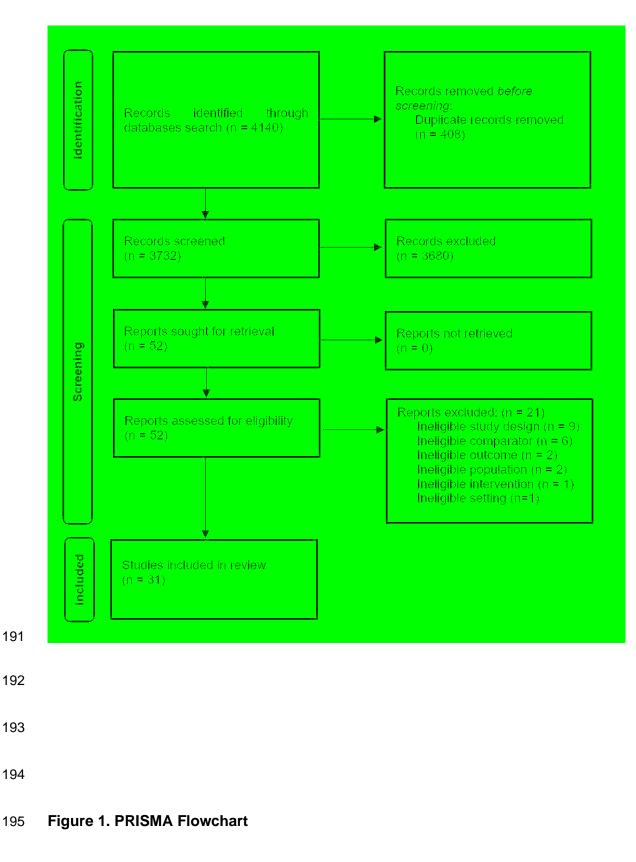
171 We did not perform tests to measure publication bias.(39)

172 Ethical Considerations

- 173 Approval for the review was given by LSHTM MSc Ethics Board (internal ref. 26741).
- 174 There were no ethical concerns for this literature review.

175 **Financial support and Competing Interests**

- 176 The Authors declare no competing interests; there are no known conflicts of interest
- 177 associated with this publication and there has been no significant financial support
- 178 for this work that could have influenced its outcome.


179

.

- 180
- 181

183 **Results**

The search was conducted on July 13th, 2022 resulting in 4140 titles identified (Figure 1). After removal of 408 duplicates, 3732 titles and abstracts were screened, and 3680 ineligible studies were excluded. Next, 52 full texts were retrieved and 21 were excluded because of ineligible study design, comparator, patient population, outcomes, intervention or setting. Finally, 31 studies were identified as eligible for the systematic review.

197 Study Characteristics

198	Table 1 shows a summary of the characteristics of the 31 studies included in the
199	systematic review. All the studies were conducted in high-income countries, with the
200	greatest proportion coming from the USA (29% of the studies, n=9), followed by
201	South Korea (19%, n=9), Japan (13%, n=4), France (10%, n=3), then by the UK,
202	Netherlands and Sweden with two studies each, and by Belgium, Taiwan and
203	Germany with one study each. Twenty studies (65%) were published after 2018,
204	showing a marked growth in research interest on this topic in the past few years;
205	only 11 eligible studies were published earlier, between 2000 and 2017.
206	A more detailed table of study characteristics is included in Supplement 1.
207	
208	
209	
210	
211	
212	
213	
214	
215	
216	

217	Table	1.	Summary	of	characteristics	of	included	studies.	
-----	-------	----	---------	----	-----------------	----	----------	----------	--

		Ν	%
REGION (as per WHO classification)	Western Pacific	14	45%
	European	11	36%
	Americas	9	29%
	African	0	0
	South East Asian	0	0
	Eastern Mediterranean	0	0
STUDY DESIGN	Retrospective cohort	27	87%
	Prospective cohort	3	10%
	Cross-sectional	1	3%
DISABILITY TYPE	Visual	0	0%
	Hearing	0	0%
	Physical	0	0%
	Intellectual-cognitive	9	29%
	Psychosocial	13	42%
	All types	9	29%
SAMPLE SIZE OF PEOPLE WITH DISABILITY	Smallest	46	n/a
	25th percentile	523	n/a
	Median	1016	n/a
	75th percentile	4077	n/a
TYPE OF CANCER	Any	7	23%
	Breast	9	29%
	Stomach and colorectal	4	13%
	Lung	3	10%
	Prostate	2	6%
	Others (Testicular, Multiple Myeloma,		
	Acute Myeloid Leukaemia, Bladder, Oral)	5	16%
	All types	1	3%
RISK OF BIAS	Low	12	39%
	Medium	14	45%
	High	5	16%

Table 2, Outcomes of studies and type of disability

219

220 Study Design

Twenty-seven of the 31 studies used a retrospective cohort study design, with data either from a single center (n= 2) or from a national or multi-center health insurance and disability database (n=25), while three studies used a prospective cohort design, one from a single center and two from multi-center hospital networks. One study only used a cross-sectional design with a survey performed among patients of a network of cancer centers.

227 **Types of Disabilities**

228 Over a third of the eligible studies focused on people with psychosocial disability 229 (42%, n=13) defined as a previous diagnosis of psychiatric or mental health issues. 230 (38–53) Nine studies (29%, n=9) focused on intellectual, learning disabilities, cognitive impairment or dementia(54-62)Nine other studies (29%, n=9) considered 231 232 all disability in general grouped into subcategories or (e.g. 233 physical/communication/mental/internal organ/others). (19,22-23,63-68) Few studies 234 differentiated by severity of impairment. (19,22,64-69)

235

236 **Types of Cancer**

Seven studies (23%) were about any type of malignancy, while almost a third (29%, n=9) were about breast cancer. There were 4 studies (13%) regarding stomach and colorectal malignancies, 3 (10%) on lung cancer, 2 (6%) on prostate cancer, and 1 study each for testicular, multiple myeloma (MM), acute myeloid leukaemia (AML),

bladder and oral cancer. Finally, one study included patients of breast, prostate andcolorectal cancers (Table 1).

243

244 **Types of outcome**

245 The majority of papers (65%, n=20) included a measure of survival or mortality after 246 cancer diagnosis as primary or secondary outcome. Seventeen studies (55%) 247 included an outcome of access to state-of-the-art cancer treatment, measured as 248 type of treatment received (guidelines consistent according to disease stage) or 249 invasiveness of surgery or treatment delay. Four (13%) studies described access to 250 quality of end-of-life care, defined as access to appropriate pain control and end-of-251 life hospital use for palliative care. One study included access to pain medications as 252 an outcome.

253

254 **Risk of Bias**

Almost half of the 31 studies (45%, n=14) had a medium risk of bias, while 12 studies had a low risk of bias (39%, n=12). Finally, 5 papers were marked as having a high risk of bias. A summary of the assessment of risk of bias, was created with RobVis tool. (38) (Figure 2)

				Risk of bia	s domains		
		D1	D2	D3	D4	D5	Overall
	Afshar	+	+	-	+	+	-
	Chang	+	+	-	+	-	-
	Cuypers a	+	+	-	-	+	-
	Cuypers b	+	+	-	-	+	-
	Fond	-	+	-	+	+	-
	Fried	+	+	+	+	+	+
	Gross	-	-	-	-	-	×
	Gupta	+	+	-	+	-	•
	lezzoni	+	+	-	+	+	+
	Iglay	+	+	-	+	-	-
	Ishikawa	+	+	+	+	-	+
	Kaneshiro	+	-	-	+	-	X
	Kashyap	+	+	+	+	+	+
	Kim	+	+	+	+	+	+
	Kwon a	+	+	+	+	+	+
Study	Kwon b	+	+	+	+	+	+
	Lawrence	+	+	-	-	+	-
	Libert	-	+	+	+	-	-
	Mahabaleshwarkar	+	+	-	+	-	-
	Martin	+	+	+	-	-	-
	Park	+	+	-	+	+	+
	Robb	+	-	-	+	-	
	Sathianaten	-	+	-	+	+	-
	Sato	-	-	-	-	-	X
	Segerlantz a	+	+	+	+	+	+
	Segerlantz b	+	+	+	+	+	+
	Shin a	+	+	+	+	+	+
	Shin b	+	+	+	+	+	+
	Shinden	-	-	-	+	-	X
	Tran	+	+	-	+	-	+ 8
	Viprey	-	+	+	-	+	•

259

260 Figure 2. Risk of Bias (in alphabetic order)

261
 262 D1=Selection bias D2=Information bias D3=Misclassification bias; D4=Confounding D5=Missing data;

264 **Outcome Results**

Outcomes are summarized in Table 2. Nineteen studies that included a measure of 265 266 survival or mortality all showed, invariably, a direction of effect towards worse 267 outcomes for PwD; this was often worsened by the degree of severity of 268 disability.(19,22,41,54-55,62) Only one study found no difference in overall survival or 269 disease-free survival between patients with and without disabilities. (49) Among 270 psychosocial disabilities, schizophrenia had generally the worst prognosis. 271 (41,47,51,66,70) In studies that examined survival in cancer patients with all types of 272 disability, there seemed to be far worse outcomes for those with severe disabilities 273 and with intellectual impairment. In one study results showed that patients with 274 schizophrenia had a cancer specific mortality rate 50% higher than patients without 275 disabilities. (50) In another study about bladder cancer, the risk of cancer specific 276 death was 35% higher for patients with severe mental illness compared to people 277 without disabilities. (69)

278 In a large study about gastric cancer patients in South Korea, PwD were more likely 279 not to 280 receive proper staging tests to establish an appropriate treatment plan. Observing 281 subgroups by disability type, the fact of not receiving treatment was more common 282 for people with communication impairment (36.9%) 283 in severe and 31.4% in mild communication disability); the authors concluded that 284 disability itself should not be а 285 contraindication for receiving cancer treatment. (16) Another study about patients 286 with leukaemia described how the treatment rate was lowest in those with major 287 internal organ and communication disabilities; while for patients with major internal

288	organ disabilities it is understandable to have a low treatment rate due to vital
289	functions often lacking functional reserve, communication disabilities are not directly
290	related
291	to vital functions and the decision not to treat was hence not based solely on medical
292	factors. (67)
293	
294	
295	
296	
297	
298	
299	
300	
301	
302	
303	
304	
305	

Table 2, Outcomes of studies and type of disability

r	1		1			1		1		
AUTHOR	TYPE OF DISABILITY	PRIMARY OUTCOME	MEASURE IN PWD	MEASURE IN PEOPLE WITHOUT DISABILITIES	EFFECT MEASURE	SECONDARY OUTCOME	MEASURE IN PWD	MEASURE IN PEOPLE WITHOUT DISABILITIES	EFFECT MEASURE	TREND FOR PWD
Afshar(53)	Intellectual (learning disability)	10-yr survival rate	77.6% (95% CI = 72.2– 83.3%)	89.9% (95% CI = 89.4– 90.3%)	10-yr survival relative rate: 12.3% lower for PwD	5-yr survival rate	84% (95% CI = 79.9–88.4%)	92.2% (95% CI = 91.8– 92.5%)	5-yr survival relative rate: 8.2% lower for PwD	WORSE
Chang(51)	Psychosocial (mental illness)	Access to state-of-the-art treatment	68% received surgery	82% received surgery	Adjusted OR of receiving surgery for PwD = 0.47 (95% CI = 0.34-0.65; P=0.001)	5-yr survival rate	50.50%	68.10%	Adjusted relative risk of death 1.58 higher for PwD (95% CI = 1.30–1.93; P,0.001).	WORSE
Cuypers(56)	Intellectual	Cancer- specific mortality	not mentioned	not mentioned	SMR= 1.48; (95% CI = 1.42-1.54) for PwD	n/a	n/a	n/a	n/a	WORSE
Cuypers(70)	Intellectual	Insurance claims for cancer hospital care	IR = 28.9 per 1000 person/year	IR = 45.3 per 1000 person/year	IRR = 0.64 (95% CI = 0.62-0.66) in PwD	n/a	n/a	n/a	n/a	WORSE
Fond (40)	Psychosocial (Severe psychiatric disease)	End-of-life treatment access	Incidence of palliative in month before death = 81.3%	Incidence of palliative in month before death = 75.2%	more trips to palliative care in last month of life (aOR 1.32, 95%Cl [1.15–1.51], p<0.001) in last month of life in PwD	Overall survival time (days)	886	918	p value = 0.21	NULL for mortality, WORSE for end-of-life treatment
Fried(41)	Psychosocial (Severe mental illness)	Cancer- specific 5-yr mortality	not mentioned	not mentioned	HR = 1.39 (95% Cl: 1.04-1.84) for PwD	Access to state-of-the-art treatment	12.8% received surgery	21.8% received surgery	OR = 0.66 (95% CI: 0.49-0.89) for PwD of receiving surgery	WORSE

Gross(63)	Any	Screening results	not mentioned	not mentioned	PwD less often diagnosed for cancer through a mammograph y screening (OR for patients with physical impairment = 0.70; p < 0.05; OR for Sensory Impairment = 0.58; p < 0.05) than patients without disability.	Invasiveness of treatment	not mentioned	not mentioned	PwD less likely to receive breast conserving treatment (OR 0.58; p < 0.05) and more likely to have a mastectomy without reconstruction (OR = 1.96; p < 0.05) than those without disabilities	WORSE
Gupta(71)	Cognitive (Dementia)	Stage at diagnosis	8.4% diagnosed on autopsy or death certificate	1.9% diagnosed on autopsy or death certificate	aOR = 2.31 (95% Cl 1.79–3.00) for PwD to have colon cancer reported only after death (i.e., from autopsy or death certificate)	Access to state-of-the-art treatment	not mentioned	not mentioned	aOR =0.43 (95% CI 0.33-0.70) for PwD to receive surgery; aOR =0.21 (95% CI 0.13-0.36) for PwD to to receive adjuvant chemo	WORSE
lezzoni(62)	Any	Cancer- specific mortality	not mentioned	not mentioned	HR=1.37 (95% Cl, 1.24 -1.51) of cancer specific mortality for PwD	Access to state-of-the-art treatment	68.5% received surgery	82.2% received surgery	aRR 0.84 (95% CI 0.79- 0.89) for PwD to receive surgery	WORSE
Iglay(43)	Psychosocial (Mental illness)	Treatment delay	8.60%	8.70%	aRR 1.36 (95% CI 1.06, 1.74) for PwD subgroup with severe mental illness of initial treatment delay at 60 days relative to controls	Diagnosis delay	34.90%	34.80%	aRR 1.11 (95% CI 1.00, 1.23) for PwD subgroup with comorbid anxiety and depression relative to controls	WORSE

Ishikawa(42)	Psychosocial (Schizophreni a)	Overall in- hospital mortality	4.20%	1.80%	OR = 1.35; (95% CI 1.04– 1.75, P= 0.026) for pwd	Stage at diagnosis and access to state-of-the-art treatment	33.9% stage IV; 56.5% surgery	18.1% stage IV; 70.2% surgery	RR 1.86 (95% CI 1.72–2.00; P<0.001) of higher stage at diagnosis and OR = 0.77 (95% CI 0.69–0.85, P=0.001) for access to surgical or endoscopic treatment for PwD	WORSE
Kaneshiro(44)	Psychosocial (Schizophreni a)	Incidence of invasive surgery	84.3% mastectomy	63.2% mastectomy	(P = 0.002)	Access to state-of-the-art treatment	56% received radiotherapy	75% received radiotherapy	(P = 0.078).	WORSE
Kashyap(45)	Psychosocial (Mental illness)	End of life Emergency Department use	15.6% with access to ED in last 30 days of life	13.3% with access to ED in last 30 days of life	p < 0.01	Impact of outpatient mental health treatment in mental illness	not mentioned	not mentioned	aOR 0.82 (95% confidence interval 0.78– 0.87) for mental health patients on outpatient mental health treatment to have multiple end-of-life ED visits	WORSE
Kim(22)	Any	Mortality	125.2 per 1000	104.3 per 1000	aHR=1.18 (95% CI: 1.14–1.21) for PWD and aHR = 1.62 (95% CI: 1.56–1.69) for severe disability group	Mortality in patients who received surgery	not mentioned	not mentioned	aHR 1.21 (95% CI: 1.16–1.27), even higher in severe disability group (aHR 1.69, 95% CI: 1.57–1.81),	WORSE
Kwon(19)	Any	Median overall survival	36.8 months	51.2 months	p < 0.001	Access to state-of-the-art treatment	37.5% received transplant	43.7% received transplant	p=0.072	WORSE
Kwon(68)	Any	Median overall survival	10.8 months	17.1 months	p=0.02	Access to state-of-the-art treatment	chemo 71.2% vs 77.1%, P = .0031, and transplant 17.5%	chemo 77.1%; transplant 26.9%	p = 0.0031 and p=0.002	WORSE

Lawrence(67)	Psychosocial (Severe mental illness)	All-cause and cancer- specific mortality	not mentioned	not mentioned	all-cause mortality HR=1.36; (95% CI 1.18, 1.57) and cancer- specific mortality HR=1.21 (95% CI 1.03, 1.44) for women with SMI compared to controls	10-year overall survival	73.10%	78.30%	not mentioned	WORSE
Libert(61)	Cognitive	Overall mortality	12.3% at 2 years	2% at 2 years	$\begin{array}{rcl} HR &= & 6.13 \\ (95\% & CI &= \\ 2.07-18.09; \ p \\ = & 0.001) \ for \\ people & with \\ cognitive \\ impairment; \\ HR &= & 3.06; \\ (95\% & CI &= \\ 1.31-7.11, \\ p=0.009) \ for \\ people & with \\ loss & of \\ instrumental \\ autonomy \end{array}$	n/a	n/a	n/a	n/a	WORSE
Mahabaleshw arkar(47)	Psychosocial (mental illness)	Access to state-of-the-art treatment	not mentioned	not mentioned	aOR= 0.79 (95% CI= 0.65–0.97) of receiving guideline- consistent breast cancer treatment for PwD	Healthcare utilization	not mentioned	not mentioned	aIRR= 0.92 (95% CI = 0.89-0.94) for breast-cancer related outpatient visits; aIRR = 0.84 (95% CI = 0.71- 0.99) for breast- cancer related ER visits for PwD	WORSE

Martin(54)	Cognitive	Overall mortality	not mentioned	not mentioned	HR 1.39 (95% CI =1.09, 1.78, p>0.01) for PwD	Access to state-of-the-art treatment	22.3% with mild, 35.6% with moderate and 51.8% with severe cognitive impairment received primary endocrine therapy (NOT state of the art)	12.4% women with normal cognition received PET	p <0.001	WORSE
Park(66)	Any	Long-term all- cause mortality of 5- year cancer survivors	not mentioned	not mentioned	Male PwD HR = 1.48 (95% Cl 1.33–1.66) and female PwD HR= 1.53 (95% Cl, 1.28–1.83) compared with controls	Short-term (<5 years) all- cause mortality	not mentioned	not mentioned	male with impaired communicatio n HR= 1.24 (95% CI, 1.07–1.44), female with internal organ disability HR, 2.20 (95% CI, 1.42–3.42)	WORSE
Robb(57)	Cognitive	Median overall survival	23.0 months (0.2–140.7 months)	72.6 months for controls (0.9–135.5 months)	p < 0.001	n/a	n/a	n/a	n/a	WORSE
Sathianathen(69)	Psychosocial (Mental illness)	Access to state-of-the-art treatment	not mentioned	not mentioned	OR 0.55 (95% CI 0.37– 0.81) for patients with severe mental illness and OR 0.71 (95%CI 0.58– 0.88) for those with depression of receiving curative treatment.	Cancer- specific mortality	not mentioned	not mentioned	severe mental illness patients had HR 1.35 (95% Cl1.14– 1.61) in both the NMIBC (HR 1.48, 95% Cl 115–1.92) and MIBC (HR1.37, 95% Cl 1.10–1.72) subgroups, compared with controls	WORSE
Sato(64)	Any	Access to state-of-the-art treatment	not mentioned	not mentioned	difference not significant	n/a	n/a	n/a	n/a	NULL

Segerlantz(59)	Intellectual	Pain control prescription	36%	60%	RR 0.61 (95% CI 0.54-0.69) for PwD to have prescription of COX inhibitors, RR 0.63 (95% CI 0.53-0.73) for weak opioids	Prescription of other drugs	36% on antidepressant s; 47% on anxiolytics	17% on antidepressant s; 16% on anxiolytics	RR 2.09 (95% Cl 1.74–2.51) for PwD to be prescribed antidepressant s: RR 2.84 (2.39–3.38) for PwD to be prescribed anxiolytics	WORSE
Segerlantz(58)	Intellectual	Healthcare utilization	1.5 visits per person in final year of life	1.75 visits per person in final year of life	RR 0.90 (95% CI 0.87–0.93) for PwD to be less likely than controls to have >1 visit in specialist inpatient care during last year of life;	Quality of end- of-life care	31% accessed advanced hospital care	55% accessed advanced hospital care	RR 0.57 (95%Cl 0.51– 0.64) for PwD to have access to advanced hospital care	WORSE
Shin(68)	Any	Overall mortality	531.2 per 1000	463.1 per 1000	aHR 1.08, (95% CI: 1.06–1.11) for PwD, and subgroup with severe disability HR =1.20 (95% CI: 1.16–1.24)	Access to state-of-the-art treatment	19.8% surgery; 42.3% chemo; 26.4% radiation	21.9% surgery; 46.1 chemo; 27.6% radiation	aOR Surgery= 0.82, (95% Cl 0.77-0.86), aOR chemo =0.80, (95% Cl: 0.77- 0.84), aOR radiotherapy =0.92 (95% Cl: 0.88-0.96) for PwD	WORSE
Shin(65)	Any	Access to state-of-the-art treatment	Surgery 33.1% ; ADT 57.9%	Surgery 38.6%; ADT 55%	Surgery aOR=0.79, (95% CI 0.74- 0.84); ADT aOR =1.10 (95% CI1.04- 1.16) for PwD. For severe disability, surgery aOR= 0.60 (95% CI, 0.54-0.67), ADT aOR=1.29 (95% CI, 1.18- 1.42)	Overall mortality and cancer- specific mortality	57.3 per 1000; 26.7 per 1000	43.7 per 1000; 21.7 per 1000	Overall mortality aHR, 1.20 (95% CI, 1.15-1-25) for PwD; with severe disability aHR 1.47 (95% CI 1.37-1.57). Cancer- specific mortality aHR 1.11 for pwd (1.04-1.18), but no difference	WORSE

									when PwD had same access to surgery.		
Shinden(49)	Psychosocial (Mental illness)	Access to state-of-the-art treatment	total mastectomy 78%, postoperative adjuvant chemo 0%, radiation 2%	total mastectomy: 59%; postoperative adjuvant chemo 19%; radiation 18%	p <0.05 for all the mentioned outcomes	Overall survival	not mentioned	not mentioned	no difference	NULL mortality, WORSE treatment	for for
Tran(50)	Psychosocial (Schizophreni a)	Overall mortality and All-cancer- mortality	not mentioned	not mentioned	4-fold higher all-cause mortality for schizophrenia. Cancer SMR = 1.5 (95% CI: 1.2-1.9).	Mortality by cancer type	not mentioned	not mentioned	Male PwD and lung SMR = 2.2 (95% CI, 1.6-3.3); female PwD and breast SMR = 2.8 (95% CI, 1.6- 4.9) compared to controls	WORSE	
Viprey(46)	Psychosocial (Schizophreni a)	Access to state-of-the-art treatment	early palliative care: 77%; end-of-life chemo: 10%; end of life surgery: 17%	early palliative care: 72%; end-of-life chemo: 15%; end of life surgery: 20%	aOR for early palliative care= 1.27 (95% Cl=1.03;1.56; p=0.04), aOR for end-of-life chemo=0.53 (0.41-0.70, p<0.0001), aOR end-of- life surgery =0.73 (0.59;0.90, p<0.01) for PwD.	Quality of end- of-life care	Hospitalization in acute care unit the month before death 33%; median length of last hospital stay 13 days; deaths in the ICU/ED 10%	Hospitalization in acute care unit the month before death 24%; median length of last hospital stay 10 days; deaths in the ICU/ED 11%	aOR for hospitalization in acute care unit the month before death = 1.41 (95% CI=1.18;1.67; p<0.001); longer length of last hospital stay (Beta=1.22, SD=0.05; p<0.0001); aOR for deaths in the ICU/ED = 0.74	WORSE	

			(95% CI = 0.56;0.97; p = 0.04) for PwD.	

306

307 LEGEND OF ABBREVIATIONS for Table2:

308 yr = year; CI = Confidence Interval; OR = Odds Ratio; SMR = Standardized Mortality Ratio; IR = Incidence Rate; IRR = Incidence Rate Ratio; aOR = adjusted Odds Ratio; HR = Hazard Ratio; PWD

309 = PwD; aRR = adjusted Risk Ratio; ED = Emergency Department; aHR = adjusted Hazard Ratio; SMI = Severe Mental Illness; aIRR = adjusted Incidence Rate Ratio; PET = Primary Endocrine

310 Therapy; NMIBC = non-muscle invasive bladder cancer; MIBC = muscle invasive bladder cancer; COX = cyclooxygenase; RR = Relative Risk; ADT = Androgen Deprivation Therapy; ICU =

311 Intensive Care Unit

There were 16 studies showing lower chance in receiving state-of-the-art cancer treatment for PwD, and only one study with high risk of bias showed no difference,

but data about gender and degree of disability was missing. (64)

316 The studies showed that cancer treatment was suboptimal for PwD in many ways, 317 and in particular that they had a lower likelihood of undergoing guideline-consistent 318 surgery when indicated. (22,23,48,52,61,63,66,70) Several studies showed that when 319 PwD were correctly treated with guideline-consistent surgery, their mortality was 320 similar or only slightly higher than controls. (62,66)PwD were also more likely to face 321 diagnosis and treatment delays - but not when access to screening was optimal, 322 underlining the importance of good screening access. (22,42,43,56,57,71) PwD 323 were also less likely to receive curative-intent transplants for blood cancers, and 324 more likely to receive inappropriate radical mastectomy instead of guideline-325 consistent minimally invasive procedures for breast cancer (19,44,63,67)

326 As for end-of-life and palliative care, 4 studies showed a direction of effect towards 327 worse outcomes for PwD (40,45,46,58). One of this studies, with low risk of bias, 328 showed an association between receiving outpatient treatment from a mental health 329 professional and having less end-of-life ED visits, suggesting the importance of 330 access to mental health services to improve end-of-life care. (45) One study showed 331 an association between disability and worse access to prescriptions for pain 332 treatment during cancer care, a situation likely to severely compromise quality of life. 333 (59) Finally, a study reported that patients over age 55 with intellectual disability were 334 more likely than controls to have worse access to specialist care in the last year of 335 life. (58)

medRxiv preprint doi: https://doi.org/10.1101/2023.04.18.23288733; this version posted July 31, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.

336 Regarding other factors contributing to worse outcomes, one study showed an 337 association between worse access to screening programs (for breast, colon and 338 cervix cancers) and higher cancer specific mortality, underlining the inequality in 339 screening practices. (56) Two other studies highlighted an association between 340 barriers to screening and worse outcomes for gastric and breast cancer in PwD. 341 (22,44) Two studies detected even worse disparities in access to state-of-the-art 342 treatment or end-of-life care related to ethnicity and age, with young disabled non-343 white men having the worst outcomes. (45, 62) One study of people with intellectual 344 disabilities with any type of cancer suggested worse underdiagnosis for older 345 females, while another focusing on breast cancer detected an association between 346 physical disability and inappropriate invasiveness of treatment. (55, 63) In a study of 347 non-small cell lung cancer patients, those with respiratory or nervous system 348 disabilities had the lowest chance of receiving guideline-appropriate surgery, while 349 another paper on lung cancer recorded the worst access to treatment among people 350 with communication or neurologic disabilities. (23, 62) A study about stomach cancer 351 and patients with all kinds of disabilities also found an association between worse 352 outcomes and severe intellectual impairment. (22)

Finally, three studies showed an association between worse outcomes of treatment
access and poverty among people with cancer. (19, 46, 68)

355

356 **Discussion**

357 In our review, compared to people without disabilities, PwD were found to have 358 worse survival, higher overall and cancer-specific mortality, loss of chance for

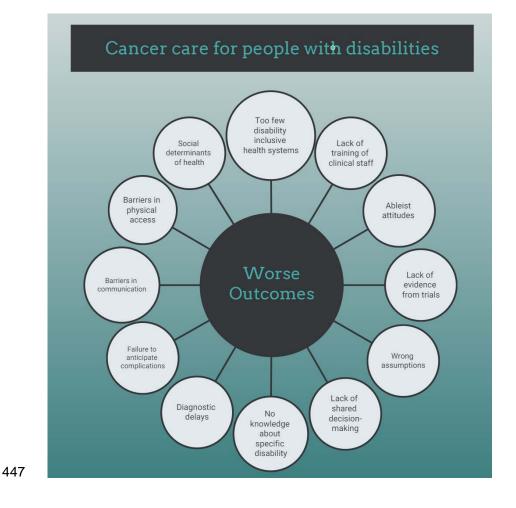
359 access to state-of-the-art care or curative-intent therapies, treatment delays, 360 undertreatment or excessively invasive treatment, worse access to in-hospital services, less specialist healthcare utilization, more difficult access to pain 361 362 medications and inadequate end-of-life quality of care. Only one eligible study found 363 no difference in overall survival or disease-free survival between patients with and 364 without disabilities; it was a small paper with a high risk of bias, with a cohort 365 including only operable breast cancer in a small number of patients, and it still 366 showed an association between disability and excessively invasive breast surgery 367 without any clear cancer-related clinical reason. Furthermore, the incidence of 368 disability in its retrospective cohort was inexplicably only half of the known national 369 incidence, suggesting severe misclassification bias. (49)These finding suggest that 370 differences in frequency of appropriate treatment appear to explain the higher 371 cancer-specific mortality for this vulnerable population, with higher mortality likely 372 due to loss of chance and unequal clinical care. Even if sometimes treatment 373 decisions for PwD can be clinically complex, such as the above-mentioned case of cognitive impairment with legal consent or non-compliance issues, or when 374 375 confronted with a disability-related shortened life expectancy or frailty for some 376 syndromes, there is no plausible medical justification for such a wide disparity 377 compared to patients without disabilities, and these results raise severe concerns 378 about equality in cancer care.(25-26,70-74)

The results of this study are consistent with those of other recent literature reviews, showing that PwD experience inequities at several points throughout the cancer care pathway. (12,24,26,73-74) Screening disparities have been known and documented for years: they can vary by disability type, severity, healthcare offer and social or demographic situations, with some differences across countries, but globally there is

a largely similar trend of major barriers to screening for people with disability,
showing a clear need to improve the inclusiveness of these early-diagnosis
services.(12, 71-75)

387 Providing equitable cancer care has to start early in the cancer clinical pathway, 388 because delays in receiving a diagnosis tend to lead to late access to treatment and 389 worse outcomes.(70-74) A frequently observed issue is that new signs and 390 symptoms tend to be attributed to often to the underlying disability, a clinical mistake 391 called "diagnostic overshadowing". (72-76) A recent scoping review about cancer 392 outcomes in adults with intellectual and developmental disabilities has described 393 disparities at every step of the way, from screening, to staging, to treatment and 394 survival outcomes, recognizing how these experiences do not originate simply from a 395 gap in early diagnosis, but from larger structural issues that ultimately hinders guality 396 of the entire cancer care pathway. (74,77) Another review of cancer treatments for 397 people with intellectual disabilities highlighted possible themes that might interfere 398 with treatment, such as genetic syndrome frailty that might render certain drug 399 treatments too dangerous, the issue of behavioral non-compliance in a subgroup of 400 patients, and problems related to legal capacity and obtainment of informed consent. 401 Still, these three factors should not represent an insurmountable barrier because 402 with appropriate arrangements (e.g. pharmacology consults, procedural sedation, 403 legal assistance) it should still be possible to offer guideline-consistent treatment to 404 With physical disabilities clinical decisions can sometimes be patients.(25-26) 405 objectively more difficult than in people without disabilities, because of concerns 406 about baseline performance status or competing health risks due to invasive or toxic 407 treatments that might result in further dramatic loss of function (e.g. possible loss of 408 postoperative upper limb function after breast surgery in patients with previous spinal

409 cord injury and lower limb paralysis); this has been described as a compelling reason 410 to move towards better cooperation between cancer care clinicians and disability 411 specialists who have been in charge of the patient well before their oncology 412 episode, and also as one of the fundamental facts that make shared decision making 413 with patients (or sometimes their families or caregivers) of the utmost 414 importance.(12)


415 This clear evidence of inequities emphasizes the very urgent need for better cancer 416 care for PwD. Furthermore, disparity in healthcare for PwD is not unique to oncology, 417 as research about the recent Covid-19 pandemic has clearly proven. (77-82) During 418 the pandemic, PwD have died in disproportionate numbers – almost three times as 419 much globally than people without disabilities - and have been excluded from the 420 decision-making process, because their needs have been ignored; they have ended 421 up facing an increasing amount of psychological distress, lack of social support, 422 extreme isolation, food insecurity, disparities in health care access and even 423 discrimination at work. In many cases, government response has compromised the 424 human rights of disabled people, having exposed and magnified existing structural 425 failings and inequalities.(80-85)

Recently, the second report of the Missing Billion Initiative has called for reimagining health systems with a vision of inclusive health informed by diverse perspectives of PwD, who are still facing worse health outcomes across SDG3 indicators (Sustainable Development Goal 3 by the WHO, i.e. ensure healthy lives and promote well-being for all at all ages), globally and with all sort of impairment types. (84) The first Missing Billion report had highlighted a substantial life expectancy gap of 10-20 years for PwD, with all-cause mortality rates

433 approximately twice as high as those of people without disabilities. (83) Closing this 434 gap is now a priority, but it requires long-term investments to design from the start health systems that expect, accept and connect PwD, with sufficient earmarked 435 436 funds, dedicated leadership and clear governance based on data and evidence 437 disaggregated by disability. Ideally service delivery should aim at affordability, 438 autonomy of patients, accessibility, specific workforce skillsets and availability of 439 rehabilitation services. (82-86) The multiple barriers experienced by PwD during 440 their cancer care (Figure 3) are hence a reflection of a broader process of 441 discrimination and disadvantage, mirrored in structural failings of current healthcare 442 systems, within networks of intersecting factors that ultimately influence cancer 443 outcomes. (24, 82-87)

444

445 Figure 3: Barriers experienced by PwD during cancer care

448 Healthcare workers need to receive evidence-based and appropriate training about 449 disabilities, directly involving PwD and using a monitoring system to measure cultural 450 progress and outcome improvement. This could help foster a change to move away 451 from the ableist attitudes that are too often still observed, contributing to wrong 452 assumptions and subsequent mistakes of diagnostic overshadowing or failure to 453 anticipate specific complications (12,75,86-88). In a very recent qualitative study from 454 the USA, interviewed physicians, mostly middle-aged white males, felt inadequately 455 reimbursed for accommodations required by the 1990 Americans with Disabilities 456 Act; according to some of these doctors, these concerns simply led them to 457 discharge patients with disabilities. (86) Many physicians openly spoke about the 458 lack of accessibility in their clinics without any plans to improve it, and several

459 demonstrated a complete lack of disability knowledge about how to manage very 460 basic issues – even stating that they were regularly sending patients to a zoo, cattle 461 processing plant or supermarket to obtain a weight if a patient was in a wheelchair 462 and unable to stand; several doctors admitted that they rarely spoke to these 463 patients, regardless of the patients' ability to communicate, and that information was 464 almost exclusively obtained from the caregiver. This confirms findings from previous 465 qualitative research, that had described a lack of skills by healthcare workers to feel 466 empathy for the embodied experience of living with a disability, with an obstinate 467 resistance to adapting their habitual practice to these patients. (10)

468 The importance of inclusive clinical trials to close the evidence gap about what works 469 to improve cancer care for PwD cannot be overemphasized (86-90). There is still too 470 little evidence about how to treat cancer in the population with disabilities, which is 471 very diverse and can have widely different therapeutic needs (hence existing 472 services must be offered in a flexible, respectful, inclusive and accessible way to be 473 relevant for this patient population). Thus it is of the utmost importance to include 474 PwD in clinical trials in oncology - both for curative-intent interventions and for 475 palliative treatments; yet, historically they have been left out of studies, due to many 476 factors such as ableist prejudice, or multiple barriers such as accessibility of 477 research facilities and access to transportation, or lack of caregivers' engagement. 478 (87-92) Unfortunately, in clinical trials pre-existing conditions are often excluded, 479 even if the conditions have little bearing on the treatment being tested or the 480 outcome of the trial. Excluding disabled individuals from a study can result in a study 481 population that does not even represent the general population, since disability often 482 correlates with other inequalities (such as poverty and unemployment). The 483 importance of targeting the recruitment of disabled individuals into clinical trials, as

484 well as considering the unique barriers and motivations of this population, needs to 485 be highlighted. A person with a disability may have difficulty traveling to a trial site; 486 moreover, healthcare organizations should consider their audiences' digital literacy 487 and the accessibility of their communications. Funds should be allocated to improve 488 healthcare communication, adapting multiple formats, using captions and alt-text or 489 pictorial representations of concepts as appropriate for the specific context. In 490 addition, disabled individuals appear to be underrepresented as investigators in 491 scientific research. (89-93) Despite 19% of the UK's general population identifying as 492 disabled, only 4% of academic, research, and teaching staff do. Even if 25% of 493 American adults live with a disability, in 2020 only 4% of US STEM PhDs were 494 awarded to people with impaired hearing or vision, and just 1% to people with a 495 mobility limitation. More disability-confident schemes and unconscious bias training 496 could at least partially mitigate hiring discrimination, creating an academic workforce 497 that better reflects the community in which it is based.(90-94) Recent evidence-498 based recommendations to promote inclusion in clinical trials include improving 499 culture and sensitivity of staff through continuous education, receiving ongoing 500 feedback from a community advisory panel during studies and increasing staff 501 diversity to make sure underprivileged groups are represented. (91-94)

Physicians and PwD should be able to collaborate along care pathways with shareddecision making, an approach based not only on clinical technical advice but on the life experience of patients, their caregivers and families, according to the principle of "Nothing About Us Without Us".(12) In the clinical setting, barriers in physical access should be removed to avoid unacceptable delays in diagnosis and treatment.(10, 91-94) Barriers in communication should be eliminated at several levels, from overcoming communication obstacles (not only for the hearing or visually impaired

509 patients, but also with special-needs assistance for intellectual disability), to 510 improving education of patients, clinicians and caregivers about cancer and the 511 importance of screening, to training healthcare workers about the emotional and 512 physical needs of PwD, enhancing cooperation with other specialists caring for them, 513 in cross-functional teams, to anticipate and possibly reduce the impact of 514 complications, with the goal of a patient-centred pathway. (93-94) Good 515 communication is the foundation of achieving quality patient-centered care: 516 assumptions about preferences can pose a risk like inaccurate information leading to 517 medical errors and misdiagnoses. A recent gualitative study in the USA has shown 518 that, in spite of healthcare workers trying their best, there are still many unsolved 519 issues at this level and even many situations where physicians' preferences go 520 against patients' wishes. (91-94)

521 The strengths of this study include having followed PRISMA and ICM50 guidelines 522 for systematic reviews; furthermore, the search strategy was based on a list of 523 proven disability-specific terms and applied to the five largest medical databases 524 analysing a twenty-year span of publications. This work has several limitations: 525 firstly, the search strategy, limited to five databases and to English language only, 526 might not be fully comprehensive; we did not include studies published in non-527 English languages because of resource challenges with respect to costs, time, and 528 expertise in non-English languages, but their inclusion would have likely increased 529 generalizability and reduced the overall risk of bias. Furthermore all the eligible 530 papers were from high-income countries, limiting the generalizability of the results, 531 even if there is no reason why the situation should be very different in low and 532 middle-income countries., Qualitative papers and grey literature were not included in 533 the search strategy, hence the views and opinions of PwD about their cancer care

534 were not investigated. Study selection was performed by only one reviewer, which 535 implies a lack of independent screening. We also did not perform tests to measure 536 publication bias due to the high heterogeneity of the eligible studies; although 537 methods exist for simultaneous assessment of heterogeneity and publication bias, 538 and potential differential publication bias, they require very large meta-analysis to 539 reliably disentangle their effects. (39) Moreover, only one reviewer evaluated papers 540 for risk of bias. Finally, the findings were very diverse hence it was not possible to 541 conduct a meta-analysis, and approximately 15% of the studies had a high risk of 542 bias. Almost half (45%) of the eligible studies had a medium risk of bias, mostly due 543 to possible misclassification bias for inclusion of PwD based on disability records 544 (that have a tendency to miss mild cases) CIT or missing data like details about 545 cancer treatment goals, behavioral factors or date of diagnosis. Approximately 15% 546 of the studies had a high risk of bias due to factors such as having a very small 547 sample size, a short follow-up, low data quality, a biased cohort or using a self-548 reporting survey. (44,49,57,63,64) There are still gaps in knowledge about quality of 549 cancer care for people with disability that remain unanswered based on our findings, 550 such as whether certain subgroups of disabilities or cancer types experience more 551 significant disparities, or how other social determinants of health might come into 552 play (as many PwD are caught in a cycle of poverty and deprivation); more data is 553 needed on these topics to allow disaggregated analyses. Further research is also 554 needed to evaluate the effectiveness of specific training of healthcare workers on 555 quality of care for these patients.

556 In conclusion, PwD often experience severe disparities in cancer care compared to 557 people without disabilities; physical and cultural barriers at different levels must be 558 eliminated to ensure they receive equitable care. There is an urgent need for a

- robust health policy effort by governments, reimagining health systems with a vision
- of inclusive health and a sustained commitment, building on decades of progress on
- 561 disability rights and engaging the participation of PwD at all levels.

562

563 Acknowledgments

I.T. would like to thank Danae Rodriguez Gatta, for assistance with disability search
terms, and Dr. Meena Cherian, for many fruitful discussions about health systems
and development goals.

567

568 **References**

570	1.	World Health Organisation. Cancer Fact Sheet [Internet]. 2022 [cited 2022 Apr 13].
571		Available from: https://www.who.int/news-room/fact-sheets/detail/cancer
572	2.	WHO, International Agency for Research on Cancer. Globocan 2020 - Incidence and
573		mortality statistics (all cancers excl. non-melanoma skin cancer). 2020.
574	3.	WHO. Cancer - Screening and early detection [Internet]. [cited 2022 Oct 30].
575		Available from: https://www.who.int/europe/news-room/fact-sheets/item/cancer-
576		screening-and-early-detection-of-cancer
577	4.	Olusola P, Banerjee HN, Philley J V., Dasgupta S. Human Papilloma Virus-
578		Associated Cervical Cancer and Health Disparities. Cells. 2019 Jun 21;8(6):622.

579 580 581	5.	Manz CR, Odayar VS, Schrag D. Disparities in cancer prevalence, incidence, and mortality for incarcerated and formerly incarcerated patients: A scoping review. Cancer Med. 2021 Oct 1;10(20):7277–88.
582 583 584	6.	Williams AD, Buckley M, Ciocca RM, Sabol JL, Larson SL, Carp NZ. Racial and socioeconomic disparities in breast cancer diagnosis and mortality in Pennsylvania. Breast Cancer Res Treat. 2022 Feb 1;192(1):191–200.
585 586	7.	Lee RJ, Madan RA, Kim J, Posadas EM, Yu EY. Disparities in Cancer Care and the Asian American Population. Oncologist. 2021 Jun 1;26(6):453–60.
587 588 589	8.	Davies A, Gurney J, Garvey G, Diaz A, Segelov E. Cancer care disparities among Australian and Aotearoa New Zealand Indigenous peoples. Curr Opin Support Palliat Care. 2021 Sep 1;15(3):162–8.
590 591 592 593	9.	Ellis L, Canchola AJ, Spiegel D, Ladabaum U, Haile R, Gomez SL. Racial and Ethnic Disparities in Cancer Survival: The Contribution of Tumor, Sociodemographic, Institutional, and Neighborhood Characteristics. J Clin Oncol. 2018 Jan 1;36(1):25– 33.
594 595 596	10.	Sakellariou D, Anstey S, Gaze S, Girt E, Kelly D, Moore B, et al. Barriers to accessing cancer services for adults with physical disabilities in England and Wales: an interview-based study. BMJ Open. 2019;9(6):e027555.
597 598 599	11.	WHO. Global report on health equity for persons with disabilities [Internet]. World Health Organization., editor. WHO; 2021 [cited 2023 Feb 19]. Available from: https://www.who.int/publications/i/item/9789240063600
600 601	12.	lezzoni LI. Cancer detection, diagnosis, and treatment for adults with disabilities. Lancet Oncol. 2022 Apr 1;23(4):e164–73.
602 603 604	13.	Steele CB, Townsend JS, Courtney-Long EA, Young M. Prevalence of Cancer Screening Among Adults With Disabilities, United States, 2013. Prev Chronic Dis. 2017 Jan;14:E09.
605 606 607	14.	Horner-Johnson W, Dobbertin K, lezzoni LI. Disparities in receipt of breast and cervical cancer screening for rural women age 18 to 64 with disabilities. Womens Health Issues. 2015;25(3):246–53.

608 609 610	15.	Abrams MT, Myers CS, Feldman SM, Boddie-Willis C, Park J, McMahon RP, et al. Cervical cancer screening and acute care visits among Medicaid enrollees with mental and substance use disorders. Psychiatr Serv. 2012 Aug 1;63(8):815–22.
611 612 613	16.	Kim YJ, Shin DW, Kim HW, Jung JH, Han K, Cho IY, et al. Disparities in gastric cancer screening among people with disabilities: a national registry-linkage study in South Korea. Gastric Cancer. 2020 May 1;23(3):497–509.
614 615 616	17.	Horner-Johnson W, Dobbertin K, Andresen EM, Iezzoni LI. Breast and cervical cancer screening disparities associated with disability severity. Women's Health Issues. 2014 Jan;24(1).
617 618 619	18.	Courtney-Long E, Armour B, Frammartino B, Miller J. Factors associated with self- reported mammography use for women with and women without a disability. J Womens Health (Larchmt). 2011 Sep 1;20(9):1279–86.
620 621 622	19.	Kwon J, Kim SY, Yeob KE, Han HS, Lee KH, Shin DW, et al. The Effect of Disability on the Diagnosis and Treatment of Multiple Myeloma in Korea: A National Cohort Study. Cancer Res Treat. 2020 Jan;52(1):1–9.
623 624 625	20.	Bergamo C, Sigel K, Mhango G, Kale M, Wisnivesky JP. Inequalities in lung cancer care of elderly patients with schizophrenia: an observational cohort study. Psychosom Med. 2014;76(3):215–20.
626 627 628	21.	Huang HK, Wang YW, Hsieh JG, Hsieh CJ. Disparity of end-of-life care in cancer patients with and without schizophrenia: A nationwide population-based cohort study. Schizophr Res. 2018;195:434–40.
629 630 631	22.	Kim HW, Shin DW, Yeob KE, Cho IY, Kim SY, Park SM, et al. Disparities in the diagnosis and treatment of gastric cancer in relation to disabilities. Clin Transl Gastroenterol. 2020 Oct 1;11(10):1–12.
632 633 634	23.	Shin DW, Cho JH, Noh JM, Han H, Han K, Park SH, et al. Disparities in the Diagnosis and Treatment of Lung Cancer among People with Disabilities. J Thorac Oncol. 2019 Feb;14(2):163–75.
635 636 637	24.	M S, A A, H OK, J H, S S, C K, et al. A scoping review documenting cancer outcomes and inequities for adults living with intellectual and/or developmental disabilities. Eur J Oncol Nurs. 2021 Oct;54:102011.

638 639 640 641	25.	Andiwijaya FR, Davey C, Bessame K, Ndong A, Kuper H. Disability and Participation in Breast and Cervical Cancer Screening: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health [Internet]. 2022 Aug 1 [cited 2023 Jul 24];19(15). Available from: /pmc/articles/PMC9368105/
642 643 644	26.	Liao CM, Huang WH, Kung PT, Chiu LT, Tsai WC. Comparison of colorectal cancer screening between people with and without disability: a nationwide matched cohort study. [cited 2023 Jul 24]; Available from: https://doi.org/10.1186/s12889-021-11105-z
645 646 647 648	27.	Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ [Internet]. 2021 Mar 29 [cited 2023 Feb 19];372. Available from: https://www.bmj.com/content/372/bmj.n71
649 650	28.	Tosetti I, Kuper H. https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=281506. 2022.
651 652 653 654	29.	International Classification of Functioning, Disability and Health (ICF) [Internet]. [cited 2022 Oct 20]. Available from: https://www.who.int/standards/classifications/international-classification-of-functioning-disability-and-health
655 656 657	30.	Iezzoni LI, Rao SR, Agaronnik ND, El-Jawahri A. Associations between Disability and Breast or Cervical Cancers, Accounting for Screening Disparities. Med Care. 2021 Feb 1;59(2):139–47.
658 659 660	31.	Andresen EM, Peterson-Besse JJ, Krahn GL, Walsh ES, Horner-Johnson W, Iezzoni LI. Pap, mammography, and clinical breast examination screening among women with disabilities: A systematic review. Women's Health Issues. 2013 Jul;23(4).
661 662 663 664	32.	A systematic review of the barriers and facilitators influencing the cancer screening behaviour among people with intellectual disabilities - ScienceDirect [Internet]. [cited 2023 Feb 19]. Available from: https://www.sciencedirect.com/science/article/abs/pii/S1877782121002010
665 666	33.	Connolly J. Barriers to access to cancer screening for people with learning disabilities: a review. The Lancet. 2013 Nov;382:S29.

667 668 669	34.	Andiwijaya FR, Davey C, Bessame K, Ndong A, Kuper H. Disability and Participation in Breast and Cervical Cancer Screening: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health. 2022 Aug 1;19(15).
670 671 672	35.	Chan DNS, Law BMH, Au DWH, So WKW, Fan N. A systematic review of the barriers and facilitators influencing the cancer screening behaviour among people with intellectual disabilities. Cancer Epidemiol. 2022 Feb 1;76:102084.
673 674 675	36.	Steele CB, Townsend JS, Courtney-Long EA, Young M. Prevalence of Cancer Screening Among Adults With Disabilities, United States, 2013. Prev Chronic Dis. 2019;14.
676	37.	Healthcare Improvement Scotland. SIGN 50. 2011;
677 678 679	38.	McGuinness LA, Higgins JPT. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res Synth Methods. 2021 Jan 1;12(1):55–61.
680 681 682	39.	Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L, Moreno SG. Assessing publication bias in meta-analyses in the presence of between-study. Vol. 173, Source: Journal of the Royal Statistical Society. Series A (Statistics in Society). 2010.
683 684 685 686 687	40.	Baumstarck K, Viprey M, Auquier P, Fond G, Pauly V, Duba A, et al. End of life breast cancer care in women with severe mental illnesses. Sci Rep [Internet]. 2021;11(1):10167. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emexa&NEWS=N&A N=635041696
688 689 690 691 692	41.	D.A. F, H. SN, D. G, S. Z, W. H, S.H. G, et al. Impact of serious mental illness on the treatment and mortality of older patients with locoregional high-grade (nonmetastatic) prostate cancer: retrospective cohort analysis of 49 985 SEER-Medicare patients diagnosed between 2006 and 2013. Cancer Med [Internet]. 2019;8(5):2612–22. Available from: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2045-7634
693 694 695 696	42.	H. I, H. Y, H. M, K. F. Differences in cancer stage, treatment and in-hospital mortality between patients with and without schizophrenia: Retrospective matched-pair cohort study. British Journal of Psychiatry [Internet]. 2016;208(3):239–44. Available from: http://bjp.rcpsych.org/content/208/3/239.full-text.pdf+html

697 698 699 700	43.	Iglay K, Santorelli ML, Rhoads GG, Demissie K, Hirshfield KM, Williams JM, et al. Diagnosis and treatment delays among elderly breast cancer patients with pre- existing mental illness. Breast Cancer Res Treat [Internet]. 2017;166(1):267–75. Available from: http://www.wkap.nl/journalhome.htm/0167-6806
701 702 703 704	44.	K. K, M. K, M. T, M. Y, Y. S, M. K, et al. Current Status and Problems of Breast Cancer Treatment with Schizophrenia. Clin Breast Cancer [Internet]. 2022;22(4):e399–406. Available from: http://www.journals.elsevier.com/clinical-breast- cancer
705 706 707 708 709 710 711	45.	M. K, J.P. H, D.T. C, Pollom E.L. AO - Kashyap Daniel T.; ORCID: http://orcid.org/0000-0003-2760-1554 AO - Pollom, Erqi L.; ORCID: http://orcid.org/0000-0003-2908-6293 AO - Harris, Jeremy P.; ORCID: http://orcid.org/0000-0001-7603-0263 MO http://orcid. org/0000 0002 7336 1056 AOC. Impact of mental illness on end-of-life emergency department use in elderly patients with gastrointestinal malignancies. Cancer Med [Internet]. 2021;10(6):2035– 44. Available from: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2045-7634
712 713 714 715	46.	M. V, V. P, S. S, K. B, V. O, PM. L, et al. Palliative and high-intensity end-of-life care in schizophrenia patients with lung cancer: results from a French national population- based study. Eur Arch Psychiatry Clin Neurosci [Internet]. 2021;271(8):1571–8. Available from: https://www.springer.com/journal/406
716 717 718 719	47.	R. M, R. K, B. B, D. WS, Y. Y. Impact of preexisting mental illnesses on receipt of guideline-consistent breast cancer treatment and health care utilization. Popul Health Manag [Internet]. 2015;18(6):449–58. Available from: http://www.liebertonline.com/loi/pop
720 721 722 723	48.	N.J. S, Y. F, S.L. J, I. K, C.J. W, S. V, et al. Disparities in Bladder Cancer Treatment and Survival Amongst Elderly Patients with a Pre-existing Mental Illness. Eur Urol Focus [Internet]. 2020;6(6):1180–7. Available from: http://www.journals.elsevier.com/european-urology-focus
724 725 726	49.	Shinden Y, Kijima Y, Hirata M, Nakajo A, Tanoue K, Arigami T, et al. Clinical characteristics of breast cancer patients with mental disorders. Breast. 2017 Dec;36:39–43.
727 728	50.	Tran E, Rouillon F, Loze JY, Casadebaig F, Philippe A, Vitry F, et al. Cancer mortality in patients with schizophrenia: an 11-year prospective cohort study. Cancer [Internet].

729 730 731		2009;115(15):3555–62. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med7&NEWS=N&AN =19548261
732 733 734	51.	TS. C, SJ. H, YC. S, LF. C, HC. H, MS. L, et al. Disparities in Oral Cancer Survival among Mentally III Patients. PLoS One [Internet]. 2013;8(8):e70883. Available from: http://www.plosone.org/article/fetchObjectAttachment.action
735 736 737 738	52.	W.R. L, M.G. K, A.S. H, M.C. L, X. Z, W. Z, et al. Association between preexisting mental illnesses and mortality among medicaid-insured women diagnosed with breast cancer. Soc Sci Med [Internet]. 2021;270:113643. Available from: http://www.elsevier.com/locate/socscimed
739 740 741 742	53.	Afshar M, O'Neill T, Patel HRH, De-Santis M, Tanner JR, Evison F, et al. Do Learning Disabilities Affect Testicular Cancer Survival: A National Cohort Study Between 2001 and 2015. Eur Urol Oncol [Internet]. 2020;3(6):773–9. Available from: https://www.journals.elsevier.com/european-urology-oncology
743 744 745 746 747 748	54.	C. M, A. S, J. M, M. B, E. H, M. B, et al. Treatment choices for older women with primary operable breast cancer and cognitive impairment: Results from a prospective, multicentre cohort study. J Geriatr Oncol [Internet]. 2021;12(5):705–13. Available from: http://www.elsevier.com/wps/find/journaldescription.cws_home/723463/description#de scription
749 750 751	55.	Cuypers M, Schalk BWM, Boonman AJN, Naaldenberg J, Leusink GL. Cancer-related mortality among people with intellectual disabilities: A nationwide population-based cohort study. Cancer. 2022;128(6):1267–74.
752 753 754 755	56.	Cuypers M, Tobi H, Huijsmans CAA, van Gerwen L, Ten Hove M, van Weel C, et al. Disparities in cancer-related healthcare among people with intellectual disabilities: A population-based cohort study with health insurance claims data. Cancer Med. 2020 Sep;9(18):6888–95.
756 757 758 759 760	57.	Robb C, Boulware D, Extermann M, Overcash J. Patterns of care and survival in cancer patients with cognitive impairment. Crit Rev Oncol Hematol [Internet]. 2010;74(3):218–24. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed11&NEWS=N& AN=50622380

761 762 763	58.	Segerlantz M, Axmon A, Ahlström G. End-of-life care among older cancer patients with intellectual disability in comparison with the general population: a national register study. J Intellect Disabil Res. 2020 May;64(5):317–30.
764 765 766	59.	Segerlantz M, Axmon A, Gagnemo Persson R, Brun E, Ahlström G. Prescription of pain medication among older cancer patients with and without an intellectual disability: a national register study. BMC Cancer. 2019 Nov;19(1):1040.
767 768	60.	S.K. G. Patterns of presentation, diagnosis, and treatment in older patients with colon cancer and comorbid dementia. J Am Geriatr Soc. 2004;52(10):1681–7.
769 770 771 772 773 774	61.	Slachmuylder JL, Libert Y, Dubruille S, Borghgraef C, Merckaert I, Paesmans M, et al. Vulnerabilities in older patients when cancer treatment is initiated: Does a cognitive impairment impact the two-year survival? PLoS One [Internet]. 2016;11(8):e0159734. Available from: http://journals.plos.org/plosone/article/asset?id=10.1371%2Fjournal.pone.0159734.P DF
775 776 777	62.	Iezzoni LI, Ngo LH, Li D, Roetzheim RG, Drews RE, McCarthy EP. Treatment disparities for disabled medicare beneficiaries with stage I non-small cell lung cancer. Arch Phys Med Rehabil. 2008 Apr;89(4):595–601.
778 779 780	63.	Gross SE, Pfaff H, Swora M, Ansmann L, Albert US, Gross-Kunkel A. Health disparities among breast cancer patients with/without disabilities in Germany. Disabil Health J. 2020;13(2).
781 782 783 784	64.	Sato S, Tanimoto A, Yanagimura N, Suzuki C, Takumi Y, Nishiyama A, et al. Multi- institutional survey of cancer disparities in disabled patients in the region of northwestern Japan. Int J Clin Oncol [Internet]. 2021;26(6):1009–14. Available from: http://link.springer.de/link/service/journals/10147/index.htm
785 786 787	65.	Shin DW, Park J, Yeob KE, Yoon SJ, Jang S nang, Kim SY, et al. Disparities in prostate cancer diagnosis, treatment, and survival among men with disabilities: Retrospective cohort study in South Korea. Disabil Health J. 2021 Oct 1;14(4).
788 789 790	66.	Park SM, Son KY, Park JH, Cho B. Disparities in short-term and long-term all-cause mortality among Korean cancer patients with and without preexisting disabilities: a nationwide retrospective cohort study. Support Care Cancer. 2012 May;20(5):963–70.

Kwon J, Kim SY, Yeob KE, Han HS, Lee KH, Shin DW, et al. Differences in diagnosis,
treatment, and survival rate of acute myeloid leukemia with or without disabilities: A
national cohort study in the Republic of Korea. Cancer Med. 2020 Aug 1;9(15):5335–
44.

Shin DW, Cho JH, Noh JM, Han H, Han K, Park SH, et al. Disparities in the Diagnosis
and Treatment of Lung Cancer among People with Disabilities. Journal of Thoracic
Oncology. 2019 Feb 1;14(2):163–75.

69. Sathianathen NJ, Fan Y, Jarosek SL, Konety I, Weight CJ, Vinogradov S, et al.
Disparities in Bladder Cancer Treatment and Survival Amongst Elderly Patients with a
Pre-existing Mental Illness. Eur Urol Focus [Internet]. 2020 Nov;6(6):1180–7.
Available from: http://www.journals.elsevier.com/european-urology-focus

802 70. Cuypers M, Tobi H, Huijsmans CAA, van Gerwen L, ten Hove M, van Weel C, et al.
803 Disparities in cancer-related healthcare among people with intellectual disabilities: A
804 population-based cohort study with health insurance claims data. Cancer Med. 2020
805 Sep 1;9(18):6888–95.

- 806 71. Gupta SK, Lamont EB. Patterns of presentation, diagnosis, and treatment in older
 807 patients with colon cancer and comorbid dementia. J Am Geriatr Soc [Internet].
 808 2004;52(10):1681–7. Available from:
- 809 http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med5&NEWS=N&AN
 810 =15450045
- 811 72. Reeves C, Collingridge D. Improving cancer care for people with disabilities. Lancet
 812 Oncol. 2022 Apr 1;23(4):446–7.
- 813 73. Boonman AJ, Cuypers M, Leusink GL, Naaldenberg J, Bloemendal HJ. Cancer
 814 treatment and decision making in individuals with intellectual disabilities: a scoping
 815 literature review. Lancet Oncol. 2022 Apr;23(4):e174–83.
- Andiwijaya FR, Davey C, Bessame K, Ndong A, Kuper H. Disability and Participation
 in Breast and Cervical Cancer Screening: A Systematic Review and Meta-Analysis.
 Int J Environ Res Public Health. 2022 Aug 1;19(15).
- Shefer G, Henderson C, Howard LM, Murray J, Thornicroft G. Diagnostic
 overshadowing and other challenges involved in the diagnostic process of patients
 with mental illness who present in emergency departments with physical symptoms--a
 qualitative study. PLoS One. 2014 Nov 1;9(11).

823 824 825 826	76.	Stirling M, Anderson A, Ouellette-Kuntz H, Hallet J, Shooshtari S, Kelly C, et al. A scoping review documenting cancer outcomes and inequities for adults living with intellectual and/or developmental disabilities. EUROPEAN JOURNAL OF ONCOLOGY NURSING. 2021;54.
827 828 829 830	77.	Hillgrove T, Blyth J, Kiefel-Johnson F, Pryor W. A synthesis of findings from 'rapid assessments' of disability and the COVID-19 pandemic: Implications for response and disability-inclusive data collection. Int J Environ Res Public Health. 2021 Sep 1;18(18).
831 832	78.	Shakespeare T, Ndagire F, Seketi QE. Triple jeopardy: disabled people and the COVID-19 pandemic. Lancet. 2021 Apr 10;397(10282):1331–3.
833 834 835	79.	Banks LM, Davey C, Shakespeare T, Kuper H. Disability-inclusive responses to COVID-19: Lessons learnt from research on social protection in low- and middle-income countries. World Dev. 2021 Jan 1;137.
836 837 838	80.	Williamson EJ, McDonald HI, Bhaskaran K, Walker AJ, Bacon S, Davy S, et al. Risks of covid-19 hospital admission and death for people with learning disability: population based cohort study using the OpenSAFELY platform. BMJ. 2021 Jul 14;374.
839 840 841 842	81.	Bosworth ML, Ayoubkhani D, Nafilyan V, Foubert J, Glickman M, Davey C, et al. Deaths involving COVID-19 by self-reported disability status during the first two waves of the COVID-19 pandemic in England: a retrospective, population-based cohort study. Lancet Public Health. 2021 Nov 1;6(11):e817–25.
843 844 845	82.	Shakespeare T, Watson N, Brunner R, Cullingworth J, Hameed S, Scherer N, et al. Disabled people in Britain and the impact of the COVID-19 pandemic. Soc Policy Adm. 2022 Jan 1;56(1):103–17.
846 847 848	83.	Danos C, Heydt Hannah Kuper London P, Burbach M, Rotenberg S, Seghers F, Miner E, et al. Reimagining health systems that expect, accept and connect 1 billion people with disabilities. 2022 Oct.
849 850	84.	Kuper, Hannah; Heydt P. The Missing Billion: access to health services for 1 billion people with disabilities. London; 2019.
851 852 853	85.	Iezzoni LI, Rao SR, Ressalam J, Bolcic-Jankovic D, Agaronnik ND, Donelan K, et al. Physicians' perceptions of people with disability and their health care. Health Aff. 2021 Feb 1;40(2):297–306.

854 855 856	86.	Lagu T, Haywood C, Reimold K, DeJong C, Walker Sterling R, Iezzoni LI. 'I Am Not The Doctor For You': Physicians' Attitudes About Caring For People With Disabilities. https://doi.org/101377/hlthaff202200475. 2022 Oct 3;41(10):1387–95.
857 858 859	87.	Edwards DJ, Sakellariou D, Anstey S. Barriers to, and facilitators of, access to cancer services and experiences of cancer care for adults with a physical disability: A mixed methods systematic review. Disabil Health J. 2020 Jan 1;13(1).
860 861 862	88.	Schwartz JK, Unni E. Inclusion of People with Disabilities in Research to Improve Medication Adherence: A Systematic Review. Patient Prefer Adherence. 2021;15:1671.
863 864	89.	Younossi Alexandria, Sanhai W, Shah S, Chang C. Enhancing diversity in clinical trials Deloitte Insights.
865 866 867 868	90.	Meeting report: summary of Day 2 of the 2021 ISMPP European Meeting [Internet]. [cited 2022 Nov 1]. Available from: https://thepublicationplan.com/2021/02/10/meeting-report-summary-of-day-2-of-the- 2021-ismpp-european-meeting/
869 870 871 872	91.	Employing disabled people and people with health conditions - GOV.UK [Internet]. [cited 2022 Nov 1]. Available from: https://www.gov.uk/government/publications/employing-disabled-people-and-people- with-health-conditions/employing-disabled-people-and-people-with-health-conditions
873 874 875 876	92.	Agaronnik N, Campbell EG, Ressalam J, lezzoni LI. Communicating with Patients with Disability: Perspectives of Practicing Physicians. J Gen Intern Med [Internet]. 2019 Jul 15 [cited 2023 Jul 23];34(7):1139. Available from: /pmc/articles/PMC6614249/
877 878 879	93.	Agaronnik ND, El-Jawahri A, Lindvall C, lezzoni LI. Exploring the Process of Cancer Care for Patients With Pre-Existing Mobility Disability. JCO Oncol Pract. 2021 Jan;17(1):e53–61.
880 881 882 883	94.	Marlow NM, Samuels SK, Jo A, Mainous AG. Patient-provider communication quality for persons with disabilities: A cross-sectional analysis of the Health Information National Trends Survey. Disabil Health J. 2019 Oct 1;12(4):732–7.

Cancer care for people with disabilities

2023. The copyright holder for this preprint ense to display the preprint in perpetuity. se .