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Abstract 36 
 37 
Objective: To assess the effects of pharmacologic and/or surgical interventions in monogenic insulin 38 

resistance (IR), stratified by genetic aetiology. 39 

Design: Systematic review. 40 

Data sources: PubMed, MEDLINE and Embase, from 1 January 1987 to 23 June 2021. 41 

Review methods: Studies reporting individual-level effects of pharmacologic and/or surgical 42 

interventions in monogenic IR were eligible. Individual subject data were extracted and duplicate 43 

data removed. Outcomes were analyzed for each affected gene and intervention, and in aggregate 44 

for partial, generalised and all lipodystrophy. 45 

Results: 10 non-randomised experimental studies, 8 case series, and 21 single case reports met 46 

inclusion criteria, all rated as having moderate or serious risk of bias. Metreleptin was associated 47 

with lower triglycerides and hemoglobin A1c in aggregated lipodystrophy (n=111), in partial 48 

lipodystrophy (n=71) and generalised lipodystrophy (n=41)), and in LMNA, PPARG, AGPAT2 or BSCL2 49 

subgroups (n=72,13,21 and 21 respectively). Body Mass Index (BMI) was lower after treatment in 50 

partial and generalised lipodystrophy overall, and in LMNA or BSCL2, but not PPARG or AGPAT2 51 

subgroups. Thiazolidinedione use was associated with improved hemoglobin A1c and triglycerides in 52 

aggregated lipodystrophy (n=13), improved hemoglobin A1c only in the PPARG subgroup (n=5), and 53 

improved triglycerides only in the LMNA subgroup (n=7). In INSR-related IR, use of rhIGF-1, alone or 54 

with IGFBP3, was associated with improved hemoglobin A1c (n=15). The small size or absence of all 55 

other genotype-treatment combinations precluded firm conclusions. 56 

Conclusions: The evidence guiding genotype-specific treatment of monogenic IR is of low to very low 57 

quality. Metreleptin and Thiazolidinediones appear to have beneficial metabolic effects in 58 

lipodystrophy, and rhIGF-1 appears to lower hemoglobin A1c in INSR-related IR. For other 59 

interventions there is insufficient evidence to assess efficacy and risks either in aggregated 60 

lipodystrophy or in genetic subgroups.  There is a pressing need to improve the evidence base for 61 

management of monogenic IR. 62 

63 
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Introduction 64 

Diabetes caused by single gene changes is highly heterogeneous in molecular 65 

aetiopathogenesis. It may be grouped into disorders featuring primary failure of insulin 66 

secretion, and disorders in which insulin resistance (IR), often severe, predates secondary 67 

failure of insulin secretion and diabetes. Monogenic IR is itself heterogeneous, 68 

encompassing primary lipodystrophy syndromes, primary disorders of insulin signalling, and 69 

a group of conditions in which severe IR is part of a more complex developmental syndrome 70 

1
. 71 

Monogenic IR is rare but underdiagnosed. The commonest subgroup is formed by 72 

genetic lipodystrophy syndromes 
2,3

.   Recent analysis of a large clinical care cohort 73 

unselected for metabolic disease suggested a clinical prevalence of lipodystrophy of around 74 

1 in 20,000, with a prevalence of plausible lipodystrophy-causing genetic variants of around 75 

1 in 7,000 
4
. Monogenic IR is important to recognise, because affected patients are at risk 76 

not only of micro- and macrovascular complications of diabetes, but also of complications 77 

such as dyslipidemia, pancreatitis, and steatohepatitis, especially in lipodystrophy 78 

syndromes 
5
.  Non-metabolic complications specific to individual gene defects may also 79 

occur, including hypertrophic cardiomyopathy and other manifestations of soft tissue 80 

overgrowth 
3
. Diabetes is also commonly the sentinel presentation of a multisystem 81 

disorder, and recognition of complex syndromes in a diabetes clinic may trigger definitive 82 

diagnostic testing. 83 

The only therapy licensed specifically for monogenic IR is recombinant human 84 

methionyl leptin (metreleptin), with licensed indications encompassing a subset of patients 85 

with lipodystrophy and inadequate metabolic control 
6,7

. The current license in the USA is 86 
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restricted to generalised lipodystrophy, but in Europe it extends to some patients with 87 

partial lipodystrophy. A significant proportion of the body of evidence considered in 88 

licensing addressed patients ascertained by presence of clinical lipodystrophy, and the role 89 

of genetic stratification in precision treatment of lipodystrophy has not been systematically 90 

addressed. Many other medications and other treatment options are also widely used in 91 

monogenic IR, although not licensed for that specific subgroup. Such use draws on the 92 

evidence base and treatment algorithms developed for type 2 diabetes.  Several forms of 93 

monogenic IR have molecular and/or clinical attributes that suggest potential precision 94 

approaches to treatment.   95 

We sought now to undertake a systematic review of the current evidence guiding 96 

treatment of monogenic IR stratified by genetic aetiology, to assess evidence for differential 97 

responses to currently used therapies, to establish gaps in evidence, and to inform future 98 

studies. This systematic review is written on behalf of the American Diabetes Association 99 

(ADA)/European Association for the Study of Diabetes (EASD) Precision Medicine in Diabetes 100 

Initiative (PMDI) as part of a comprehensive evidence evaluation in support of the 101 

2
nd

 International Consensus Report on Precision Diabetes Medicine [Tobias et al, Nat Med]. 102 

The PMDI was established in 2018 by the ADA in partnership with the EASD to address the 103 

burgeoning need for better diabetes prevention and care through precision medicine 
8
. 104 

 105 

Methods 106 

Inclusion Criteria and Search Methodology 107 

To assess treatment of severe IR of known monogenic aetiology, with or without 108 

diabetes mellitus, including generalised and partial lipodystrophy and genetic disorders of 109 
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the insulin receptor, we developed, registered and followed a protocol for a systematic 110 

review (Prospero ID CRD42021265365; registered July 21, 2021)
9
. The study was reported in 111 

accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analysis 112 

(PRISMA) guidelines. Filtering and selection of studies for data extraction were recorded 113 

using the Covidence platform (https://www.covidence.org, Melbourne, Australia). 114 

We searched PubMed, MEDLINE and Embase from 1987 (the year before 115 

identification of the first monogenic aetiology of IR) to June 23, 2021 for potentially relevant 116 

human studies in English. We used broad search terms designed to capture the 117 

heterogeneity of monogenic IR and its treatments. We searched for studies addressing 1. 118 

Severe IR due to variant(s) in a single gene OR 2. Congenital generalised or familial partial 119 

lipodystrophy due to variant(s) in a single gene. We selected only studies that reported a 120 

treatment term, including but not limited to mention of 1. Thiazolidinediones (TZD), 2. 121 

Metreleptin, 3. SGLT2 inhibitors, 4. GLP-1 analogues, 5. Bariatric surgery (all types), 6. 122 

Recombinant human IGF-1 or IGF-1/IGFBP3 composite, 7. U-500 insulin.  No interventions 123 

were excluded in the primary search. In addition to the automated search, we hand 124 

searched reference lists of relevant review articles.  Given the rarity of monogenic IR, no 125 

study types were excluded in the initial search. We ultimately considered experimental 126 

studies, case reports, and case series. The full search strategy is described in Supplemental 127 

Table 1.  128 

Study selection for data extraction was performed in two phases, namely primary 129 

screening of title and abstract, then full text review of potentially eligible articles. Two 130 

authors independently evaluated eligibility, with discrepancies resolved by a third 131 

investigator. We excluded publications without original data, such as reviews, editorials, and 132 

comments, and those solely addressing severe IR or lipodystrophy of unknown or known 133 
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non-monogenic aetiology, including HIV-related or other acquired lipodystrophies, or 134 

autoimmune insulin receptoropathy (Type B insulin resistance). Studies in which no clear 135 

categorical or numerical outcome of an intervention was reported, or in which interventions 136 

were administered for less than 28 days were also excluded. 137 

Data extraction and outcome assessments 138 

One author extracted data from each eligible study using data extraction sheets. 139 

Data from each study was verified by all 3 authors to reach consensus.  Data were extracted 140 

from text, tables, or figures.  Study investigators were contacted for pertinent unreported 141 

data or additional details where possible, most commonly genetic aetiology of insulin 142 

resistance in reported patients, and outcome data.  143 

Data extracted for each study included first author, publication year, country, details 144 

of intervention, duration of follow-up, study design, and number of participants.  Subject-145 

level data were extracted for outcomes of interest, including sex, genetic cause of severe 146 

insulin resistance (gene name, mono- vs biallelic INSR pathogenic variant), phenotypic 147 

details of severe IR/lipodystrophic subtype (generalised vs partial lipodystrophy; associated 148 

syndromic features). Subject level outcome data for were extracted prior to and after the 149 

longest-reported exposure to the intervention of interest for hemoglobin A1c (A1c), body 150 

mass index, serum triglyceride, ALT, or AST concentration, any index of liver size or lipid 151 

content, and total daily insulin dose. Potential adverse effects of interventions were 152 

recorded, including urinary tract infection, genital candidiasis, hypoglycemia, excessive 153 

weight loss, pancreatitis, soft tissue overgrowth, and tumor formation. 154 

 155 

Risk of bias and certainty of evidence assessment 156 
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Quality of extracted case reports and case series was assessed using NIH Study 157 

Quality Assessment Tools
10

. Grading of overall evidence for specific research questions was 158 

undertaken as detailed in 
11

. 159 

 160 

Data synthesis and analysis 161 

Extracted data were managed using Covidence and analysed with SAS version 9.4.   162 

Pooled analysis was undertaken for all combinations of genotype and intervention for which 163 

sufficient numbers were reported, as well as for aggregated lipodystrophies, and 164 

generalized and partial subgroups of lipodystrophy.  Generalized Estimating Equation 165 

models were used with time as a fixed factor and study as a random factor to examine 166 

treatment effects. Serum triglyceride concentrations were analyzed with and without log 167 

transformation.  Data were summarized using estimated least-squared means with 168 

corresponding 95% confidence intervals.  169 

 170 

Results 171 

Identification of eligible studies 172 

Initial searching identified 2,933 studies, to which 109 were added from the 173 

bibliography of a recent comprehensive review of monogenic lipodystrophy 
2
. 248 articles 174 

remained after screening of titles and abstracts, and 42 after full text screening (Figure 1).  175 

 176 

Included studies addressed limited interventions and most had a high risk of bias 177 

The 42 studies analysed, and assessment of their quality are summarised in Table 1 178 

and detailed in Supplemental Table 2.  Study quality was assessed as being fair in 15 cases 179 

and poor in 27 cases, including all case reports. This was primarily due to high risk of bias, 180 
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particularly related to lack of control group for all studies. Three of the 42 studies included 181 

in further analysis included only individuals already described in other reports and were 182 

discarded, leaving 39 studies for final analysis. These comprised 10 non-controlled 183 

experimental studies, 8 case series and 21 individual case reports (Table 1). No controlled 184 

trials were found. Individuals reported in the studies included 90 with partial lipodystrophy 185 

(72 due to LMNA mutation and 15 due to PPARG mutation), 42 with generalized 186 

lipodystrophy (21 AGPAT2, 21 BSCL2, 2 LMNA), and 17 with IR due to INSR mutation(s). 187 

Among the interventions described, only the responses to metreleptin (111 recipients), 188 

thiazolidinediones (13 recipients) and rhIGF-1 (alone or as a composite with IGFBP3) (15 189 

recipients) were described in more than 5 cases (Table 1). This meant that for the large 190 

preponderance of possible genotype-treatment combinations no specific data were 191 

recovered (Supplemental Table 3). Full outcome data extracted are summarised in 192 

Supplemental Table 4, and subject-level data are shown in Supplemental Figures 1 through 193 

8.    194 

 195 

Metreleptin treatment was associated with improved metabolic control in lipodystrophy 196 

In our registered systematic review plan we posed several subquestions about 197 

treatment of monogenic IR subtypes that we felt were tractable. The first related to the 198 

risks and benefits (assessed by side effects, A1c, serum triglyceride concentration, body 199 

mass index (BMI), and indices of fatty liver) of metreleptin in patients with different 200 

monogenic subtypes of lipodystrophy. The response to metreleptin was described in 111 201 

people (71 with partial lipodystrophy, 40 with generalized lipodystrophy) 
12-22

. Metreleptin 202 

was administered for 19±20 months (median 12, range 1-108) and was associated with 203 

lowering of A1c in aggregated lipodystrophy, in generalized and partial subgroups, and in all 204 
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genetic subgroups for whom sufficient patients were reported, namely those with LMNA, 205 

PPARG, AGPAT2 and BSCL2 mutations (0.5 to 1.5% least square mean reduction) (Level 3 206 

evidence, Supplemental Table 4, Figure 2). Metreleptin treatment was also associated with 207 

lowering of serum triglyceride concentration in aggregated lipodystrophy, in generalized 208 

and partial subgroups, and in those with LMNA, PPARG, AGPAT2 and BSCL2 mutations (92 to 209 

1760 mg/dL least square mean reduction for analyses of untransformed data) (Level 3 210 

evidence, Supplemental Table 4, Figure 2).  BMI was lower after treatment in aggregated 211 

lipodystrophy, in generalized and partial subgroups, and in those with LMNA or BSCL2 212 

mutations, but not PPARG or AGPAT2 mutations (Level 3 evidence, Supplemental Table 4, 213 

Figure 2). Liver outcomes reported were too heterogeneous to analyse in aggregate.  Only a 214 

single adverse event, namely hypoglycemia, was reported. 215 

 216 

Thiazolidinedione treatment showed variable efficacy in limited studies  217 

We next addressed the evidence of risks and benefits of thizolidinediones (TZDs) in 218 

patients with lipodystrophy. We were specifically interested in any evidence of a greater or 219 

lesser response in partial lipodystrophy caused by PPARG variants than in other 220 

lipodystrophy subtypes, as TZDs are potent ligands for the gene product of the PPARG gene, 221 

the master regulator of adipocyte differentiation. The response to TZDs was described in 222 

only 13 people, however (12 FPLD, 1 CGL) 
23-32

. TZDs were administered for 29±28 months 223 

(median 24, range 2-96).  TZD use was associated with improved A1c in aggregated 224 

lipodystrophy (least square mean reduction 2.2%) and in PPARG-related but not LMNA-225 

related partial lipodystrophy (Level 4 evidence, Supplemental Table 4, Figure 3).  Serum 226 

triglyceride concentration decreased in aggregated lipodystrophy and in those with LMNA-227 
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related but not PPARG-related partial lipodystrophy (Level 4 evidence, Supplemental Table 228 

4, Figure 3). No adverse events were reported. 229 

 230 

rhIGF-1 treatment in INSR-related IR was associated with improvement in A1c 231 

Our last specific question related to the risks (e.g. tumors, hypoglycemia, cardiac 232 

hypertrophy, other soft tissue overgrowth) and benefits (assessed by A1c) of recombinant 233 

human IGF-1 (rhIGF-1) or IGF-1/IGFBP3 composite in patients with pathogenic INSR variants. 234 

The response to rhIGF-1 was described in 15 people with pathogenic INSR variants for a 235 

mean of 50±86 months (median 12, range 1-288) 
33-42

. In INSR-related IR, we found that use 236 

of rhIGF-1, alone or as a composite with IGFBP3, was associated with improvement in A1c, 237 

and this was true also in subgroups with monoallelic and biallelic variants (1 to 2% least 238 

square mean reduction, Level 4 evidence, Supplemental Table 4, Figure 4). One instance of 239 

increased soft tissue overgrowth and two episodes of hypoglycemia was reported. 240 

 241 

Many questions about genotype-stratified treatment were not addressed 242 

While many other interesting and clinically relevant questions arise about other 243 

potential genotype-specific responses to therapy in monogenic IR, the small size or absence 244 

of other genotype by treatment groups precluded the drawing of conclusions about risks 245 

and benefits, including for very widely used medications such as metformin 
25,43-45

, newer 246 

agents commonly used in type 2 diabetes including SGLT2 inhibitors 
46,47

 and GLP1 agonists, 247 

and non pharmacologic interventions such as bariatric surgery 
48-50

. 248 

 249 

Discussion 250 
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Thirty-five years since INSR mutations were identified in extreme IR 
51,52

, and 23 251 

years since the first monogenic cause of lipodystrophy was reported 
53

, many different 252 

forms of monogenic IR are known 
1-3,54

. These are associated with substantial early 253 

morbidity and mortality, ranging from death in infancy to accelerated complications of 254 

diabetes and fatty liver disease in adulthood, depending on the genetic subtype. Several 255 

opportunities for genotype-guided, targeted treatment are suggested by the causal genes, 256 

and so we set out to review the current evidence guiding treatment of monogenic IR 257 

stratified by genetic aetiology. We found a paucity of high-quality evidence (all level 3 to 4). 258 

No controlled trials of any intervention were identified, and there was substantial 259 

heterogeneity of study populations and intervention regimens, even for the same 260 

interventional agent. 261 

The evidence which we did find, from a small number of uncontrolled experimental 262 

studies, augmented by case series and numerous case reports, suggest that metreleptin 263 

offers metabolic benefits across different lipodystrophy subtypes, in keeping with its 264 

licensing for use in some patients with lipodystrophy in both Europe and the USA.  Notably, 265 

the evidence base considered by licensing authorities was larger than the one we present, 266 

including many studies of phenotypically ascertained lipodystrophy that included acquired 267 

or idiopathic disease. In contrast we have addressed solely individuals with lipodystrophy 268 

caused by variation in a single gene. The limited data we identified do not clearly support 269 

differential effects among different monogenic lipodystrophy subgroups, but for many 270 

subtypes numbers reported are very small. Moreover although responses appear 271 

comparable for partial and generalised lipodystrophy, this is highly likely to reflect selection 272 

bias in studies of partial lipodystrophy towards those with more severe metabolic 273 

complications and lower baseline serum leptin concentrations. 274 
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A clear opportunity for precision diabetes therapy in monogenic IR is offered by the 275 

IR and lipodystrophy caused by mutations in PPARG, which encodes the target for 276 

thiazolidinediones (TZDs) such as pioglitazone 
55,56

. PPARG is a nuclear receptor that serves 277 

as the master transcriptional driver of adipocyte differentiation, and so as soon as PPARG 278 

mutations were identified to cause severe IR, there was interest in the potential of TZDs as 279 

specific treatments. Although we found small scale evidence supporting greater A1c 280 

reduction with TZDs in PPARG vs LMNA-related lipodystrophy, only 5 patients with PPARG-281 

related lipodystrophy in whom TZD effects were clearly described were reported, and 282 

responses were inconsistent. Thus, it remains unclear whether people with IR due to PPARG 283 

variants are more or indeed less sensitive to TZDs than people with other forms of 284 

lipodystrophy. Loss-of-function PPARG mutations are the second commonest cause of 285 

familial partial lipodystrophy 
2
, and the function of coding missense variants in PPARG has 286 

been assayed systematically to accelerate genetic diagnosis 
57

, so the opportunity to test 287 

genotype-related therapy in PPARG-related IR seems particularly tractable in future. 288 

Other obvious questions about targeted treatment of monogenic, lipodystrophic IR 289 

are not addressed by current evidence. Important examples relate to the risks and benefits 290 

of treatments used in type 2 diabetes such as GLP-1 agonists and SGLT2 inhibitors.  It is 291 

rational to suppose that these medications, which decrease weight as well as improving 292 

glycaemia in those with raised BMI and diabetes, may also be efficacious in lipodystrophy 293 

even where BMI is normal or only slightly raised. This is because in both situations adipose 294 

storage capacity is exceeded, leading to “fat failure”. It is the offloading of overloaded 295 

adipose tissue, rather than the baseline BMI/adipose mass, which underlies the efficacy of 296 

therapy. However GLP-1 agonists are contraindicated in those with prior pancreatitis, while 297 

SGLT2 inhibitor use can be complicated by diabetic ketoacidosis. In untreated lipodystrophy 298 
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pancreatitis is common, yet this is due to hypertriglyceridaemia, which is likely to be 299 

improved by GLP-1 agonist use, while excessive supply of free fatty acids to the liver may 300 

promote ketogenesis. Thus assessment of both classes of drug in lipodystrophy and its 301 

genetic subgroups will be important to quantify risks and benefits, which may be distinct to 302 

those in obesity-related diabetes. 303 

A further question we prespecified related to the use of rhIGF1 in people with severe 304 

IR due to INSR mutations. This use of rhIGF-1 was first described in recessive INSR defects in 305 

the early 1990s 
42

, based on the rationale that IGF-1 activates a receptor and signalling 306 

pathway very closely similar to those activated by insulin. Based on case reports, case series 307 

and narrative reviews, rhIGF-1 is now commonly used in neonates with extreme IR due to 308 

biallelic INSR mutations, although, unlike metreleptin in lipodystrophy, this use is still 309 

unlicensed. Our review of published data is consistent with glycaemic benefits of rhIGF-1, 310 

alone or in composite form with its binding protein IGFBP3, in INSR mutations. 311 

Nevertheless, such studies are challenging to interpret and are potentially fraught with bias 312 

of different types, particularly publication bias favouring positive outcomes. Responses to 313 

rhIGF1 are also challenging to determine in uncontrolled studies as small differences in 314 

residual function of mutated receptors can have substantial effects on the severity and 315 

natural history of the resulting IR, yet relatively few INSR mutations have been studied 316 

functionally. This underlines the narrow nature of, and significant residual uncertainty in, 317 

the evidence base for use of rhIGF-1 in monogenic IR. 318 

There are several reasons why important questions about precision treatment of 319 

monogenic IR have not been settled. Although severe autosomal recessive IR is usually 320 

detected in infancy, commoner dominant forms of monogenic IR are often diagnosed 321 

relatively late, often only after years of management based on presumptive diagnoses of 322 
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type 2 or sometimes type 1 diabetes. Initial management as type 2 diabetes means that by 323 

the time a clinical and then genetic diagnosis is made, most patents have been treated with 324 

agents such as metformin, and increasingly SGLT2 inhibitors or GLP-1 agonists, outside trial 325 

settings. It is not clear that harm is caused by such use of drugs with well-established safety 326 

profiles and efficacy in type 2 diabetes, but the lack of systematic data gathering precludes 327 

identification of specific drug-genotype interactions. Moreover, because attempts to gather 328 

evidence for monogenic IR treatment has tended to focus on high-cost adjunctive therapies 329 

such as metreleptin, the evidence base for their use is better developed, although 330 

controlled trials are lacking. Licensing of high-cost treatments such as metreleptin in 331 

lipodystrophy, while effects of many more commonly used, cheaper drugs with well-332 

established safety profiles lack formal testing in monogenic IR is potentially problematic, 333 

skewing incentives and guidelines towards expensive therapy before optimal treatment 334 

algorithms have been established. 335 

Other challenges in conducting trials in monogenic IR arise from the exquisite 336 

sensitivity of IR to exacerbating factors such as puberty, diet, and energy balance.  This 337 

creates a “signal to noise” problem particularly problematic in uncontrolled studies, in 338 

which non-pharmacological components of interventions such as increased support for 339 

behavioural change may confound attribution of beneficial outcomes to pharmacological 340 

agents tested. 341 

The key question now is how the evidence base for managing monogenic severe IR 342 

can be improved in the face of constraints in studying rare, clinically heterogeneous, and 343 

geographically dispersed patients who are often diagnosed late with a condition that is 344 

exquisitely environmentally sensitive. Growing interest in and development of 345 

methodologies for clinical trials in rare disease 
58

, including Bayesian methodologies 
59,60

, 346 
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and hybrid single- and multi-site designs 
61

 offer hope for future filling of evidence gaps. One 347 

important and pragmatic opportunity arises from the development of large regional, 348 

national and international networks and registries for lipodystrophy (e.g. the Europe-based 349 

ECLip registry 
62

), allied to emergence of randomised registry-based trial (RRT) methodology 350 

63,64
.  RRTs have attracted increasing interest in several disease areas and are particularly 351 

suitable for evaluation of agents with well-established safety profiles. When a simple 352 

randomisation tool is deployed in the context of a registry, RRTs can offer rapid, cost-353 

effective recruitment and high external validity (i.e. relevance to “real world” practice). In 354 

monogenic IR this would permit questions to be addressed about optimal usage of different 355 

“common” medications in different genetic subgroups, including the order of introduction 356 

of therapies, and their optimal combinations. The quality of such studies will critically rely 357 

on good registry design and quality and completeness of data capture 
63,64

. 358 

In summary, severe monogenic IR syndromes are clinically and genetically 359 

heterogeneous, with high early morbidity and mortality. However despite opportunities for 360 

targeted therapy of some monogenic subgroups based on the nature of the causal gene 361 

alteration, the evidence for genotype-stratified therapy is weak. This is in part because of 362 

the rarity and frequent late diagnosis of monogenic IR, but also because therapeutic 363 

research to date has focused largely on phenotypically ascertained cross cutting diagnoses 364 

such as lipodystrophy. We suggest that approaches such as RRTs hold the best hope to 365 

answer some of the persisting major questions about precision treatment in monogenic IR. 366 
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Table 1: Summary characteristics of included studies. 596 

*Based on NHLBI quality assessment tool; 
#
Numbers in brackets are for 597 

partial lipodystrophy/generalised lipodystrophy/ insulin receptor 598 

individuals respectively. Abbreviations: rhIGF-1, recombinant human 599 

insulin-like growth factor 1; IGFBP3, insulin-like growth factor binding 600 

protein 3; SGLT2i, sodium-glucose co-transporter-2 inhibitor 601 

 602 

  603 

Study types Number of studies 

Case reports 21 

Non-randomised 

experimental 

study 

10 

Case series 8 

Study Quality* Number of studies 

Good 0 

Fair 15 

Poor 28 

Phenotypes Number of participants 

Partial 

lipodystrophy 

90  

(72 LMNA, 15 PPARG, 2 PLIN1, 1 PIK3R1) 

Generalised 

lipodystrophy 

56  

(21 AGPAT2, 21 BSCL2, 1 PTRF, 2 LMNA) 

Insulin receptor 17 (7 Monoallelic, 10 Biallelic) 

Intervention Number of participants 

Metreleptin 111 (71/40/0) 

rhIGF-1 or  

rhIGF-1/IGFBP3 

composite 

15 (0/0/15) 

Thiazolidinedione 13 (12/1/0) 

Metformin 5 (2/1/2) 

Bariatric surgery 4 (4/0/0) 

SGLT2i 2 (1/1/0) 
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Figure 1: Flow diagram of publications evaluated based on the search strategy. 612 

  613 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted April 21, 2023. ; https://doi.org/10.1101/2023.04.17.23288671doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.17.23288671


  614 

 615 

 616 

 617 

 618 

 619 
 620 

Figure 2: Effects of metreleptin in monogenic forms of lipodystrophy Least square mean 621 

change in (A) Hemoglobin A1c (A1c), (B) Log10 serum triglyceride concentration and (C) Body 622 

Mass Index (BMI) in patients with partial lipodystrophy, generalized lipodystrophy, all forms 623 

of lipodystrophy, and subgroups with PPARG, LMNA, BSCL2, and AGPAT2 mutations. 624 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted April 21, 2023. ; https://doi.org/10.1101/2023.04.17.23288671doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.17.23288671


 625 

 626 

 627 

 628 

 629 

 630 

 631 

Figure 3: Effects of recombinant human Insulin-like Growth Factor-1 (rhIGF) alone or in 632 

combination with Insulin-like Growth Factor Binding Protein-3 (IGFBP3) in patients 633 

with INSR mutations Least square mean change in hemoglobin A1c (A1c), in all patients 634 

with INSR mutations, and in subgroups with biallelic and monoallelic mutations.  635 
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 636 

 637 

 638 

Figure 4: Effects of thiazolidinediones in monogenic forms of lipodystrophy Least 639 

square mean change in (A) Hemoglobin A1c (A1c), (B) Log10 serum triglyceride 640 

concentration and (C) Body Mass Index (BMI) in patients with partial lipodystrophy, 641 

generalized lipodystrophy, all forms of lipodystrophy, and subgroups with PPARG, and 642 

LMNA mutations.  643 
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Supplemental Tables 644 

 645 

Disease Gene 

Names and 

Variants 

Treatments 

Lipodystrophy LMNA Medication 

Severe Insulin resistance Lamin A/C Therapy 

Type A insulin resistance BSCL2 Medical management 

Donohue syndrome Seipin Treatment 

Rabson Mendenhall syndrome AGPAT2 SGLT2 inhibitor 

Leprechaun PTRF SGLT2i 

Leprechaunism CAVIN1 SGLT-2 inhibitor 

FPLD CAV1 SGLT-2i 

FPLD2 ZMPSTE24 Sodium Glucose Transporter 2 

inhibitor 

FPLD3 PPARG Dapagliflozin 

FPLD4 PLIN1 Empagliflozin 

FPLD5 MFN2 Ertagliflozin 

FPLD6 CIDEC Canagliflozin 

FPLD7 LIPE Flozin 

SHORT syndrome PCYT1A Thiazolidinedione 

SOFT syndrome INSR PPARg Agonist 

vSOFT AKT2   PPAR gamma agonist 

Werner syndrome PIK3R1  TZD 

Bloom syndrome AKT2   Rosiglitazone 

MOPDII WRN  Pioglitazone 

Osteodysplastic primordial dwarfism of 

Majewski type 2 

BLM  Troglitazone 

Alstrom syndrome NSMCE2  GLP1RA 

MANDIBULAR HYPOPLASIA, DEAFNESS, 

PROGEROID FEATURES, AND 

LIPODYSTROPHY SYNDROME 

POLD1  GLP1 Receptor Agonists 

MDPL PCNT  GLP-1 Receptor Agonists 

Mandibuloacral dysplasia POC1A  GLP-1RA 

MARFANOID-PROGEROID-

LIPODYSTROPHY SYNDROME 

ALMS1  Exenatide 

MFLS PSMB8  Liraglutide 

PROTEASOME-ASSOCIATED 

AUTOINFLAMMATORY SYNDROME 1 

FBN1 Lixisenatide 

PRAAS1  Semaglutide 

  Dulaglutide 

  Albiglutide 

  Bariatric surgery 

  Obesity Surgery 

  Weight reduction surgery 
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  gastric band 

  Roux-en-Y 

  Gastric sleeve 

  Gastric bypass 

  metabolic surgery 

  IGF-1 

  rhIGF-1 

  somatokine 

  recombinant human insulin 

like growth factor 1 

  Insulin like growth factor 1 

  Increlex 

  Mecasermin 

  IGF-1/IGFBP3 

  IGF1 

  rhIGF1 

  IGF1/IGFBP3 

  leptin 

  rhleptin 

  metreleptin  

  Myalept 

  Myalepta 

 646 

Supplemental Table 1: Descriptors of diseases, gene names and treatments included in 647 

the initial search 648 

  649 
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 650 

 651 

 652 

 653 

 654 

Supplemental Table 
2 Quality assessmen

 655 
 656 

Supplemental Table 2: Detailed Quality Assessment of Included Studies 657 

  658 
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 659 

  Treatment  

 

 

rhIGF-1 or 

rhIGF-1/IGFBP3 

composite 

SGLT2i TZD 
Bariatric 

surgery 
Metformin Metreleptin Total 

G
e
n
e
 

AGPAT2 0 0 0 0 1 20 21 

BSCL2 0 1 1 0 0 19 21 

PTRF 0 0 0 0 0 1 1 

LMNA 

(progeroid) 
0 0 0 0 0 2 2 

LMNA 

(FPL) 
0 0 9 2 2 59 72 

PPARG 0 0 5 0 0 10 15 

PLIN1 0 0 0 2 0 0 2 

PIK3R1 0 1 0 0 0 0 1 

INSR 15 0 0 0 2 0 17 

All partial LD -- 1 14 4 2 71 90 

All generalised LD -- 1 1 0 1 40 43 

All LD -- 2 15 4 3 111 135 

 660 

Supplemental Table 3: Number of individuals by intervention and genotype in included 661 

studies Abbreviations: rhIGF-1, recombinant human insulin-like growth factor 1; IGFBP3, 662 

insulin-like growth factor binding protein 3; SGLT2i, sodium-glucose co-transporter-2 663 

inhibitor; TZD, thiazolidinedione; FPL = Familial Partial Lipodystrophy 664 
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 665 

 666 

 667 

 668 

 669 

 670 

 671 

Supplemental Table 
4 Summary stats 14 A

 672 
 673 

Supplemental Table 4: Summary statistics of extracted data 674 

  675 
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Supplemental Figures 676 

 677 

 678 

 679 
 680 

Supplemental Figure 1: Effects of Metreleptin therapy on glycated 681 

haemoglobin (A1c) by genotype 682 

  683 
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 684 

 685 

 686 

 687 

 688 
 689 

Supplemental Figure 2: Effects of Metreleptin therapy on serum 690 

triglyceride concentration by genotype  691 

 692 

 693 

 694 

 695 

 696 

 697 

 698 
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 700 

 701 

 702 

 703 

 704 

 705 
 706 

Supplemental Figure 3: Effects of Metreleptin therapy on body mass 707 

index (BMI) by genotype  708 

 709 

 710 

 711 

 712 
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 714 

 715 

 716 

 717 

 718 

 719 

 720 

 721 

 722 

 723 

 724 

 725 

 726 

 727 

 728 

 729 

 730 
 731 

Supplemental Figure 4: Effects of recombinant IGF-1 or IGF-1 plus 732 

IGFBP3 therapy on glycated haemoglobin (A1c) in monallelic and 733 

biallelic insulin receptoropathy 734 

 735 

 736 

 737 

 738 

 739 

 740 

 741 

 742 

 743 

 744 

 745 

 746 

 747 

 748 

 749 

 750 
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 751 

 752 

 753 

 754 

 755 

 756 

 757 
 758 

Supplemental Figure 5: Effects of thiazolidinedione therapy by 759 

genotype 760 

 761 

 762 

 763 

 764 

 765 

 766 

 767 

 768 

 769 

 770 
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 774 

 775 

 776 
 777 

Supplemental Figure 6: Effects of bariatric surgery by genotype 778 

 779 
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 794 
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 796 

Supplemental Figure 7: Effects of metformin therapy by genotype 797 
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 813 

 814 
 815 

Supplemental Figure 8: Effects of SGLT2 inhibitor therapy by genotype 816 

 817 
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