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13Abstract
14In the medical field, bone abnormality detection is a very important issue. Bone abnormalities 

15include various diseases such as fractures, osteoporosis, bone tumors, and joint diseases. If these 
16diseases are not diagnosed and treated in a timely manner, they can seriously affect the health and 
17quality of life of patients. Artificial intelligence has made remarkable advances in Cluster analysis 
18of medical big data, effectively mining its hidden associations to provide effective information for 
19clinical diagnosis and medical research. However, the effectiveness of deep learning in domains 
20with limited or no labeled data is often limited. To address this issue, we propose a novel and 
21reliable two-stage unsupervised deep clustering framework for skeletal anomaly detection. This 
22framework combines neural network parameters with feature clustering for collaborative learning 
23to detect anomalies. We trained eight separate models, one for classification and seven for anomaly 
24detection, using the MURA dataset, the largest publicly available skeletal imaging dataset. In the 
25first stage, our approach achieved an average sensitivity and specificity of 99.76% and 99.53%, 
26respectively. The second stage performed optimally with an average sensitivity and specificity of 
2783.28% and 97.56%, respectively. Our method can be easily implemented as software modules and 
28used as a visualization tool for skeletal physicians, making it a promising approach for future 
29development.

30Keywords: unsupervised, deep clustering, MURA, classification, anomaly detection
31

321. Introduction
33Bone classification and abnormality detection are of great significance in the medical 

34field. Bone classification refers to the classification of bone structure and morphology to 
35better understand and study the physiological and pathological state of bones[1]. At the 
36same time, bone abnormality detection is aimed at the diagnosis and monitoring of bone 
37diseases, in order to better improve the treatment effect and quality of life of patients [2]. 
38According to a study, the accuracy of bone abnormality detection has an important impact 
39on the treatment effectiveness and prognosis of patients. This study indicates that early 
40diagnosis and treatment of skeletal abnormalities can greatly improve the prognosis of 
41patients. Accurate detection of bone abnormalities can enable doctors to identify 
42conditions faster and provide better treatment options [3]. In addition, bone abnormality 
43detection can also help doctors better understand the development and progress of bone 
44diseases [4]. A study from the National Institutes of Health in the United States indicates 
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45that through in-depth understanding of the classification and abnormality detection of 
46skeletal diseases, it is possible to better understand the progress of the disease and adjust 
47and optimize treatment plans.

48In recent years, the application of machine learning has become increasingly 
49widespread, with traditional clustering being the most typical, which can automatically 
50complete classification and detection tasks without human intervention. Clustering is an 
51unsupervised learning algorithm whose main purpose is to divide data points into 
52different groups or clusters based on their similarity [5]. Clustering algorithms have 
53significant applications in many fields, such as: in data mining: clustering can help us 
54discover important patterns and trends in big data sets, thereby making data mining more 
55efficient and accurate [6]; In biology: clustering can be used to classify and analyze gene 
56sequences, thereby helping scientists better understand the complexity of genetics and 
57biology [7]; Computer Vision: Clustering can be used to classify and analyze images [8]. 
58For example, we can use clustering algorithms to automatically identify different objects 
59in an image [9]. In addition, clustering can be used for text classification tasks [10], such 
60as dividing a group of text data into multiple categories, so that texts within the same 
61category have similar thematic, emotional, and other characteristics [11]. In the medical 
62field, traditional clustering can classify and predict diseases, but clustering algorithms 
63have high requirements for the quality of data. If there are problems such as noise or 
64missing values in the data, it may lead to inaccurate clustering results, which affects the 
65reliability of medical decision-making. In addition, deep learning can be applied to digital 
66pathology to complete automatic diagnosis. For example, techniques such as clinically 
67assisted diagnosis [12], tumor segmentation [13], and protein structure prediction [14]. 
68However, the effectiveness of a deep learning framework largely depends on the training 
69data and the number of valid tags, because: whether to choose an appropriate loss 
70function, small batch size, learning rate, and so on. For fields with few or no labels, there 
71are some existing methods: semi supervised learning [15], weak supervision [16], and 
72domain adaptation [17]. Although some existing studies have been applied to the 
73diagnosis of supervised bone diseases, it is still challenging to effectively apply 
74unsupervised frameworks to the rapid clinical diagnosis of bone diseases. Although good 
75progress has not been achieved in traditional clustering, in this study, we have developed 
76a deep clustering framework, which is different from the previous fully supervised 
77learning framework. Its effectiveness depends on a large amount of training data and tags. 
78By combining deep learning, the clustering of neural network parameters and related 
79features is allocated together for joint learning. The k-means clustering algorithm is used 
80to iteratively group features, and then the resulting groups are used as supervised pseudo 
81tags to update the weight of the network. The framework method is used to iteratively 
82learn features, group them, and update network parameters. In this article, we apply the 
83MURA (Musculoskeletal Radiology) dataset, which is a large dataset of bone X-rays and 
84has seven main categories, including ELBOW, FINGER, FOREARM, HAND, HUMERUS, 
85SHOULDER, and WRIST. A total of 36487 images are included. The experimental results 
86show that the optimal average sensitivity and specificity for the first stage are 99.76% and 
8799.53%, respectively. The optimal average sensitivity and specificity for the second stage 
88were 83.28% and 97.56%, respectively. Finally, this framework greatly affects the future 
89assistance of doctors, and has a good application prospect.

90Our contributions can be summarized as follows:
911) Deep clustering is an unsupervised end-to-end learning method clustering 

92algorithm applicable to any standard convective network. The framework is to jointly 
93learn the parameters of the neural network and the clustering assignment of the result 
94characteristics. Feature extraction is performed using convnet, features are learned 
95iteratively and grouped using Deep Clustering method and subsequent results are used 
96as supervised pseudo-labels to update the network weights.
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972) In this paper, we applied the MURA dataset, a large dataset of skeletal X-rays, with 
98seven major categories: ELBOW, FINGER, FOREARM, HAND, HUMERUS, SHOULDER, 
99WRIST. a total of 36487 images are included.

1003) The experimental findings showed that the first stage's optimal average sensitivity 
101and specificity were 99.76% and 99.53%, respectively. The optimal average sensitivity and 
102specificity were 83.28% and 97.56%, respectively, during the second phase. It 
103demonstrates that the framework has good and significant results and has good prospects 
104for the future development.

105The remainder of this essay is structured as follows: Basic ideas are introduced in 
106Section 2, the suggested clustering method is described in Section 3, and the experimental 
107results of the proposed algorithms on diverse data sets are shown in Section 4. The 
108conclusion and our next efforts are provided in Section 5.

1092. Related Work
1102.1 Deep clustering

111According to traditional clustering, we are familiar with algorithms such as 
112DBSCAN, K-means, etc. The DBSCAN algorithm requires two parameters: the scan radius 
113ε, and the MinPts, which is used to determine the density threshold of points being core 
114points. The core objective of the K-means algorithm is to divide the given data set into K 
115clusters (K is the hyperparameter) and give each sample data corresponding centroid. As 
116mentioned above, therefore, similar to clustering, these methods are very complex and 
117time-consuming. On this basis, Li et al. [18] proposed an improved DBSCAN based on 
118neighbor similarity, which significantly and effectively improved the efficiency of the 
119DBSCAN algorithm; Chen et al. [19] proposed the BLOCK-DBSCAN targeted to deal with 
120high-dimensional datasets and made a breakthrough in effect; Lika et al. [20] proposed 
121the global k-means algorithm and a modification of this method was tested on numerous 
122datasets and obtained better results. Lai et al. [21] proposed a fast mean clustering 
123algorithm (FKMCUCD) that can effectively reduce the computation time. Although all 
124such algorithms can solve the corresponding problems at some level and improve the 
125efficiency of the algorithm, this class of algorithms cannot be applied to other technical 
126levels, especially at the image level.

127The advancement of deep learning has resulted in incredible advancements in 
128numerous industries, especially in images, where the accuracy has reached a level that 
129exceeds that of humans. Based on different distance metrics, Peng et al. [22] will lead to 
130similar soft clustering assignments on stream shapes. A new clustering method is 
131proposed: one of the first end-to-end approaches to jointly learn clustering assignments 
132for clustering methods solving image-level problems. In order to implicitly anticipate 
133segmentation labels of target spectral maps from the input mixture, Hershey et al. [23] 
134develop discriminative embedding of segmentation and separation in a deep learning 
135framework termed deep clustering. A deep network-based simulation of spectral 
136clustering results from this. AGC IMC, or Adaptive Graph Completion-based Incomplete 
137Multiview Clustering, was proposed by Wen et al. [24]. AGC IMC greatly outperforms 
138other cutting-edge techniques for graph completion and consensus representation 
139learning, which was developed together. Zhang et al. [25] proposed a fast and efficient 
140CNN (convolutional neural network) denoiser that performs well for various low-level 
141vision applications. In order to advance the area of image segmentation, Ghosh et al. [26] 
142discussed the significance of deep learning for image segmentation and how it has 
143affected the field. To address the issue of picture clustering, Ren et al. [27] suggested a 
144two-stage depth density based image clustering (DDC) framework. In comparison to 
145cutting-edge deep clustering techniques, the suggested DDC delivers similar or superior 
146clustering performance. All of the above methods can solve specific problems in specific 
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147domains and all have particularly good results. However, no previous work has been 
148done for the time being to explore their application in solving skeletal x-ray image 
149recognition, so it is still a challenge here.

1502.2 Intelligent recognition of skeletal data 

151Image classification is one of the most in-demand technologies of our time and is 
152used in various fields such as healthcare, business, etc. Giving an image a label from a list 
153of classifications is the essence of image categorization. In actuality, this implies that our 
154job is to examine an input image and provide a label that will assign the image to one of 
155a predetermined number of possible categories. In traditional methods, we usually solve 
156the image classification problem using two methods, k-NN (k-Nearest Neighbor) and 
157Support Vector Machine (SVM). For example, the complete dataset was divided into parts 
158by Zhen et al. [28] using k-means clustering, and each component was subsequently 
159subjected to k-NN classification. A series of experimental imaging data was performed in 
160big data and medicine. One of the simplest image categorization techniques available is 
161k-NN. It can be used in regression analysis as well. Since k-NN is a parameter-free 
162learning algorithm, no assumptions are made on the distribution of the underlying data. 
163It is instance-based, i.e. the algorithm does not consciously learn the model. Instead, it 
164chooses memory training examples and applies them in a controlled learning setting. The 
165three essential components of the k-NN algorithm are the decision rule for classification, 
166the k-value selection, and the choice of distance computation. The most frequent class 
167among the k nearest examples is determined using the k-NN algorithm, which categorizes 
168unknown data points. We must establish a distance metric or similarity function before 
169we can use k-nearest neighbor classification. The Manhattan distance and Euclidean 
170distance are popular options. Li et al. [29] proposed a multi-labeled SVM active learning 
171method. Two selection strategies are proposed: the maximum loss strategy and the 
172average maximum loss strategy. A linear classifier constructed by interval maximization 
173on the feature space is the basis of the SVM, a binary classification model. It differs from 
174a perceptron thanks to interval maximization, and SVM also incorporates the kernel 
175method, effectively turning it into a nonlinear classifier. Interval maximization, which is 
176formalized as problem solving, is the SVM's learning technique. Convex quadratic 
177programming is solved using the optimization procedure of the SVM. Finally, this 
178traditional method has shortcomings: it is only suitable for small datasets, and the results 
179are slightly worse for large datasets.

1802.3 Deep Learning Methods

181Convolutional neural network is a deep learning model widely used in the fields of 
182image processing and computer vision. The principle is to extract features from input 
183images through convolution and pooling operations, and then perform tasks such as 
184classification or regression through the full connectivity layer. Additionally, it is a 
185feedforward neural network with artificial neurons that can analyze enormous amounts 
186of data and react to nearby units. To effectively complete image classification tasks, Sun 
187[30] suggested an automated CNN architecture design technique using evolutionary 
188algorithms. The algorithm uses fewer computational resources and is effective. Finally, 
189classical algorithms like SVM are insufficient for picture categorization when compared 
190to KNN. Even with overfitting in CNN, the experimental results are superior to those of 
191conventional classification methods. When it comes to image categorization issues, 
192transfer learning works incredibly well. It effectively addresses the issues of overfitting 
193and tiny datasets thanks to its quick running time and precise findings. In the previous 
194work are exploring the fully supervised framework, it is still a challenge to apply the 
195unsupervised framework to skeletal x-ray image recognition effectively.
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1963. Methodology
197This paper proposes a brand-new, two-stage hybrid approach based on deep 

198clustering for the classification and anomaly detection of skeletal x-rays. As shown in Fig 
1991, the original images are first trained by a neural network to obtain a training dataset, 
200which is preprocessed, and important features are extracted. The retrieved features are 
201then used in a two-stage classification process. First, the seven skeleton types—ELBOW, 
202FINGER, FOREARM, HAND, HUMERUS, SHOULDER, and WRIST—are classified. The 
203second stage of the unsupervised deep clustering framework detection technique is to 
204determine if the classified skeletons are normal or abnormal, as shown in Fig 2. All the 
205necessary information is provided in the following subsections:

2063.1. Preprocessing and feature extraction

207The current computer vision outlook should have good image extraction 
208characterization and convolutional neural network architecture (Convnet) has 
209significantly impacted computer vision research. A convolutional network basically 
210learns a large number of mapping relationships between input and output for mapping 
211the original image to a vector space of fixed dimensions. As long as the convolutional 
212network is trained with recognized patterns, it may map between input and output pairs 
213without needing an exact mathematical expression between input and output. An input 
214image is converted into a matrix, which contains the appropriate pixel values, for that 
215image. A feature map is obtained by convolution using a convolution kernel.

2163.1.1 Local perception and Parameter sharing

217Just the local information is actually required for each neuron to perceive, and the 
218global information is then gained by merging the local information at a higher level. In 
219local connectivity, as a result of each neuron in the hidden layer being connected to a 10 
220by 10 local image, there are 10 by 10 weight parameters. The remaining neurons share 
221these 10 by 10 weight parameters, making all of the neurons in the hidden layer have the 
222same weight parameters. Then, regardless of the quantity of neurons in the hidden layer, 
223the parameters that must be learnt are these 10 by 10 weight parameters. This is the 
224convolution kernel's size. therefore, the statistical characteristics of one component of the 
225image are the same as those of the other components.

2263.1.2 Convolution operations

227We initially number each pixel in the image by designating the i-th row and j-th 
228column parts of the image in order to clearly understand the convolution calculation 
229method; By indicating the m-th row and n-th column weights for each filter weight and 
230the bias term for the filter, the weights are numbered; The activation function is 
231represented by the f element of the Feature Map. The activation function is represented 
232by the i-th row and j-th column elements of the Feature Map (the relu function is chosen 
233as the activation function for this example). The following equation is then used to 
234calculate the convolution:

235𝑎𝑖,𝑗 = 𝑓( 2

𝑚=0

2

𝑛=0
𝑤𝑚,𝑛𝑥𝑖+𝑚,𝑗+𝑛 + 𝑤𝑏)                                                       (1)

236Additionally, its picture size, step size, and convolved Feature Map size are 
237connected. They in fact fulfill the following relationship:

238𝑊2 =  (𝑊1 ―  𝐹 +  2𝑃)/𝑆 + 1                                                                  (2) 
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239 𝐻2 = (𝐻1 ― 𝐹 +  2𝑃)/𝑆 + 1                                                                     (3) 
240𝑊1 is the width of the picture before convolution, 𝑊2 is the width of the Feature 

241Map after convolution, and F is the width of the filter in Equations 2 and 3. P is the number 
242of Zero Padding, or the number of circles surrounding the original image that are zero; if 
243P is 1, then there will be one circle that is zero; S is the step size; 𝐻1 is the width of the 
244picture before to convolution, and 𝐻2 is the height of the Feature Map.

245In fact, it is similar. The depth of the corresponding filter must likewise be D if the 
246depth of the picture before convolution is D. We extend Equations 1 to obtain the formula 
247for convolution with a depth greater than 1.

248𝑎𝑖,𝑗 = 𝑓(
𝐷―1

𝑑=0

𝐹―1

𝑚=0

𝐹―1

𝑛=0
𝑤𝑑,𝑚,𝑛𝑥𝑑,𝑖+𝑚,𝑗+𝑛 + 𝑤𝑏)                                         （4）

249In Equation 4, D is the depth; F is the size of the filter; denotes the m-th row and nth 
250column weight of the d-th layer of the filter; denotes the i-th row and j-th column pixel of 
251the d-th layer of the image; the other symbols have the same meaning as Equation 1. There 
252may be several filters and a for each convolution layer. The depth (number) of the 
253convolved Feature Map and the number of filters in the convolution layer are equal 
254because a Feature Map can be created by convolving each filter with the original picture.

2553.1.3 Pooling and BP

256We know how CNN uses convolutional and pooling layers to extract features from 
257images, where the key is the convolutional kernel to represent the local features in the 
258image. This section introduces backpropagation, which is the process of contrasting the 
259anticipated value with the actual value before returning to adjust the network parameters. 
260Also the operation of the backpropagation algorithm is described here: by first calculating 
261the state and activation values for each layer up to the last layer, then calculating the error 
262for each layer, the error is calculated by moving forward from the last layer and finally 
263updating the parameters, i.e. the process of comparing the expected value with the actual 
264value before returning to adjust the network parameters.

265This section mainly explains the principle process of basic CNN. The general CNN 
266technique for extracting features uses the convolutional layer, the pooling layer, and back 
267propagation to calculate the convolutional kernel parameters in order to obtain the final 
268features.                  

2693.2Unsupervised Two-Stage classification and detection

270These parameters are typically acquired through supervision, meaning that each 
271image, 𝑥𝑛, has a corresponding label, 𝑦𝑛, in the range of 0 to 1k. This label indicates how 
272the image fits into one of the k predefined classes that are possible. Over the feature f, the 
273parameterized classifier 𝑔𝑤 forecasts the correct label (𝑥𝑛). The loss function is as a result.

274min
θ,𝑊

 
1
𝑁

𝑁

𝑛=1 l
(𝑔𝑊(𝑓θ(𝑥𝑛)),𝑦𝑛)                                                               (5)

275where the gradient is calculated using small-batch stochastic gradient descent and 
276backpropagation to minimize this loss function, and ℓ is the multinomial logarithmic loss. 
277In order to improve the previously given algorithm, we cluster the output of convnet and 
278use the outcomes of the subsequent clustering as "pseudo-labels." This deep clustering 
279method iteratively learns features and groups them. Where clustering is done using the 
280standard clustering algorithm k-means.

281K-means clustering accepts a set of input vectors and clusters the features that are 
282displayed. from the convolutional neural network (n features representing n images) into 
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283k classes. Then it assigns a pseudo-label y to each sample x according to the above loss 
284function, which is actually k-means clustering.

285                           min
𝐶 ∈ 𝑅𝑑×𝑘

 
1
𝑁

𝑁

𝑛=1
 min

𝑦𝑛 ∈ {0,1}𝑘
||𝑓θ(𝑥𝑛) ― 𝐶𝑦𝑛 ||2

2, such that 𝑦⊤
𝑛1𝑘 = 1                           (6)

286Using this formula to jointly learn the d × k prime matrix C and the clustering 
287assignment 𝑦𝑛 for each image n, overall, deep cluster alternatively clusters the features 
288using Equations (6) to generate pseudo labels or updates the parameters of the network 
289by predicting these pseudo labels using Equations (5). The deep clustering method 
290introduced in Equation (6) has been shown to improve the performance of traditional 
291supervised learning methods by leveraging the unsupervised nature of clustering 
292algorithms to learn more informative feature representations. This approach is 
293particularly effective when labeled data is scarce or expensive to obtain, as it allows the 
294model to learn from the vast amounts of unlabeled data that are available.

295One advantage of deep clustering is that it can be used to learn representations that 
296are more robust to variations in the input data, such as changes in lighting or perspective. 
297By clustering the features of multiple images, the model can identify patterns that are 
298consistent across different instances of the same object or scene, and use this information 
299to improve its ability to classify new images.

300Another benefit of deep clustering is that it can be used to perform unsupervised 
301feature learning, which can be used to pretrain the parameters of a neural network before 
302fine-tuning it on a smaller labeled dataset. This can help to mitigate the problem of 
303overfitting, which can occur when the model is trained on a limited amount of labeled 
304data. By pretraining the model on a larger amount of unlabeled data, the model can learn 
305more generalizable feature representations that can be fine-tuned to specific tasks with 
306smaller amounts of labeled data.

307Overall, deep clustering is a promising approach to improve the performance of 
308supervised learning methods, and has been shown to be effective in a wide range of 
309computer vision tasks, including object recognition, image retrieval, and semantic 
310segmentation. By leveraging the complementary strengths of supervised and 
311unsupervised learning, deep clustering can help to overcome the limitations of traditional 
312supervised learning methods and unlock new possibilities in computer vision research.

3133.3 Avoiding tractable solutions

314When using clustering, one encounters the case of a nontrivial solution. A nontrivial 
315solution is a network that, if not qualified during the training process, may take shortcuts 
316to fit the loss function and learn nothing instead. Two options to avoid this are mentioned 
317in this paper.

3183.3.1 Empty clusters

319Using the model to predict pseudo-labels may cause the features generated by the 
320network to be clustered around a certain cluster center, leaving other cluster centers 
321without samples, this is because there is no restriction that a certain cluster center cannot 
322have no samples. When a cluster center is empty, one option is to randomly choose a non-
323empty cluster center and add some small perturbations to it as a new cluster center while 
324letting the samples belonging to the non-empty cluster center also belong to the new 
325cluster center. However, this requires computing the entire dataset and is too expensive. 
326Another option is to limit the minimum number of samples per cluster center.

3273.3.2 Trivial parametrization
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328The fact that a lot of data is grouped into a limited number of classes is another issue. 
329To be grouped into a single class represents an extreme case in which the network might 
330result in the same output for any given set of inputs. The answer to this issue is to 
331uniformly sample the samples depending on categories (or pseudo-labels). This approach 
332is also equivalent to weighting the loss function according to the number of Clusters in 
333each.

334In this paper, we use a two-stage unsupervised clustering approach where the deep 
335clustering framework utilizes convnet for preprocessing and feature extraction. The 
336output is clustered and the results of the subsequent clustering are used as "pseudo-
337labels", which are iteratively learned and grouped using deep clustering methods. Finally, 
338anomaly detection is performed by clustering and classification.

3394.Experimental Results
340The previous section was used to input the unsupervised neural network in order to 

341extract the most important features. After then, the features were divided into two phases. 
342ELBOW, FINGER, FOREARM, HAND, HUMERUS, SHOULDER, and WRIST were the 
343first seven bone types assigned to the input bone X-rays. Then, the second stage detects 
344abnormalities in that bone type by training the classifier with normal or abnormal skeletal 
345measurements. The next subsection provides information about: 1. the utilized dataset; 2. 
346the experimental details; and 3. the experimental results.

3474.1 dataset

348This study used the MURA dataset, one of the largest publicly available skeletal 
349imaging databases, for training and testing. There are seven main categories, totaling 9067 
350normal and 5915 pathological musculoskeletal rays in the upper extremity: the ELBOW, 
351FINGER, FOREARM, HAND, HUMERUS, SHOULDER, WRIST. Each research includes 
352several skeleton perspectives. Consequently, there are 40561 multi-view X-ray images in 
353the MURA database. There are three main groups are present:

3541) training (11,255 patients, 13,565 studies, 37,111 images)
3552) Reliable (788 patients, 1208 studies, 3225 images) 
3563) Examining (208 patients, 209 studies, 559 images)
357MURA is a musculoskeletal radiograph dataset containing 40561 multi-view 

358radiographic images from a total of 14863 studies in 12173 patients. Each one falls into one 
359of seven standard upper extremity radiology study types. Each one fits into one of these 
360categories. From 2001 through 2012, a board-certified radiologist from the Stanford School 
361of Medicine manually classified each study as normal or abnormal depending on how 
362diagnostic radiology interpreted clinical medical imaging.

363To evaluate the model and obtain radiologist-level robustness estimates, the 
364investigators obtained additional labeling from six Stanford radiologists with board 
365certification, including 207 musculoskeletal studies. Radiologists had an average of 8.32 
366years of practice experience, with years of practice ranging from 2 to 25. The investigators 
367randomly selected 3 radiologists to construct the golden rule, which was defined as the 
368label voted on by the majority of radiologists.

369In this paper, the experimental set has been performed in terms of training and 
370validation. The amount of samples per bone utilized for testing and training is displayed 
371in Tab 1.

Bone Type ELBOW FINGER FOREARM HAND HUMERUS SHOULDER WRIST

Testing 4931 5106 1825 5543 1272 8379 9752
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372Tab 1. The training and testing number of samples used in the experiments

3734.2 Implementation details

374For the classification and anomaly detection of skeletal x-rays, an unique two-stage 
375hybrid technique based on deep clustering is put forth in this study. The network 
376framework used is ResNet50, which uses a residual structure to solve the problem of deep 
377network degradation and difficulty in training for a variety of computer vision tasks by 
378enabling the network to be deeper, converge faster, and optimize more easily while 
379having fewer parameters and lower complexity compared to previous models.

380All experiments were performed on an Intel Core(TM) i5-12600K CPU with 6 cores, 
38116 GBRAM and RTX 3070. PyTorch version 1.4.0, pickleshare package 0.7.5, pillow 6.2.1, 
382scikit -image is 0.15.0 and scikit-learn is 1.0.2.

3834.3 Experimental results

384Sensitivity, specificity, are the two-stage methodologies used to gauge the 
385effectiveness of the suggested procedure. The formulae underlying these measurements, 
386which are based on using the actual normalized moments of confusion, are displayed 
387below.

388Authors should discuss the results and how they can be interpreted from the 
389perspective of previous studies and of the working hypotheses. The findings and their 
390implications should be discussed in the broadest context possible. Future research 
391directions may also be highlighted.

392𝑆e𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦% =  𝑇𝑃
𝑇𝑃 + 𝐹𝑁 × 100%                      (7)

393𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 % =  𝑇𝑃
𝑇𝑃 + 𝐹𝑃 ×  100%                     (8)

394where TP is the number of cases from the specified class that are correctly classified 
395and FN is the number of examples from the given class that are wrongly classified as 
396belonging to another class; The percentage of correctly identified instances of each 
397skeleton (class) indicates how accurate it is; where FP is the number of instances from 
398other classes that are incorrectly categorized as belonging to the given class (seven 
399skeleton types)

400which passes through a series of convolution operations. Subsequently, the pre-
401processed images were sent to different pre-trained CNN model layers, and these were 
402examined separately for the two stages. For stage 1, as shown in Table 2, the results show 
403an optimal average sensitivity and specificity of 99.76% and 99.53%, respectively.

404Fig 3 shows the confusion matrix results for each category, with horizontal and 
405vertical coordinates 1 to 7 denoted as ELBOW, FINGER, FOREARM, HAND, HUMER, 
406SHOULDER, WRIST, respectively. Through the confusion matrix, it is obvious that the 
407results of the FINGER and FOREARM categories are significantly better than the other 
408five categories, achieving good. The results of HUMERUS and SHOULDER are 82.90% 
409and 83.84% respectively. Effective results were also obtained; finally, the results of 
410ELBOW, HAND, WRIST were slightly poor, probably due to the low resolution of the 
411images.

412Tab 2 indicates the sensitivity and specificity results of the first stage. The accuracy 
413exceeds 90% for each category of individual usage. Additionally, this phase had the best 
414average sensitivity and specificity at 99.97% and 99.79%, respectively. The second stage's 
415primary goal was to find any skeletal anomalies. Tab 3 displays the sensitivity and 

Training 4931 5106 1825 5543 1272 8379 9752
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416specificity for each bone individually. For this stage, the best mean's sensitivity and 
417specificity were 83.28% and 97.56%, respectively. It demonstrates the value of the 
418approach suggested in this paper, which can produce accurate classification outcomes 
419while using less training data.

420Through comparative analysis, the comparison between the proposed deep 
421clustering and GNG-Modified VGG [31] in this paper yields the results shown in Tab 4. 
422Using the Resnet-50 network architecture and the stage 2 results obtained by 
423unsupervised deep reading clustering, the results are significantly closer than the 
424supervised results. They are able to reduce computation and time consumption while 
425eliminating a large amount of training data, suggesting inspiration for the future use of 
426this method for practical applications.

427Tab.2 Sensitivity and Specificity of deep clustering model for Stage 1

428Tab 3. Sensitivity and Specificity results of deep clustering models in Stage 2

Bone ELBOW FINGER FOREARM HAND HUMERUS SHOULDER WRIST AVERAGE

Sensitivity 80.56% 87.67% 86.54% 81.38% 82.90% 83.84% 80.07% 83.28%

Specificity 93.26% 94.85% 98.77% 99.68% 99.39% 98.18% 98.79% 97.56%

429Tab 4. Sensitivity and Specificity results of Contrast effect

Method Backbone Average Sensitivity Average Specificity
GNG-Modified VGG[31] Resnet-50 92.50% 92.12%
Deep Clustering Resnet-50 83.28% 97.56%

430

4315. Conclusion And Future Work
432In this paper, we propose a reliable two-stage unsupervised deep clustering 

433framework detection technique for skeletal anomalies, which combines deep learning to 
434jointly learn the parameters of a neural network together with the clustering assignment 
435of the resultant features. It is trained to detect anomalies. In this paper, experiments were 
436conducted using the MURA dataset, the largest public skeletal image dataset. The first 
437stage's optimal average sensitivity and specificity were 99.76% and 99.53%, respectively. 
438The optimal average sensitivity and specificity were 83.28% and 97.56%, respectively, for 
439the second stage.

440Through extensive experiments on MURA, It is shown that the approach outlined in 
441this work can provide fruitful outcomes and lead to important advances in subsequent 
442research. We anticipate what the future will bring: 1)This paper is limited by the category 
443of the dataset and can only be applied to the x-ray identification of categories and 
444abnormalities of seven upper limb bones. We hope to extend the application to more 
445categories of bone x-ray classification and abnormality detection in the future. 2)There are 
446gaps between datasets, which originate from acquisition devices and regional differences, 
447so this paper hopes to explore some unsupervised frameworks with better generalization 
448performance in the future.

449

450Acknowledgments
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