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Background: Although clinical features of multi-parametric magnetic resonance 28 

imaging (mpMRI) have been associated with biochemical recurrence in localized 29 

prostate cancer, such features are subject to inter-observer variability.  30 

Objective: To evaluate whether the volume of the dominant intraprostatic lesion (DIL), 31 

as provided by a deep learning segmentation algorithm, could provide prognostic 32 

information for patients treated with definitive radiation therapy (RT). 33 

Design, Setting, and Participants: Retrospective study of 438 patients with localized 34 

prostate cancer who underwent an endorectal coil, high B-value, 3-Tesla mpMRI and 35 

were treated with RT between 2010 and 2017.  36 

Intervention: RT. 37 

Outcome Measurements and Statistical Analysis: Biochemical recurrence and 38 

metastasis risk, assessed with a cause-specific Cox regression and time-dependent 39 

receiver operating characteristic analysis. 40 

Results and Limitations: The artificial intelligence (AI) model identified DILs with an 41 

area under the receiver operating characteristic curve (AUROC) of 0.827 at the patient 42 

level. For the 233 patients with available PI-RADS scores, with a median follow-up of 43 

5.6 years, AI-defined DIL volume was significantly associated with biochemical failure 44 

(adjusted hazard ratio 1.54, 95% confidence interval 1.09-2.17, p=0.014) after 45 

adjustment for PI-RADS score. Among all 438 patients with a median follow-up of 6.9 46 

years, the AUROC for predicting 7-year biochemical failure for AI volume (0.790) was 47 

similar to that for an expanded National Comprehensive Cancer Network (NCCN+) 48 

category (p=0.17). The AUROC for predicting 7-year metastasis for AI volume trended 49 

towards being higher compared to NCCN+ categories (0.854 vs 0.769, p=0.06). 50 
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Conclusions: A deep learning algorithm could identify the DIL with good performance. 51 

AI-defined DIL volume may be able to provide prognostic information independent of the 52 

NCCN+ risk group or other radiologic factors for patients with localized prostate cancer 53 

treated with RT.  54 
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Introduction 55 

 Multi-parametric magnetic resonance imaging (mpMRI) has revolutionized the 56 

management of localized prostate cancer. mpMRI-based biopsy strategies have been 57 

shown to improve the detection of clinically significant disease while reducing the 58 

detection of clinically insignificant disease1–4. Furthermore, the characteristics of 59 

dominant intraprostatic lesions (DILs) on mpMRI, including PI-RADS scores5, radiologic 60 

T-stage6,7, and lesion size8–11, have been shown to be prognostic. Recently, a 61 

nomogram based on clinical and radiologic parameters was found to be highly 62 

prognostic for early biochemical recurrence after radical prostatectomy12.  63 

 However, the assignment of various clinical features on mpMRI is subject to 64 

significant inter-observer variability. For example, multiple grading systems13–15 exist for 65 

assigning extracapsular extension (EPE), each with differing sensitivities for the 66 

detection of histologic EPE extent16. Multi-reader studies have reported moderate inter-67 

observer variability in the reporting of Prostate Imaging Reporting and Data Systems 68 

(PI-RADS) v2.0 scores17–19. A recent study demonstrated that the positive predictive 69 

value of PI-RADS scores for detecting high-grade prostate cancer was low (35%) and 70 

variable across 26 centers20. The varied performance of mpMRI is likely multifactorial 71 

and could be partially attributed to technical and interpretative factors, as well as benign 72 

conditions that mimic malignancy21.  73 

 Given these limitations, there has been considerable interest in the development 74 

of artificial intelligence (AI) algorithms for supporting the radiologist’s workflow. Although 75 

the performance of AI algorithms has not been shown to match that of radiologists for 76 

the detection of clinically significant prostate cancer22, recent work suggests that deep 77 
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learning algorithms could be used as an adjunct for assisting radiologists23. However, 78 

less is known about the prognostic information provided by deep learning algorithms, 79 

particularly in comparison to current staging systems. The purpose of this study is to 80 

evaluate whether the mpMRI DIL volume, as determined by a deep learning 81 

segmentation algorithm24, could provide prognostic information for patients with 82 

localized prostate cancer treated with definitive radiation therapy (RT).  83 

  84 
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Methods 85 

Clinical datasets 86 

 We conducted a retrospective study of 438 patients with cT1cN0M0 prostate 87 

cancer who underwent an endorectal coil, high B-value, 3-Tesla mpMRI and were 88 

treated with definitive prostate RT, both at our institution, between 2010 and 2017 89 

(Table S1). mpMRI were obtained with either General Electric (GE) Signa HDxt (n=237) 90 

or DISCOVERY MR750w (n=201) (Table S2). Apparent diffusion coefficient 91 

(ADC)/diffusion-weighted imaging (DWI) were obtained at the same resolution (0.70 x 92 

0.70 x 3-4 mm) as the T2-weighted images. All research was conducted with approval 93 

from the institutional review board.  94 

We captured baseline clinical characteristics and treatment characteristics (Table 95 

1). We stratified patients into an expanded National Cancer Center Network (NCCN+) 96 

classification, based on the 4-tiered NCCN stratification (low, favorable intermediate-97 

risk, unfavorable intermediate-risk, high-risk)25, with the addition of a very high-risk 98 

category per eligibility criteria from recent STAMPEDE trials (≥2 of the following: cT3-99 

T4, Gleason score 8-10, or PSA ≥40 ng/mL)26. We captured radiologic staging 100 

parameters, including PI-RADS v2.0 scores27, which were assessed by a subspecialty 101 

abdominal radiologist (L.K.L.) for 83 patients who were scanned in 2010-2013 and 102 

available for all patients after mid-2015, as well as radiologic T-stage (T1: no visible 103 

tumor on mpMRI, T2: organ-confined, T3a: EPE, T3b: seminal vesicle invasion [SVI]) 104 

based on mpMRI. Lastly, we captured outcomes including biochemical failure (nadir+2 105 

ng/mL), development of metastasis (non-regional nodal or distant disease on bone 106 

scan, computed tomography, or positron emission tomography), and survival.  107 
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 We divided patients into 3 cohorts. Of the 233 patients with available PI-RADS 108 

scores, we randomly allocated them into training (TrainPIRADS) and testing 109 

(TestPIRADS) sets. The remaining 205 patients were allocated into a second testing 110 

(TestNoPIRADS) set. For the TrainPIRADS and TestPIRADS sets, a radiation 111 

oncologist contoured the prostate transitional zone (TZ), peripheral zone (PZ), and DIL 112 

based on the presence of PI-RADS 3-5 scores. For the TestNOPIRADS set, the 113 

radiation oncologist contoured only the DIL based on radiology reports and biopsy data.  114 

 115 

nnUNet algorithm 116 

 We utilized the publicly available nnUNet24 deep learning algorithm for automated 117 

delineations of the TZ, PZ, and DIL. First, T2, ADC, and DWI images were downloaded 118 

onto a research workstation. Images were anonymized and cropped into smaller arrays 119 

(128 x 128 x 15 or 20 pixels). T2-weighted images were registered onto the ADC 120 

images, utilizing the best performing registration among 4 algorithms (rigid, rigid + B-121 

spline, affine, affine + B-spline) of prostate segmentation distance maps28. The median 122 

registration Dice coefficient was 0.92 (interquartile range [IQR] 0.90-0.94).  123 

We trained a 3D full-resolution nnUNet model utilizing 5-fold cross-validation on 124 

the TrainPIRADS set. We then applied the selected configuration onto the TestPIRADS 125 

and TestNoPIRADS sets. With the utilization of 5-fold cross-validation on the training 126 

set and application of the model on the 2 testing sets, we generated TZ, PZ, and DIL 127 

segmentations for all 438 patients.  128 

 129 

Assessment of AI DIL volume performance 130 
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We reported the Dice coefficients for the TZ and PZ, as noted by nnUNet. For the 131 

DIL, we analyzed the detection performance (patient-level area under the receiver 132 

operator characteristic curve [AUROC] and lesion-level specificity at 0.5 false positive 133 

per image) utilizing PICAI_eval29. To assess whether false positive (FP) or false 134 

negative (FN) lesions were smaller and less conspicuous than true positives (TP), we 135 

classified AI lesions as TP, FP, or FN, based on whether a reference DIL was present 136 

and correctly identified (TP: Dice coefficient ≥10%29), identified but not present (FP), or 137 

present but not identified or with insufficient Dice coefficient overlap (<10%) (FN). We 138 

analyzed lesion-level DIL volumes and contrast ratios (ratio of ADC intensities within the 139 

DIL versus a surrounding 2mm ring) based on classification status. Finally, we reported 140 

the similarity metrics (Dice coefficient) for TP lesions. All processing was performed 141 

using Python version 3.8.12 with the SimpleITK toolkit.  142 

 143 

Comparison of AI and reference DIL volumes for sextant subset 144 

For the 303 patients with sextant biopsies among all 3 cohorts, we compared the 145 

ability of the AI and reference DIL contours to detect clinically significant (Gleason grade 146 

group ≥2) disease within each sextant. We compared area under the curve (AUC) 147 

values utilizing ROC analysis (R package pROC). AI and reference DIL contours were 148 

allocated according to sextants based on the reference prostate contour.  149 

 150 

Comparison of DIL volume with radiologic staging for PI-RADS subset 151 

For the 233 patients (TrainPIRADS and TestPIRADS) with available PI-RADS 152 

scores among all 3 cohorts, we conducted cause-specific Cox regression models (R 153 
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package coxph) for predicting biochemical failure with log-transformed AI DIL volume in 154 

cm3 (VAI), clinical T-stage, radiologic T-stage, PI-RADS scores (0-4 vs 530), age, 155 

whether patients received standard of care (SOC, i.e. ≥75.6 Gy if receiving external 156 

beam RT and androgen deprivation therapy [ADT] duration of 6 months for unfavorable 157 

intermediate-risk disease and ≥18 months for high/very high-risk disease), year of 158 

treatment, and scanner model (Signa HDxt vs DISCOVERY MR750w) as independent 159 

variables. An additional Cox regression model for metastasis was created using the 160 

above independent variables with the addition of salvage ADT use as a time-dependent 161 

variable. 162 

 163 

Comparison of DIL volume with NCCN+ risk category for entire cohort 164 

 For the entire cohort, we created ROC curves for NCCN+, reference DIL volume 165 

(VREF), and VAI for predicting 7-year biochemical failure and metastasis, utilizing the 166 

timeROC package. We also created cause-specific Cox regression models (R package 167 

coxph) for predicting risk of biochemical failure, local failure, and metastasis. 168 

Independent variables included log-transformed VAI, NCCN+ classification, age, receipt 169 

of SOC, year of treatment, scanner model, and for local failure and metastasis models, 170 

salvage ADT use as a time-dependent variable. Finally, we estimated cumulative 171 

incidences of biochemical failure, local failure, and metastasis, based on partitions of VAI 172 

intervals, utilizing the R package prodlim. All statistical analysis was conducted with R 173 

version 4.1.2.  174 
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Results 175 

Assessment of AI DIL performance 176 

 For the TestPIRADS cohort, median Dice coefficients for the TZ and PZ were 177 

0.89 and 0.84, respectively (Table S3). The nnUNet exhibited a patient-level AUROC of 178 

0.827 and a lesion-level sensitivity of 72.7% at a false positive rate of 0.5 case per 179 

image (Table S4). For patient-level analysis (Table S5), there was no significant 180 

difference between VAI (median 1.02cm3, IQR 0.40-2.34) and VREF (median 1.31cm3, 181 

IQR 0.37-2.61, p=0.66), with Pearson’s correlation coefficient of 0.79. For lesion-level 182 

analysis (Table S6), the total volume of AI TP lesions (median 1.06cm3, IQR 0.47-1.85) 183 

was significantly greater than for FP (median 0.25cm3, IQR 0.09-0.58; p<0.001) and FN 184 

(median 0.37cm3, IQR 0.21-0.88, p=0.007) lesions. The TP lesions were also more 185 

conspicuous (median contrast ratio 0.72, IQR 0.68-0.76) than FP (median 0.83, IQR 186 

0.79-0.86; p<0.001) and FN (median 0.81, IQR 0.79-0.88; p<0.001) lesions. The 187 

median Dice coefficient for TP lesions was 0.74. Examples of TP, FP, and FN lesions 188 

are shown in Fig. S1.  189 

 190 

Comparison of AI and reference DIL contours for sextant subset 191 

For the subset of 303 patients with sextant biopsies among all 3 cohorts, we did 192 

not detect a difference in AUROC values associated with AI versus reference contours 193 

for any sextant (Table S7).  194 

 195 

Comparison of DIL volume with radiologic staging for PI-RADS subset 196 
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For the 233 patients with PI-RADS scores (TrainPIRADS and TestPIRADS 197 

cohorts), with median follow-up of 5.6 years, there were 28 biochemical failures. AI 198 

algorithm detected 41.2%, 68.3%, and 87.1% of PI-RADS3, 4, and 5 lesions, 199 

respectively (Table S8). PIRADS 5 vs 0-4 (HR 5.90, 95% confidence interval [CI] 2.05-200 

17.03, p=0.001) and VAI (HR 1.89 per log cm3 increase, 95% CI 1.41-2.53, p<0.001) 201 

were significantly associated with biochemical failure on univariable analysis (Table 2). 202 

However, only VAI retained significance on multivariable analysis (adjusted HR 1.54, 203 

95% CI 1.09-2.17; p=0.014). The association between VAI and metastasis was similarly 204 

significant (adjusted HR 1.71, 95% CI 1.04-2.80, p=0.04; Table S9). 205 

 206 

Comparison of DIL volume with NCCN+ risk category for the entire cohort 207 

 Among all 438 patients with a median follow-up of 6.9 years, there were 49 208 

biochemical failures, 14 local failures, and 22 metastases. The AUROC for 7-year 209 

biochemical failure for VAI (0.790) was similar to that for VREF (0.779; p=0.42) and 210 

NCCN+ category (0.740; p=0.17). The sensitivity and specificity for 7-year biochemical 211 

failure at DIL volumes >0.5 mL were 90.5% and 45.8%, respectively, and at DIL 212 

volumes >2.0 mL, were 57.7% and 84.4%, respectively. The AUROC for predicting 7-213 

year metastasis for VAI (0.854) was similar to that for VREF (0.817; p=0.15) but trended 214 

towards being higher compared to NCCN+ category (0.769; p=0.06). The sensitivity and 215 

specificity for predicting 7-year metastasis at DIL volumes >0.5 mL were 94.3% and 216 

44.1%, respectively, and at DIL volumes >2.0 mL were 68.1% and 82.9%, respectively 217 

(Fig. 1).  218 
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 VAI was significant on both univariable and multivariable analyses for predicting 219 

biochemical failure (Table 3; adjusted HR 1.61, 95% CI 1.23-2.12, p<0.001). For 220 

metastasis, only VAI was significant on univariable and multivariable analysis (Table 4; 221 

adjusted HR, 1.71, 95% CI 1.08-2.70, p=0.02). VAI was also associated with local 222 

recurrence risk on univariable analysis (HR 1.41, 95% CI 1.00-1.98, p=0.05; Table S10). 223 

 Fig. 2 shows cumulative incidences of biochemical failure, local failure, and 224 

metastasis for VAI of 0-0.4, 0.5-1.9, and ≥2.0cm3. Respective incidences of 7-year 225 

biochemical failure were 2.7%, 9.2%, and 23.7%. Respective incidences of 7-year local 226 

failure were 1.0%, 5.8%, and 5.3%. Respective incidences of 7-year metastasis were 227 

0.7%, 2.9%, and 11.8%. Table S11 depicts the association of DIL volume ranges with 228 

NCCN+ and radiologic factors. Cumulative incidence curves for NCCN+ categories are 229 

shown in Fig. S2.  230 
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Discussion 231 

 Our study demonstrates that the prostate and DIL can be accurately delineated 232 

on mpMRI using nnUNet,24 an out-of-the-box self-configuring deep learning 233 

segmentation algorithm. Our findings suggest that AI-determined DIL volume provides 234 

prognostic information comparable to both NCCN+ risk category and human-generated 235 

DIL volume for estimating biochemical recurrence and metastasis risk for localized 236 

prostate cancer treated with RT. Furthermore, for the subset of patients with PI-RADS 237 

scores, VAI was more strongly associated with biochemical failure than other mpMRI 238 

parameters, including radiologic staging and PI-RADS score. 239 

 Though other studies have reported on the prognostic significance of tumor size 240 

for biochemical recurrence8–11, ours is among the first to show that DIL volume can be 241 

reliably obtained with an AI algorithm. This is clinically meaningful because DIL volume 242 

determination can be time-consuming and is subject to significant inter-observer 243 

variability31. The AI algorithm, on the other hand, was able to generate the DIL volume 244 

in an efficient, automated, and standardized manner. Additionally, this work may be 245 

clinically impactful as it suggests that VAI could provide important prognostic information 246 

even in the absence of a biopsy. With further validation, VAI could have the potential to 247 

provide unique prognostic information in addition to that provided with current clinical 248 

and radiologic staging systems.  249 

VAI shows exceptional promise as a potential prognostic factor as it is a single, 250 

well-defined entity which may be generated in a systematic manner from mpMRI. Unlike 251 

NCCN risk categories25, VAI does not require the presence of a systematic biopsy, which 252 

may be important as MR-only biopsies are increasingly utilized4. Unlike radiomic 253 
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approaches, VAI does not require the selection and regression of multiple features, 254 

which may have limited generalizability due to inter- and intra-scanner reproducibility32. 255 

Unlike genomic classifiers33 or digital pathology approaches34, no specific retrieval or 256 

handling of clinical specimens are required. Rather, prognostic information could be 257 

obtained directly from the mpMRI.  258 

Additionally, this study provides support for extreme dose-escalation to large 259 

DILs, either through external beam RT35 or brachytherapy36,37 techniques. We found 260 

that VAI to be associated with local recurrence risk. Given emerging evidence which 261 

strongly suggests that local failures seed distant metastases38, extreme dose-escalation 262 

in appropriately selected patients with large DILs may be clinically impactful.  263 

Our study showed that FP and FN lesions were smaller and less conspicuous 264 

than TP lesions. Our AI algorithm may have retained prognostic significance, despite 265 

missing such lesions, because of the weaker association between smaller lesions8–11 266 

and less conspicuous ADC values39 with biochemical recurrence.  267 

 Key strengths of this study include the utilization of a well-annotated 268 

contemporary patient cohort treated with modern RT approaches. Furthermore, this 269 

study shows that mpMRI obtained after prior biopsy and with an endorectal coin 270 

contains important prognostic information that can be extracted by deep learning 271 

approaches. At our institution and likely many others, most mpMRIs acquired before 272 

2018 had a pre-existing biopsy1.  273 

 It should be noted that the algorithm developed within this study may not be 274 

generalizable to MRIs obtained using different scanning parameters or without 275 

endorectal coils. External validation would be necessary to establish generalizability. It 276 
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is our hope that deep learning algorithms with similar levels of performance may be built 277 

using nnUNet (or other deep learning segmentation approaches) for MRIs obtained 278 

under different conditions. Additionally, the AI algorithm missed significant disease in a 279 

subset of cases, including 12.9% of PI-RADS 5 lesions. As a result, AI DIL volume 280 

should not be used as a standalone entity. 281 

Further research involves extending this work to multi-institutional datasets 282 

involving other scanning configurations and treatment types (e.g. surgery). We are very 283 

encouraged by the excellent performance of deep learning algorithms across multi-284 

institution datasets21,28 and look forward to the results of the PICAI-Eval challenge29. 285 

Only with additional information can we better understand the full potential of deep 286 

learning AI algorithms for providing potentially valuable prognostic information for 287 

patients.   288 
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Characteristics TrainPIRADS (n=150) TestPIRADS (n=83) TestNoPIRADS (n= 205) 

Age       

  Median (IQR) 69.5 (64.0, 73.0) 68.0 (65.0, 73.0) 66 (61.0, 72.0) 

Gleason grade group       

  1 18 (12.0%) 17 (20.5%) 90 (43.9%) 

  2 62 (41.3%) 32 (38.6%) 70 (34.2%) 

  3 30 (20.0%) 11 (13.3%) 23 (11.2%) 

  4 22 (14.7%) 9 (10.8%) 9 (4.4%) 

  5 18 (12.0%) 14 (16.9%) 13 (6.3%) 

Clinical T-stage       

  T1-T2a 122 (81.3%) 69 (83.1%) 182 (88.8%) 

  T2b-T2c 12 (8.0%) 10 (12.1%) 17 (8.3%) 

  T3a 8 (5.3%) 3 (3.6%) 5 (2.4%) 

  T3b 8 (5.3%) 1 (1.2%) 1 (0.5%) 

PSA       

  0-9.9 107 (71.3%) 63 (75.9%) 179 (87.3%) 

  10.0-19.9 27 (18.0%) 12 (14.5%) 19 (9.3%) 

  20.0+ 16 (10.7%) 8 (9.6%) 7 (3.4%) 

PPC       

  0-49% 80 (53.3%) 49 (59.0%) 161 (78.5%) 

  50-100% 65 (43.3%) 33 (39.8%) 41 (20.0%) 

  Missing 5 (3.3%) 1 (1.2%) 3 (1.5%) 

NCCN+ category       

  Low 13 (8.7%) 14 (16.9%) 80 (39.0%) 

  FIR 34 (22.7%) 14 (16.9%) 57 (27.8%) 

  UIR 52 (34.7%) 24 (28.9%) 38 (18.5%) 

  High 37 (24.7%) 28 (33.7%) 26 (12.7%) 

  Very High 14 (9.3%) 3 (3.61) 4 (2.0%) 

Model       

  Signa HDxt 52 (34.7%) 31 (37.3%) 154 (75.1%) 
  DISCOVERY 

MR750w 98 (65.3%) 52 (62.7%) 51 (24.9%) 

PIRADS       

  0-2 6 (4.0%) 10 (12.1%) NA 

  3 15 (10.0%) 8 (9.6%) NA 

  4 48 (32.0%) 24 (28.9%) NA 

  5 81 (54.0%) 41 (49.4%) NA 

Radiologic T-stage       

  T1 6 (4.00%) 10 (12.05%) N/A 

  T2 83 (55.33%) 49 (59.04%) N/A 

  T3a 45 (30.00%) 20 (24.10%) N/A 

  T3b 16 (10.67%) 4 (4.82%) N/A  

Hemorrhage       

  Yes 56 (37.33%) 28 (33.73%) N/A 
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  No 94 (62.67%) 55 (66.27%) N/A 

Time between biopsy 
and MRI (days)       
  Patients with 
available data 148 82 204 

  Median (IQR) 46.5 (24.0, 72.3) 48.5 (22.5, 101.3) 36.0 (19.0, 59.3) 

Time between MRI 
and Treatment (days)       

  Median (IQR) 23.0 (7.3, 50.3) 44.0 (15.5, 66.0) 54.0 (27.0, 83.0) 

Radiation Therapy       

  EBRT 110 (73.3%) 54 (65.1%) 83 (40.5%) 

  Brachytherapy 21 (14.00%) 19 (22.9%) 117 (57.1%) 

  Combination 19 (12.7%) 10 (12.0%) 5 (2.4%) 

Radiation Nodal 
Coverage       

  Prostate/SV 132 (88.0%) 71 (85.5%) 199 (97.1%) 

  Pelvic Nodes 18 (12.0%) 12 (14.5%) 6 (2.9%) 

Prostate EBRT Dose 
(cGy)       

  7020 8 (5.33%) 5 (6.02%) 8 (3.90%) 

  7560-7920 100 (66.67%) 49 (59.04%) 75 (36.59%) 

  6000 2 (1.33%) 0 (0.00%) 0 (0.00%) 

ADT Duration (mo)       

  0-2.9 36 (24.0%) 28 (33.7%) 126 (61.4%) 

  3.0-6.0 71 (47.3%) 31 (37.4%) 53 (25.9%) 

  6.1-18.0 7 (4.7%) 4 (4.8%) 2 (1.0%) 

  >18.0 36 (24.0%) 20 (24.1%) 24 (11.7%) 

Systemic therapy 
Intensification       

  None 138 (92.0%) 77 (92.8%) 198 (96.5%) 

  Docetaxel 2 (1.3%) 1 (1.2%) 4 (2.0%) 

  Enzalutamide 10 (6.7%) 5 (6.0%) 3 (1.5%) 

Year of Treatment 
Initiation       

  2010-2014 52 (34.7%) 31 (37.3%) 187 (91.2%) 

  2015-2017 98 (65.3%) 52 (62.7%) 18 (8.8%) 

 289 

Table 1: Baseline clinical, radiologic, and treatment factors. 290 

SV: seminal vesicles. EBRT: external beam radiation therapy. Radiologic T stage and 291 

hemorrhage data were not available for the TestNoPIRADS cohort. 292 
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Characteristic HR (95% CI) p-value AHR (95% CI) p-value 

Clinical T-stage        

  T1c-T2a (ref) - -    

  T2b-T2c 0.88 [0.20, 3.76] 0.86    

  T3a 2.51 [0.85, 7.38] 0.1    

  T3b 1.09 [0.15, 8.14] 0.93    

Radiologic T-
stage         

  T1 (ref) - -    

  T2 0.77 [0.10, 6.18] 0.81    

  T3a 2.33 [0.30, 17.95] 0.42    

  T3b 4.18 [0.51, 34.38] 0.18     

PIRADS         

  0-4 (ref) - - - - 

  5 5.90 [2.05, 17.03] 0.001 2.47 [0.72, 8.29] 0.14 

Age 0.91 [0.86, 0.96] <0.001 0.93 [0.88, 0.98] 0.005 

SOC  0.90 [0.40, 2.06] 0.81   

Year of Treatment 1.04 [0.88, 1.24] 0.62   

MRI model 1.07 [0.43, 2.62] 0.89   

AI Volume 1.89 [1.41, 2.53] <0.001 1.54 [1.09, 2.17] 0.014 
 293 

Table 2: Cox regression model for biochemical failure for the subset of 233 patients with 294 

available PI-RADS scores.  295 

CI: confidence interval. HR: hazard ratio. AHR: adjusted hazard ratio. SOC: standard of 296 

care treatment. Ref: reference.  297 

  298 
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Characteristic HR p-value AHR p-value 

NCCN+         

  Low (ref) - - - - 

  FIR 1.72 [0.38, 7.71] 0.48 1.58 [0.34, 7.21] 0.56 

  UIR 6.59 [1.91, 22.73] 0.003 4.52 [1.26, 16.22] 0.02 

  High 9.51 [2.79, 32.49] <0.001 4.64 [1.23, 17.52] 0.02 

  Very high 20.99 [5.50, 80.08] <0.001 4.35 [0.89, 21.15] 0.07 

Age 0.95 [0.91, 0.98] 0.006 0.93 [0.90, 0.97] <0.001 

SOC  0.89 [0.44, 1.78] 0.74   

Year of Treatment 1.15 [1.00, 1.33] 0.05 0.99 [0.74, 1.33] 0.96 

MRI model 2.86 [1.47, 5.58] 0.002 0.64 [0.17, 2.49] 0.52 

AI Volume 2.00 [1.62, 2.46] <0.001 1.61 [1.23, 2.12] <0.001 

 299 

Table 3: Cox regression model for biochemical failure for all patients.  300 

CI: confidence interval. HR: hazard ratio. AHR: adjusted hazard ratio. SOC: standard of 301 

care treatment. Ref: reference. FIR: favorable intermediate-risk. UIR: unfavorable 302 

intermediate-risk.  303 

  304 
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Characteristic HR (95% CI) p-value AHR (95% CI) p-value 

NCCN+         

  Low/FIR (ref) - - - - 

  UIR 3.07 [0.68, 13.76] 0.14 1.33 [0.27, 6.48] 0.73 

  High 10.63 [2.95, 38.29] <0.001 3.18 [0.75, 13.60] 0.12 

  Very high 17.84 [3.94, 80.71] <0.001 1.47 [0.21, 10.27] 0.7 

Age 0.96 [0.90, 1.02] 0.016   

SOC  1.04 [0.35, 3.08] 0.94   

Year of Treatment 1.23 [0.97, 1.55] 0.08   

MRI model 5.36 [1.70, 16.86] 0.004 0.53 [0.17, 1.66] 0.27 

Salvage ADT 
29.53 [11.19, 

77.92] <0.001 12.58 [4.51, 31.11] <0.001 

AI Volume 2.29 [1.67, 3.15] <0.001 1.71 [1.08, 2.70] 0.02 

 305 

Table 4: Cox regression model for metastasis for all patients.  306 

CI: confidence interval. HR: hazard ratio. AHR: adjusted hazard ratio. SOC: standard of 307 

care treatment. Ref: reference. FIR: favorable intermediate-risk. UIR: unfavorable 308 

intermediate-risk.  309 

  310 
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a) b)  311 

 312 

Fig 1: Receiver operating characteristics curves for 7-year biochemical failure (a) and 313 

metastasis (b), comparing AI DIL volume (red) against reference DIL volume (blue) and 314 

NCCN+ stratification (black). Circle and triangle are points on the AI volume receiver 315 

operating characteristics curve corresponding to thresholds of 0.5 cc and 2.0 cc, 316 

respectively.  317 

  318 
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a) b)  319 

c)  320 

Fig 2: Cumulative incidence curves of DIL volume intervals (0-0.4, 0.5-1.9, 2.0- cc) with 321 

(a) biochemical failure, (b) local failure, and (c) metastasis.  322 
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