Association Between Artificial Intelligence-Derived Tumor Volume and Oncologic Outcomes for Localized Prostate Cancer Treated with Radiation Therapy

- 3
- 4 David D Yang^{a,b,*}, Leslie K Lee^{b,*}, James MG Tsui^c, Jonathan E Leeman^{a,b}, Katie N
- 5 Lee^{a,b}, Heather M McClure^a, Atchar Sudhyadhom^{a,b}, Christian V Guthier^{a,b}, Kent W
- 6 Mouw^{a,b}, Neil E Martin^{a,b}, Peter F Orio^{a,b}, Paul L Nguyen^{a,b}, Anthony V D'Amico^{a,b},
- 7 Martin T King^{a,b}
- 8
- ⁹ ^aDana-Farber Cancer Institute, Boston, MA, USA
- 10 ^bBrigham and Women's Hospital, Boston, MA, USA
- 11 °McGill University, Montreal, Canada
- 12
- 13 *Equal contribution
- 14

15 **Corresponding Author**

- 16 Martin T King
- 17 75 Francis St
- 18 Boston, MA 02115
- 19 Telephone: +1-617-732-5640
- 20 Fax: +1-617-632-4247
- 21 Email: Martin_King@dfci.harvard.edu
- 22
- 23 Keywords: artificial intelligence; deep learning; dominant intraprostatic lesion; magnetic
- resonance imaging; PI-RADS; prostate cancer; radiomics; radiation therapy
- 25
- 26 Abstract word count: 300
- 27 Text word count: 2794 (including abstract)

2

- 28 Background: Although clinical features of multi-parametric magnetic resonance
- imaging (mpMRI) have been associated with biochemical recurrence in localized
- 30 prostate cancer, such features are subject to inter-observer variability.
- 31 **Objective**: To evaluate whether the volume of the dominant intraprostatic lesion (DIL),
- 32 as provided by a deep learning segmentation algorithm, could provide prognostic
- information for patients treated with definitive radiation therapy (RT).

34 **Design, Setting, and Participants**: Retrospective study of 438 patients with localized

prostate cancer who underwent an endorectal coil, high B-value, 3-Tesla mpMRI and

were treated with RT between 2010 and 2017.

37 Intervention: RT.

Outcome Measurements and Statistical Analysis: Biochemical recurrence and
 metastasis risk, assessed with a cause-specific Cox regression and time-dependent

40 receiver operating characteristic analysis.

41 **Results and Limitations**: The artificial intelligence (AI) model identified DILs with an

42 area under the receiver operating characteristic curve (AUROC) of 0.827 at the patient

43 level. For the 233 patients with available PI-RADS scores, with a median follow-up of

44 5.6 years, AI-defined DIL volume was significantly associated with biochemical failure

45 (adjusted hazard ratio 1.54, 95% confidence interval 1.09-2.17, p=0.014) after

46 adjustment for PI-RADS score. Among all 438 patients with a median follow-up of 6.9

47 years, the AUROC for predicting 7-year biochemical failure for AI volume (0.790) was

48 similar to that for an expanded National Comprehensive Cancer Network (NCCN+)

49 category (p=0.17). The AUROC for predicting 7-year metastasis for AI volume trended

towards being higher compared to NCCN+ categories (0.854 vs 0.769, p=0.06).

- 51 **Conclusions**: A deep learning algorithm could identify the DIL with good performance.
- 52 Al-defined DIL volume may be able to provide prognostic information independent of the
- 53 NCCN+ risk group or other radiologic factors for patients with localized prostate cancer
- 54 treated with RT.

4

55 Introduction

56	Multi-parametric magnetic resonance imaging (mpMRI) has revolutionized the
57	management of localized prostate cancer. mpMRI-based biopsy strategies have been
58	shown to improve the detection of clinically significant disease while reducing the
59	detection of clinically insignificant disease ^{1–4} . Furthermore, the characteristics of
60	dominant intraprostatic lesions (DILs) on mpMRI, including PI-RADS scores ⁵ , radiologic
61	T-stage ^{6,7} , and lesion size ^{8–11} , have been shown to be prognostic. Recently, a
62	nomogram based on clinical and radiologic parameters was found to be highly
63	prognostic for early biochemical recurrence after radical prostatectomy ¹² .
64	However, the assignment of various clinical features on mpMRI is subject to
65	significant inter-observer variability. For example, multiple grading systems ^{13–15} exist for
66	assigning extracapsular extension (EPE), each with differing sensitivities for the
67	detection of histologic EPE extent ¹⁶ . Multi-reader studies have reported moderate inter-
68	observer variability in the reporting of Prostate Imaging Reporting and Data Systems
69	(PI-RADS) v2.0 scores ^{17–19} . A recent study demonstrated that the positive predictive
70	value of PI-RADS scores for detecting high-grade prostate cancer was low (35%) and
71	variable across 26 centers ²⁰ . The varied performance of mpMRI is likely multifactorial
72	and could be partially attributed to technical and interpretative factors, as well as benign
73	conditions that mimic malignancy ²¹ .
74	Given these limitations, there has been considerable interest in the development

Given these limitations, there has been considerable interest in the development of artificial intelligence (AI) algorithms for supporting the radiologist's workflow. Although the performance of AI algorithms has not been shown to match that of radiologists for the detection of clinically significant prostate cancer²², recent work suggests that deep

- ⁷⁸ learning algorithms could be used as an adjunct for assisting radiologists²³. However,
- 79 less is known about the prognostic information provided by deep learning algorithms,
- 80 particularly in comparison to current staging systems. The purpose of this study is to
- 81 evaluate whether the mpMRI DIL volume, as determined by a deep learning
- 82 segmentation algorithm²⁴, could provide prognostic information for patients with
- 83 localized prostate cancer treated with definitive radiation therapy (RT).

6

85 Methods

86 Clinical datasets

87	We conducted a retrospective study of 438 patients with cT1cN0M0 prostate
88	cancer who underwent an endorectal coil, high B-value, 3-Tesla mpMRI and were
89	treated with definitive prostate RT, both at our institution, between 2010 and 2017
90	(Table S1). mpMRI were obtained with either General Electric (GE) Signa HDxt (n=237)
91	or DISCOVERY MR750w (n=201) (Table S2). Apparent diffusion coefficient
92	(ADC)/diffusion-weighted imaging (DWI) were obtained at the same resolution (0.70 x
93	0.70 x 3-4 mm) as the T2-weighted images. All research was conducted with approval
94	from the institutional review board.
95	We captured baseline clinical characteristics and treatment characteristics (Table
96	1). We stratified patients into an expanded National Cancer Center Network (NCCN+)
97	classification, based on the 4-tiered NCCN stratification (low, favorable intermediate-
98	risk, unfavorable intermediate-risk, high-risk) ²⁵ , with the addition of a very high-risk
99	category per eligibility criteria from recent STAMPEDE trials (\geq 2 of the following: cT3-
100	T4, Gleason score 8-10, or PSA \geq 40 ng/mL) ²⁶ . We captured radiologic staging
101	parameters, including PI-RADS v2.0 scores ²⁷ , which were assessed by a subspecialty
102	abdominal radiologist (L.K.L.) for 83 patients who were scanned in 2010-2013 and
103	available for all patients after mid-2015, as well as radiologic T-stage (T1: no visible
104	tumor on mpMRI, T2: organ-confined, T3a: EPE, T3b: seminal vesicle invasion [SVI])
105	based on mpMRI. Lastly, we captured outcomes including biochemical failure (nadir+2
106	ng/mL), development of metastasis (non-regional nodal or distant disease on bone
107	scan, computed tomography, or positron emission tomography), and survival.

7

108	We divided patients into 3 cohorts. Of the 233 patients with available PI-RADS
109	scores, we randomly allocated them into training (TrainPIRADS) and testing
110	(TestPIRADS) sets. The remaining 205 patients were allocated into a second testing
111	(TestNoPIRADS) set. For the TrainPIRADS and TestPIRADS sets, a radiation
112	oncologist contoured the prostate transitional zone (TZ), peripheral zone (PZ), and DIL
113	based on the presence of PI-RADS 3-5 scores. For the TestNOPIRADS set, the
114	radiation oncologist contoured only the DIL based on radiology reports and biopsy data.
115	
116	nnUNet algorithm
117	We utilized the publicly available nnUNet ²⁴ deep learning algorithm for automated
118	delineations of the TZ, PZ, and DIL. First, T2, ADC, and DWI images were downloaded
119	onto a research workstation. Images were anonymized and cropped into smaller arrays
120	(128 x 128 x 15 or 20 pixels). T2-weighted images were registered onto the ADC
121	images, utilizing the best performing registration among 4 algorithms (rigid, rigid + B-
122	spline, affine, affine + B-spline) of prostate segmentation distance maps ²⁸ . The median
123	registration Dice coefficient was 0.92 (interquartile range [IQR] 0.90-0.94).
124	We trained a 3D full-resolution nnUNet model utilizing 5-fold cross-validation on
125	the TrainPIRADS set. We then applied the selected configuration onto the TestPIRADS
126	and TestNoPIRADS sets. With the utilization of 5-fold cross-validation on the training
127	set and application of the model on the 2 testing sets, we generated TZ, PZ, and DIL
128	segmentations for all 438 patients.
129	

130 Assessment of AI DIL volume performance

131	We reported the Dice coefficients for the TZ and PZ, as noted by nnUNet. For the
132	DIL, we analyzed the detection performance (patient-level area under the receiver
133	operator characteristic curve [AUROC] and lesion-level specificity at 0.5 false positive
134	per image) utilizing PICAI_eval ²⁹ . To assess whether false positive (FP) or false
135	negative (FN) lesions were smaller and less conspicuous than true positives (TP), we
136	classified AI lesions as TP, FP, or FN, based on whether a reference DIL was present
137	and correctly identified (TP: Dice coefficient $\geq 10\%^{29}$), identified but not present (FP), or
138	present but not identified or with insufficient Dice coefficient overlap (<10%) (FN). We
139	analyzed lesion-level DIL volumes and contrast ratios (ratio of ADC intensities within the
140	DIL versus a surrounding 2mm ring) based on classification status. Finally, we reported
141	the similarity metrics (Dice coefficient) for TP lesions. All processing was performed
142	using Python version 3.8.12 with the SimpleITK toolkit.
143	
144	Comparison of AI and reference DIL volumes for sextant subset
145	For the 303 patients with sextant biopsies among all 3 cohorts, we compared the
146	ability of the AI and reference DIL contours to detect clinically significant (Gleason grade
147	group \geq 2) disease within each sextant. We compared area under the curve (AUC)
148	values utilizing ROC analysis (R package pROC). AI and reference DIL contours were
149	allocated according to sextants based on the reference prostate contour.
150	
151	Comparison of DIL volume with radiologic staging for PI-RADS subset
152	For the 233 patients (TrainPIRADS and TestPIRADS) with available PI-RADS
153	scores among all 3 cohorts, we conducted cause-specific Cox regression models (R

154	package coxph) for predicting biochemical failure with log-transformed AI DIL volume in
155	cm ³ (V _{AI}), clinical T-stage, radiologic T-stage, PI-RADS scores (0-4 vs 5 ³⁰), age,
156	whether patients received standard of care (SOC, i.e. ≥75.6 Gy if receiving external
157	beam RT and androgen deprivation therapy [ADT] duration of 6 months for unfavorable
158	intermediate-risk disease and \geq 18 months for high/very high-risk disease), year of
159	treatment, and scanner model (Signa HDxt vs DISCOVERY MR750w) as independent
160	variables. An additional Cox regression model for metastasis was created using the
161	above independent variables with the addition of salvage ADT use as a time-dependent
162	variable.
163	
164	Comparison of DIL volume with NCCN+ risk category for entire cohort
165	For the entire cohort, we created ROC curves for NCCN+, reference DIL volume
166	(VREF), and VAI for predicting 7-year biochemical failure and metastasis, utilizing the
167	timeROC package. We also created cause-specific Cox regression models (R package
168	coxph) for predicting risk of biochemical failure, local failure, and metastasis.
169	Independent variables included log-transformed VAI, NCCN+ classification, age, receipt
170	of SOC, year of treatment, scanner model, and for local failure and metastasis models,
171	salvage ADT use as a time-dependent variable. Finally, we estimated cumulative
172	incidences of biochemical failure, local failure, and metastasis, based on partitions of $V_{\mbox{\scriptsize Al}}$
173	intervals, utilizing the R package prodlim. All statistical analysis was conducted with R
174	version 4.1.2.

10

175 **Results**

176 Assessment of AI DIL performance

177	For the TestPIRADS cohort, median Dice coefficients for the TZ and PZ were
178	0.89 and 0.84, respectively (Table S3). The nnUNet exhibited a patient-level AUROC of
179	0.827 and a lesion-level sensitivity of 72.7% at a false positive rate of 0.5 case per
180	image (Table S4). For patient-level analysis (Table S5), there was no significant
181	difference between VAI (median 1.02cm ³ , IQR 0.40-2.34) and VREF (median 1.31cm ³ ,
182	IQR 0.37-2.61, p=0.66), with Pearson's correlation coefficient of 0.79. For lesion-level
183	analysis (Table S6), the total volume of AI TP lesions (median 1.06cm ³ , IQR 0.47-1.85)
184	was significantly greater than for FP (median 0.25cm ³ , IQR 0.09-0.58; p<0.001) and FN
185	(median 0.37cm ³ , IQR 0.21-0.88, p=0.007) lesions. The TP lesions were also more
186	conspicuous (median contrast ratio 0.72, IQR 0.68-0.76) than FP (median 0.83, IQR
187	0.79-0.86; p<0.001) and FN (median 0.81, IQR 0.79-0.88; p<0.001) lesions. The
188	median Dice coefficient for TP lesions was 0.74. Examples of TP, FP, and FN lesions
189	are shown in Fig. S1.

190

191 Comparison of AI and reference DIL contours for sextant subset

For the subset of 303 patients with sextant biopsies among all 3 cohorts, we did not detect a difference in AUROC values associated with AI versus reference contours for any sextant (Table S7).

195

196 Comparison of DIL volume with radiologic staging for PI-RADS subset

197	For the 233 patients with PI-RADS scores (TrainPIRADS and TestPIRADS
198	cohorts), with median follow-up of 5.6 years, there were 28 biochemical failures. Al
199	algorithm detected 41.2%, 68.3%, and 87.1% of PI-RADS3, 4, and 5 lesions,
200	respectively (Table S8). PIRADS 5 vs 0-4 (HR 5.90, 95% confidence interval [CI] 2.05-
201	17.03, p=0.001) and V _{AI} (HR 1.89 per log cm ³ increase, 95% CI 1.41-2.53, p<0.001)
202	were significantly associated with biochemical failure on univariable analysis (Table 2).
203	However, only V_{AI} retained significance on multivariable analysis (adjusted HR 1.54,
204	95% CI 1.09-2.17; p=0.014). The association between V_{AI} and metastasis was similarly
205	significant (adjusted HR 1.71, 95% CI 1.04-2.80, p=0.04; Table S9).
206	
207	Comparison of DIL volume with NCCN+ risk category for the entire cohort
208	Among all 438 patients with a median follow-up of 6.9 years, there were 49
209	biochemical failures, 14 local failures, and 22 metastases. The AUROC for 7-year
210	biochemical failure for V_{AI} (0.790) was similar to that for V_{REF} (0.779; p=0.42) and
211	NCCN+ category (0.740; p=0.17). The sensitivity and specificity for 7-year biochemical
212	failure at DIL volumes >0.5 mL were 90.5% and 45.8%, respectively, and at DIL
213	
214	volumes >2.0 mL, were 57.7% and 84.4%, respectively. The AUROC for predicting 7-
214	volumes >2.0 mL, were 57.7% and 84.4%, respectively. The AUROC for predicting 7- year metastasis for V_{AI} (0.854) was similar to that for V_{REF} (0.817; p=0.15) but trended
214	volumes >2.0 mL, were 57.7% and 84.4%, respectively. The AUROC for predicting 7- year metastasis for V_{AI} (0.854) was similar to that for V_{REF} (0.817; p=0.15) but trended towards being higher compared to NCCN+ category (0.769; p=0.06). The sensitivity and
214 215 216	volumes >2.0 mL, were 57.7% and 84.4%, respectively. The AUROC for predicting 7- year metastasis for V _{AI} (0.854) was similar to that for V _{REF} (0.817; p=0.15) but trended towards being higher compared to NCCN+ category (0.769; p=0.06). The sensitivity and specificity for predicting 7-year metastasis at DIL volumes >0.5 mL were 94.3% and
214 215 216 217	volumes >2.0 mL, were 57.7% and 84.4%, respectively. The AUROC for predicting 7- year metastasis for V _{AI} (0.854) was similar to that for V _{REF} (0.817; p=0.15) but trended towards being higher compared to NCCN+ category (0.769; p=0.06). The sensitivity and specificity for predicting 7-year metastasis at DIL volumes >0.5 mL were 94.3% and 44.1%, respectively, and at DIL volumes >2.0 mL were 68.1% and 82.9%, respectively

219	V_{AI} was significant on both univariable and multivariable analyses for predicting
220	biochemical failure (Table 3; adjusted HR 1.61, 95% CI 1.23-2.12, p<0.001). For
221	metastasis, only V_{AI} was significant on univariable and multivariable analysis (Table 4;
222	adjusted HR, 1.71, 95% CI 1.08-2.70, p=0.02). V_{AI} was also associated with local
223	recurrence risk on univariable analysis (HR 1.41, 95% CI 1.00-1.98, p=0.05; Table S10).
224	Fig. 2 shows cumulative incidences of biochemical failure, local failure, and
225	metastasis for V _{AI} of 0-0.4, 0.5-1.9, and \geq 2.0cm ³ . Respective incidences of 7-year
226	biochemical failure were 2.7%, 9.2%, and 23.7%. Respective incidences of 7-year local
227	failure were 1.0%, 5.8%, and 5.3%. Respective incidences of 7-year metastasis were
228	0.7%, 2.9%, and 11.8%. Table S11 depicts the association of DIL volume ranges with
229	NCCN+ and radiologic factors. Cumulative incidence curves for NCCN+ categories are
230	shown in Fig. S2.

13

231 Discussion

232	Our study demonstrates that the prostate and DIL can be accurately delineated
233	on mpMRI using nnUNet, ²⁴ an out-of-the-box self-configuring deep learning
234	segmentation algorithm. Our findings suggest that AI-determined DIL volume provides
235	prognostic information comparable to both NCCN+ risk category and human-generated
236	DIL volume for estimating biochemical recurrence and metastasis risk for localized
237	prostate cancer treated with RT. Furthermore, for the subset of patients with PI-RADS
238	scores, V_{AI} was more strongly associated with biochemical failure than other mpMRI
239	parameters, including radiologic staging and PI-RADS score.
240	Though other studies have reported on the prognostic significance of tumor size
241	for biochemical recurrence ^{8–11} , ours is among the first to show that DIL volume can be
242	reliably obtained with an AI algorithm. This is clinically meaningful because DIL volume
243	determination can be time-consuming and is subject to significant inter-observer
244	variability ³¹ . The AI algorithm, on the other hand, was able to generate the DIL volume
245	in an efficient, automated, and standardized manner. Additionally, this work may be
246	clinically impactful as it suggests that V_{Al} could provide important prognostic information
247	even in the absence of a biopsy. With further validation, V_{AI} could have the potential to
248	provide unique prognostic information in addition to that provided with current clinical
249	and radiologic staging systems.

V_{AI} shows exceptional promise as a potential prognostic factor as it is a single,
 well-defined entity which may be generated in a systematic manner from mpMRI. Unlike
 NCCN risk categories²⁵, V_{AI} does not require the presence of a systematic biopsy, which
 may be important as MR-only biopsies are increasingly utilized⁴. Unlike radiomic

14

approaches, V_{AI} does not require the selection and regression of multiple features, 254 which may have limited generalizability due to inter- and intra-scanner reproducibility³². 255 Unlike genomic classifiers³³ or digital pathology approaches³⁴, no specific retrieval or 256 handling of clinical specimens are required. Rather, prognostic information could be 257 obtained directly from the mpMRI. 258 259 Additionally, this study provides support for extreme dose-escalation to large DILs, either through external beam RT³⁵ or brachytherapy^{36,37} techniques. We found 260 that V_{AI} to be associated with local recurrence risk. Given emerging evidence which 261 strongly suggests that local failures seed distant metastases³⁸, extreme dose-escalation 262 in appropriately selected patients with large DILs may be clinically impactful. 263 Our study showed that FP and FN lesions were smaller and less conspicuous 264 than TP lesions. Our AI algorithm may have retained prognostic significance, despite 265 missing such lesions, because of the weaker association between smaller lesions^{8–11} 266 and less conspicuous ADC values³⁹ with biochemical recurrence. 267 Key strengths of this study include the utilization of a well-annotated 268 contemporary patient cohort treated with modern RT approaches. Furthermore, this 269 270 study shows that mpMRI obtained after prior biopsy and with an endorectal coin contains important prognostic information that can be extracted by deep learning 271 272 approaches. At our institution and likely many others, most mpMRIs acquired before 273 2018 had a pre-existing biopsy¹. It should be noted that the algorithm developed within this study may not be 274 275 generalizable to MRIs obtained using different scanning parameters or without 276 endorectal coils. External validation would be necessary to establish generalizability. It

277	is our hope that deep learning algorithms with similar levels of performance may be built
278	using nnUNet (or other deep learning segmentation approaches) for MRIs obtained
279	under different conditions. Additionally, the AI algorithm missed significant disease in a
280	subset of cases, including 12.9% of PI-RADS 5 lesions. As a result, AI DIL volume
281	should not be used as a standalone entity.
282	Further research involves extending this work to multi-institutional datasets
283	involving other scanning configurations and treatment types (e.g. surgery). We are very
284	encouraged by the excellent performance of deep learning algorithms across multi-
285	institution datasets ^{21,28} and look forward to the results of the PICAI-Eval challenge ²⁹ .
286	Only with additional information can we better understand the full potential of deep
287	learning AI algorithms for providing potentially valuable prognostic information for
288	patients.

Characteristics	TrainPIRADS (n=150)	TestPIRADS (n=83)	TestNoPIRADS (n= 205)
Age		, <i>,</i>	
Median (IQR)	69.5 (64.0, 73.0)	68.0 (65.0, 73.0)	66 (61.0, 72.0)
Gleason grade group			
	18 (12.0%)	17 (20.5%)	90 (43,9%)
2	62 (41.3%)	32 (38.6%)	70 (34.2%)
3	30 (20.0%)	11 (13.3%)	23 (11.2%)
4	22 (14.7%)	9 (10.8%)	9 (4.4%)
5	18 (12.0%)	14 (16.9%)	13 (6.3%)
Clinical T-stage	- (/		
T1-T2a	122 (81.3%)	69 (83,1%)	182 (88.8%)
T2b-T2c	12 (8.0%)	10 (12.1%)	17 (8.3%)
T3a	8 (5.3%)	3 (3.6%)	5 (2.4%)
T3b	8 (5.3%)	1 (1.2%)	1 (0.5%)
PSA			
0-9.9	107 (71.3%)	63 (75.9%)	179 (87.3%)
10.0-19.9	27 (18.0%)	12 (14.5%)	19 (9.3%)
20.0+	16 (10.7%)	8 (9.6%)	7 (3.4%)
PPC			
0-49%	80 (53.3%)	49 (59.0%)	161 (78.5%)
50-100%	65 (43.3%)	33 (39.8%)	41 (20.0%)
Missing	5 (3.3%)	1 (1.2%)	3 (1.5%)
NCCN+ category			
Low	13 (8.7%)	14 (16.9%)	80 (39.0%)
FIR	34 (22.7%)	14 (16.9%)	57 (27.8%)
UIR	52 (34.7%)	24 (28.9%)	38 (18.5%)
High	37 (24.7%)	28 (33.7%)	26 (12.7%)
Verv High	14 (9.3%)	3 (3.61)	4 (2.0%)
Model			
Signa HDxt	52 (34,7%)	31 (37.3%)	154 (75.1%)
DISCOVERY			
MR750w	98 (65.3%)	52 (62.7%)	51 (24.9%)
PIRADS			
0-2	6 (4.0%)	10 (12.1%)	NA
3	15 (10.0%)	8 (9.6%)	NA
4	48 (32.0%)	24 (28.9%)	NA
5	81 (54.0%)	41 (49.4%)	NA
Radiologic T-stage			
T1	6 (4.00%)	10 (12.05%)	N/A
T2	83 (55.33%)	49 (59.04%)	N/A
ТЗа	45 (30.00%)	20 (24.10%)	N/A
T3b	16 (10.67%)	4 (4.82%)	N/A
Hemorrhage	· · · · · · · · · · · · · · · · · · ·		
Yes	56 (37.33%)	28 (33.73%)	N/A

17

No	94 (62.67%)	55 (66.27%)	N/A
Time between biopsy			
and MRI (days)			
Patients with			
available data	148	82	204
Median (IQR)	46.5 (24.0, 72.3)	48.5 (22.5, 101.3)	36.0 (19.0, 59.3)
Time between MRI			
and Treatment (days)			
Median (IQR)	23.0 (7.3, 50.3)	44.0 (15.5, 66.0)	54.0 (27.0, 83.0)
Radiation Therapy			
EBRT	110 (73.3%)	54 (65.1%)	83 (40.5%)
Brachytherapy	21 (14.00%)	19 (22.9%)	117 (57.1%)
Combination	19 (12.7%)	10 (12.0%)	5 (2.4%)
Radiation Nodal			
Coverage			
Prostate/SV	132 (88.0%)	71 (85.5%)	199 (97.1%)
Pelvic Nodes	18 (12.0%)	12 (14.5%)	6 (2.9%)
Prostate EBRT Dose			
(cGy)			
7020	8 (5.33%)	5 (6.02%)	8 (3.90%)
7560-7920	100 (66.67%)	49 (59.04%)	75 (36.59%)
6000	2 (1.33%)	0 (0.00%)	0 (0.00%)
ADT Duration (mo)			
0-2.9	36 (24.0%)	28 (33.7%)	126 (61.4%)
3.0-6.0	71 (47.3%)	31 (37.4%)	53 (25.9%)
6.1-18.0	7 (4.7%)	4 (4.8%)	2 (1.0%)
>18.0	36 (24.0%)	20 (24.1%)	24 (11.7%)
Systemic therapy			
Intensification			
None	138 (92.0%)	77 (92.8%)	198 (96.5%)
Docetaxel	2 (1.3%)	1 (1.2%)	4 (2.0%)
Enzalutamide	10 (6.7%)	5 (6.0%)	3 (1.5%)
Year of Treatment			
Initiation			
2010-2014	52 (34.7%)	31 (37.3%)	187 (91.2%)
2015-2017	98 (65.3%)	52 (62.7%)	18 (8.8%)

289

Table 1: Baseline clinical, radiologic, and treatment factors.

SV: seminal vesicles. EBRT: external beam radiation therapy. Radiologic T stage and

hemorrhage data were not available for the TestNoPIRADS cohort.

18

Characteristic	HR (95% CI)	p-value	AHR (95% CI)	p-value
Clinical T-stage				
T1c-T2a (ref)	-	-		
T2b-T2c	0.88 [0.20, 3.76]	0.86		
T3a	2.51 [0.85, 7.38]	0.1		
T3b	1.09 [0.15, 8.14]	0.93		
Radiologic T-				
stage				
T1 (ref)	-	-		
T2	0.77 [0.10, 6.18]	0.81		
T3a	2.33 [0.30, 17.95]	0.42		
T3b	4.18 [0.51, 34.38]	0.18		
PIRADS				
0-4 (ref)	-	-	-	-
5	5.90 [2.05, 17.03]	0.001	2.47 [0.72, 8.29]	0.14
Age	0.91 [0.86, 0.96]	<0.001	0.93 [0.88, 0.98]	0.005
SOC	0.90 [0.40, 2.06]	0.81		
Year of Treatment	1.04 [0.88, 1.24]	0.62		
MRI model	1.07 [0.43, 2.62]	0.89		
AI Volume	1.89 [1.41, 2.53]	<0.001	1.54 [1.09, 2.17]	0.014

293

Table 2: Cox regression model for biochemical failure for the subset of 233 patients with

295 available PI-RADS scores.

296 CI: confidence interval. HR: hazard ratio. AHR: adjusted hazard ratio. SOC: standard of

297 care treatment. Ref: reference.

19

Characteristic	HR	p-value	AHR	p-value
NCCN+				
Low (ref)	-	-	-	-
FIR	1.72 [0.38, 7.71]	0.48	1.58 [0.34, 7.21]	0.56
UIR	6.59 [1.91, 22.73]	0.003	4.52 [1.26, 16.22]	0.02
High	9.51 [2.79, 32.49]	<0.001	4.64 [1.23, 17.52]	0.02
Very high	20.99 [5.50, 80.08]	<0.001	4.35 [0.89, 21.15]	0.07
Age	0.95 [0.91, 0.98]	0.006	0.93 [0.90, 0.97]	<0.001
SOC	0.89 [0.44, 1.78]	0.74		
Year of Treatment	1.15 [1.00, 1.33]	0.05	0.99 [0.74, 1.33]	0.96
MRI model	2.86 [1.47, 5.58]	0.002	0.64 [0.17, 2.49]	0.52
AI Volume	2.00 [1.62, 2.46]	<0.001	1.61 [1.23, 2.12]	<0.001

299

300 Table 3: Cox regression model for biochemical failure for all patients.

301 CI: confidence interval. HR: hazard ratio. AHR: adjusted hazard ratio. SOC: standard of

- 302 care treatment. Ref: reference. FIR: favorable intermediate-risk. UIR: unfavorable
- 303 intermediate-risk.

20

Characteristic	HR (95% CI)	p-value	AHR (95% CI)	p-value
NCCN+				
Low/FIR (ref)	-	-	-	-
UIR	3.07 [0.68, 13.76]	0.14	1.33 [0.27, 6.48]	0.73
High	10.63 [2.95, 38.29]	<0.001	3.18 [0.75, 13.60]	0.12
Very high	17.84 [3.94, 80.71]	<0.001	1.47 [0.21, 10.27]	0.7
Age	0.96 [0.90, 1.02]	0.016		
SOC	1.04 [0.35, 3.08]	0.94		
Year of Treatment	1.23 [0.97, 1.55]	0.08		
MRI model	5.36 [1.70, 16.86]	0.004	0.53 [0.17, 1.66]	0.27
	29.53 [11.19,			
Salvage ADT	77.92]	<0.001	12.58 [4.51, 31.11]	<0.001
AI Volume	2.29 [1.67, 3.15]	<0.001	1.71 [1.08, 2.70]	0.02

305

Table 4: Cox regression model for metastasis for all patients.

307 CI: confidence interval. HR: hazard ratio. AHR: adjusted hazard ratio. SOC: standard of

308 care treatment. Ref: reference. FIR: favorable intermediate-risk. UIR: unfavorable

309 intermediate-risk.

312

Fig 1: Receiver operating characteristics curves for 7-year biochemical failure (a) and metastasis (b), comparing AI DIL volume (red) against reference DIL volume (blue) and NCCN+ stratification (black). Circle and triangle are points on the AI volume receiver operating characteristics curve corresponding to thresholds of 0.5 cc and 2.0 cc, respectively.

- Fig 2: Cumulative incidence curves of DIL volume intervals (0-0.4, 0.5-1.9, 2.0- cc) with
- 322 (a) biochemical failure, (b) local failure, and (c) metastasis.

323 **References**

- Ahmed HU, El-Shater Bosaily A, Brown LC, et al. Diagnostic accuracy of multiparametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. *The Lancet*. 2017;389(10071):815-822. doi:10.1016/S0140-6736(16)32401-1
- Kasivisvanathan V, Rannikko AS, Borghi M, et al. MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis. *N Engl J Med.* 2018;378(19):1767-1777. doi:10.1056/NEJMoa1801993
- Ahdoot M, Wilbur AR, Reese SE, et al. MRI-Targeted, Systematic, and Combined
 Biopsy for Prostate Cancer Diagnosis. *N Engl J Med.* 2020;382(10):917-928.
 doi:10.1056/NEJMoa1910038
- Hugosson J, Månsson M, Wallström J, et al. Prostate Cancer Screening with PSA and MRI Followed by Targeted Biopsy Only. *N Engl J Med.* 2022;387(23):2126-2137. doi:10.1056/NEJMoa2209454
- Rajwa P, Mori K, Huebner NA, et al. The Prognostic Association of Prostate MRI PI-RADS[™] v2 Assessment Category and Risk of Biochemical Recurrence after
 Definitive Local Therapy for Prostate Cancer: A Systematic Review and Meta-Analysis. *J Urol.* 2021;206(3):507. doi:10.1097/JU.00000000001821
- Baboudjian M, Gondran-Tellier B, Touzani A, et al. Magnetic Resonance Imaging– based T-staging to Predict Biochemical Recurrence after Radical Prostatectomy: A Step Towards the iTNM Classification. *Eur Urol Oncol*. Published online October 21, 2022. doi:10.1016/j.euo.2022.09.005
- Rakauskas A, Peters M, Ball D, et al. The impact of local staging of prostate cancer determined on MRI or DRE at time of radical prostatectomy on progression-free survival: A Will Rogers phenomenon. *Urol Oncol Semin Orig Investig.* Published online December 21, 2022. doi:10.1016/j.urolonc.2022.10.023
- Hutten R, Khouri A, Parsons M, et al. The Clinical Significance of Maximum Tumor Diameter on MRI in Men Undergoing Radical Prostatectomy or Definitive Radiotherapy for Locoregional Prostate Cancer. *Clin Genitourin Cancer*.
 2022;20(6):e453-e459. doi:10.1016/j.clgc.2022.06.010
- Woo S, Han S, Kim TH, et al. Prognostic Value of Pretreatment MRI in Patients With
 Prostate Cancer Treated With Radiation Therapy: A Systematic Review and Meta Analysis. Am J Roentgenol. 2019;214(3):597-604. doi:10.2214/AJR.19.21836
- 10. Jambor I, Falagario U, Ratnani P, et al. Prediction of biochemical recurrence in
 prostate cancer patients who underwent prostatectomy using routine clinical
 prostate multiparametric MRI and decipher genomic score. *J Magn Reson Imaging*.
 2020;51(4):1075-1085. doi:10.1002/jmri.26928
- 11. Stabile A, Mazzone E, Cirulli GO, et al. Association Between Multiparametric
 Magnetic Resonance Imaging of the Prostate and Oncological Outcomes after
 Primary Treatment for Prostate Cancer: A Systematic Review and Meta-analysis.
 Eur Urol Oncol. 2021;4(4):519-528. doi:10.1016/j.euo.2020.11.008
- 12. Mazzone E, Gandaglia G, Ploussard G, et al. Risk Stratification of Patients
 Candidate to Radical Prostatectomy Based on Clinical and Multiparametric Magnetic
 Resonance Imaging Parameters: Development and External Validation of Novel
 Disk Groups, Fur Ural, 2022;81(2):402,202, doi:10.1016/j.jpurus.2021.07.027
- 367 Risk Groups. *Eur Urol.* 2022;81(2):193-203. doi:10.1016/j.eururo.2021.07.027

13. Barentsz JO, Richenberg J, Clements R, et al. ESUR prostate MR guidelines 2012. 368 Eur Radiol. 2012;22(4):746-757. doi:10.1007/s00330-011-2377-y 369 14. Costa DN, Passoni NM, Leyendecker JR, et al. Diagnostic Utility of a Likert Scale 370 371 Versus Qualitative Descriptors and Length of Capsular Contact for Determining Extraprostatic Tumor Extension at Multiparametric Prostate MRI. Am J Roentgenol. 372 2018;210(5):1066-1072. doi:10.2214/AJR.17.18849 373 15. Mehralivand S, Shih JH, Harmon S, et al. A Grading System for the Assessment of 374 Risk of Extraprostatic Extension of Prostate Cancer at Multiparametric MRI. 375 Radiology. 2019;290(3):709-719. doi:10.1148/radiol.2018181278 376 16. Park KJ, Kim M hyun, Kim JK. Extraprostatic Tumor Extension: Comparison of 377 378 Preoperative Multiparametric MRI Criteria and Histopathologic **Correlation after Radical** 379 Prostatectomy. Radiology. 2020;296(1):87-95. doi:10.1148/radiol.2020192133 380 17. Muller BG, Shih JH, Sankineni S, et al. Prostate Cancer: Interobserver Agreement 381 and Accuracy with the Revised Prostate Imaging Reporting and Data System at 382 Multiparametric MR Imaging. Radiology. 2015;277(3):741-750. 383 384 doi:10.1148/radiol.2015142818 18. Rosenkrantz AB, Ginocchio LA, Cornfeld D, et al. Interobserver Reproducibility of 385 the PI-RADS Version 2 Lexicon: A Multicenter Study of Six Experienced Prostate 386 387 Radiologists. Radiology. 2016;280(3):793-804. doi:10.1148/radiol.2016152542 19. Smith CP, Harmon SA, Barrett T, et al. Intra- and interreader reproducibility of PI-388 RADSv2: A multireader study. J Magn Reson Imaging. 2019;49(6):1694-1703. 389 doi:10.1002/jmri.26555 390 20. Westphalen AC, McCulloch CE, Anaokar JM, et al. Variability of the Positive 391 Predictive Value of PI-RADS for Prostate MRI across 26 Centers: Experience of the 392 393 Society of Abdominal Radiology Prostate Cancer Disease-focused Panel. Radiology. 2020;296(1):76-84. doi:10.1148/radiol.2020190646 394 21. Panebianco V, Giganti F, Kitzing YX, et al. An update of pitfalls in prostate mpMRI: a 395 practical approach through the lens of PI-RADS v. 2 guidelines. Insights Imaging. 396 397 2018;9(1):87-101. doi:10.1007/s13244-017-0578-x 22. Hosseinzadeh M, Saha A, Brand P, Slootweg I, de Rooij M, Huisman H. Deep 398 399 learning-assisted prostate cancer detection on bi-parametric MRI: minimum training 400 data size requirements and effect of prior knowledge. Eur Radiol. 2022;32(4):2224-2234. doi:10.1007/s00330-021-08320-y 401 23. Mehralivand S, Yang D, Harmon SA, et al. Deep learning-based artificial intelligence 402 for prostate cancer detection at biparametric MRI. Abdom Radiol. 2022;47(4):1425-403 1434. doi:10.1007/s00261-022-03419-2 404 24. Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH. nnU-Net: a self-405 406 configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2021:18(2):203-211. doi:10.1038/s41592-020-01008-z 407 25. Mohler JL, Antonarakis ES, Armstrong AJ, et al. Prostate Cancer, Version 2.2019, 408 409 NCCN Clinical Practice Guidelines in Oncology. J Natl Compt Cancer Netw JNCCN. 410 2019;17(5):479-505. doi:10.6004/jnccn.2019.0023 26. Attard G, Murphy L, Clarke NW, et al. Abiraterone acetate and prednisolone with or 411 412 without enzalutamide for high-risk non-metastatic prostate cancer: a meta-analysis of primary results from two randomised controlled phase 3 trials of the STAMPEDE 413

414		platform protocol. <i>The Lancet</i> . 2022;399(10323):447-460. doi:10.1016/S0140-
415		6736(21)02437-5
416	27.	Weinreb JC, Barentsz JO, Choyke PL, et al. PI-RADS Prostate Imaging - Reporting
417		and Data System: 2015, Version 2. Eur Urol. 2016;69(1):16-40.
418		doi:10.1016/j.eururo.2015.08.052
419	28.	Fedorov A, Khallaghi S, Sánchez CA, et al. Open-source image registration for
420		MRI–TRUS fusion-guided prostate interventions. Int J Comput Assist Radiol Surg.
421		2015;10(6):925-934. doi:10.1007/s11548-015-1180-7
422	29.	Saha A, Twilt JJ, Bosma JS, et al. Artificial Intelligence and Radiologists at Prostate
423		Cancer Detection in MRI: The PI-CAI Challenge (Study Protocol). Zenodo; 2022.
424		doi:10.5281/zenodo.6667655
425	30.	Turchan WT, Kauffmann G, Patel P, Oto A, Liauw SL. PI-RADS score is associated
426		with biochemical control and distant metastasis in men with intermediate-risk and
427		high-risk prostate cancer treated with radiation therapy. Urol Oncol Semin Orig
428		Investig. 2020;38(6):600.e1-600.e8. doi:10.1016/j.urolonc.2019.12.015
429	31.	Steenbergen P, Haustermans K, Lerut E, et al. Prostate tumor delineation using
430		multiparametric magnetic resonance imaging: Inter-observer variability and
431		pathology validation. Radiother Oncol. 2015;115(2):186-190.
432		doi:10.1016/j.radonc.2015.04.012
433	32.	Fedorov A, Vangel MG, Tempany CM, Fennessy FM. Multiparametric Magnetic
434		Resonance Imaging of the Prostate: Repeatability of Volume and Apparent Diffusion
435		Coefficient Quantification. Invest Radiol. 2017;52(9):538-546.
436		doi:10.1097/RLI.000000000000382
437	33.	Spratt DE, Yousefi K, Deheshi S, et al. Individual Patient-Level Meta-Analysis of the
438		Performance of the Decipher Genomic Classifier in High-Risk Men After
439		Prostatectomy to Predict Development of Metastatic Disease. J Clin Oncol.
440		2017;35(18):1991-1998. doi:10.1200/JCO.2016.70.2811
441	34.	Esteva A, Feng J, van der Wal D, et al. Prostate cancer therapy personalization via
442		multi-modal deep learning on randomized phase III clinical trials. Npj Digit Med.
443		2022;5(1):1-8. doi:10.1038/s41746-022-00613-w
444	35.	Kerkmeijer LGW, Groen VH, Pos FJ, et al. Focal Boost to the Intraprostatic Tumor in
445		External Beam Radiotherapy for Patients With Localized Prostate Cancer: Results
446		From the FLAME Randomized Phase III Trial. J Clin Oncol. Published online
447		January 20, 2021. doi:10.1200/JCO.20.02873
448	36.	Morris WJ, Tyldesley S, Rodda S, et al. Androgen Suppression Combined with
449		Elective Nodal and Dose Escalated Radiation Therapy (the ASCENDE-RT Trial): An
450		Analysis of Survival Endpoints for a Randomized Trial Comparing a Low-Dose-Rate
451		Brachytherapy Boost to a Dose-Escalated External Beam Boost for High- and
452		Intermediate-risk Prostate Cancer. Int J Radiat Oncol. 2017;98(2):275-285.
453		doi:10.1016/j.ijrobp.2016.11.026
454	37.	Hoskin PJ, Rojas AM, Ostler PJ, Bryant L, Lowe GJ. Randomised trial of external-
455		beam radiotherapy alone or with high-dose-rate brachytherapy for prostate cancer:
456		Mature 12-year results. Radiother Oncol. 2021;154:214-219.
457		doi:10.1016/j.radonc.2020.09.047
458	38.	Ma TM, Chu FI, Sandler H, et al. Local Failure Events in Prostate Cancer Treated
459		with Radiotherapy: A Pooled Analysis of 18 Randomized Trials from the Meta-

- analysis of Randomized Trials in Cancer of the Prostate Consortium (LEVIATHAN).
 Eur Urol. 2022;82(5):487-498. doi:10.1016/j.eururo.2022.07.011
- 461 *Europolitica 2022,82(3).487-498.* doi:10.1010/j.europolitic.2022.07.011 462 39. Chatterjee A, Turchan WT, Fan X, et al. Can Pre-treatment Quantitative Multi-
- 463 parametric MRI Predict the Outcome of Radiotherapy in Patients with Prostate
- 464 Cancer? Acad Radiol. 2022;29(7):977-985. doi:10.1016/j.acra.2021.09.012