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Abstract

Imaging phenotypes extracted via radiomics of magnetic resonance imaging have shown

great potential in predicting the treatment response in breast cancer patients after adminis-

tering neoadjuvant systemic therapy (NST). Understanding the causal relationships between

the treatment response and Imaging phenotypes, Clinical information, and Molecular (ICM)

features are critical in guiding treatment strategies and management plans. Counterfactual

explanations provide an interpretable approach to generating causal inference. However,

existing approaches are either computationally prohibitive for high dimensional problems,

generate unrealistic counterfactuals, or confound the effects of causal features by changing

multiple features simultaneously. This paper proposes a new method called Sparse Coun-

teRGAN (SCGAN) for generating counterfactual instances to reveal causal relationships

between ICM features and the treatment response after NST. The generative approach

learns the distribution of the original instances and, therefore, ensures that the new in-

stances are realistic. We propose dropout training of the discriminator to promote sparsity

and introduce a diversity term in the loss function to maximize the distances among gener-

ated counterfactuals. We evaluate the proposed method on two publicly available datasets,

followed by the breast cancer dataset, and compare their performance with existing meth-

ods in the literature. Results show that SCGAN generates sparse and diverse counterfactual

instances that also achieve plausibility and feasibility, making it a valuable tool for under-

standing the causal relationships between ICM features and treatment response.

Keywords— counterfactual explanations, generative adversarial networks, radiomics, magnetic res-

onance imaging

1 Introduction

Breast cancer screening and diagnosis frequently employ Magnetic Resonance Imaging (MRI), a standard

of care imaging technique to identify patients at the risk of developing breast cancer and assess the extent

of cancer after initial diagnosis [1]. With the emergence of radiomics and machine learning, such imaging

techniques are increasingly used in decision-making related to breast cancer treatment [2]. One such

application is the use of MRI to predict the response of neoadjuvant systemic therapy (NST) in breast

cancer patients. Although NST was initially developed for patients with locally advanced breast cancer, it

is now also used for those with early-stage cancer as it may lead to a pathologic complete response (pCR),

de-escalating the need for surgery [3]. Accurate prediction of pathologic response to NST could help

1

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 2, 2023. ; https://doi.org/10.1101/2023.04.16.23288633doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.04.16.23288633
http://creativecommons.org/licenses/by-nc-nd/4.0/


avoid unnecessary surgical procedures, reduce treatment costs, and minimize side effects [4]. However,

determining the suitability of NST for a patient before surgery is complex and depends on various factors,

including patient demographics, tumor characteristics, clinical history, and molecular subtypes [5].

Several machine learning models, e.g., random forests [6] and deep learning [7], have emerged to

predict the pathologic response of breast cancer patients to NST using pre-operative dynamic contrast-

enhanced (DCE)-MRI [8, 9]. However, these models do not provide any causal explanations—the cause

and effect relationship between features and response—making it difficult to understand the influence

of different features such as imaging phenotypes, clinical profile, and molecular makeup (ICM) on the

pathologic response. As a result, the wider applicability of these models in clinical decision-making

is limited. Initial works focused on generating explanations from black-box machine learning models

regarding the most important features in making a prediction, such as LIME (Local Interpretable Model-

agnostic Explanations) [10,11], and Shapley values [12]. Feature importances are generated by recording

changes in model’s predictions after adding or removing a feature. However, these models only capture

the correlation between features and response, not necessarily their causal relationships [13].

Studying causal inference is important for two main reasons. First, correlation does not imply causa-

tion and, therefore, cannot provide a basis for decision-making [14]. Relying solely on correlation without

understanding causal relationships can lead to incorrect treatment choices. For instance, several studies

have found a positive correlation between alcohol consumption and the incidence of breast cancer [15,16].

However, no conclusive evidence exists to support causal relationship between low to moderate levels

of drinking and increased risk of breast cancer [17]. In such cases where no causal relationships exist,

correlations may emerge from hidden confounding factors. In the foregoing example, the correlation

between alcohol consumption and increased risk of breast cancer may arise from confounding factors

such as an indigent lifestyle, family history of breast cancer, or germline BRCA mutation, all of which

have been shown to increase the likelihood of developing breast cancer [18]. Second, understanding the

causal relationships between ICM features and pCR after NST may lead to opportunities for targeted

therapies and help oncologists make informed decisions about continuing or limiting systemic therapy

after initial consultation [19].

In a recent publication, Pearl et al. argued that counterfactual explanations could provide the

highest level of interpretability in machine learning models and serve as a basis for generating causal

inferences [20]. Counterfactual explanations attempt to answer the question about an alternate reality.

For instance, “What would have happened if factor X had been observed differently?” In other words,

they provide an explanation of how the outcome of an event or decision might have changed if some

of the input variables or features had been different [21]. Ideally, counterfactuals should have as few

features as possible differently expressed to isolate the effect of causal factors [22]. In the context of

predicting treatment response, counterfactual explanations could reveal the set of causal ICM features

that would be expressed differently if a patient achieved pCR instead of a pathological non-complete

response (pNR).

Various techniques for generating counterfactual explanations have been developed, including model-

agnostic, model-specific, and adversarial methods [23–25]. However, critical challenges exist in ensuring

feasibility (or realism), promoting diversity and sparsity, as well as scaling them to high-dimensional

problems. For example, Diverse Counterfactual Explanations (DiCE), a model agnostic approach, re-

quires minimizing a loss function to generate counterfactuals for each original instance [23]. Scalability

becomes a major challenge when generating multiple counterfactual instances using DiCE, particularly

for high-dimensional problems. Furthermore, strict optimization approaches fail to ensure realism, which

measures how well the counterfactual fits the data distribution [25].

Generative models such as CounteRGAN (CGAN) overcome the challenges of optimization-based

methods by generating samples from the original data distribution, leading to realistic and actionable

counterfactuals [25]. By producing samples from the original data distribution, CGAN resolves the
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scalability issues of traditional optimization methods. However, generative methods, particularly, GAN,

suffer from mode collapse where the generator only produces new samples from a narrow space in the

original data distribution [26]. As a result, the generated counterfactual instances tend to lack diversity.

Generating diverse counterfactuals is critical in identifying all causal features while avoiding redundancy

of explanations [13]. CGAN attempts to address some of the challenges linked to mode collapse by using

a residual GAN [25]. However, it leads to counterfactuals with slight alterations to multiple features,

which may not be effective for controlling sparsity. As noted earlier, controlling the sparsity of the

counterfactuals is crucial in isolating the effect of different causal features [22].

The current paper builds on our initial work on generating causal inference via counterfactual expla-

nations to predict breast cancer treatment response from ICM features [27]. Our initial work employed

DiCE to generate counterfactuals. However, due to the computational cost of DiCE, we preselected the

top 10 features using Shapley values [27]. Limiting the feature space significantly restricted the ability

of our method to investigate the original domain that comprised 536 features (see Section 4.3). This

paper overcomes the aforementioned limitations and extends our initial work by proposing a generative

approach called Sparse CounteRGAN (SCGAN) to generate sparse, feasible, plausible, and diverse coun-

terfactuals while keeping computational costs low. In particular, our work improves upon CGAN by

constraining the generator to produce sparse and diverse counterfactuals. We accomplish sparsity via

dropout training of the discriminator and promote diversity by maximizing the distance among the gen-

erated counterfactuals while minimizing their distance from the original instances to maintain proximity.

Furthermore, we integrate a masking approach to protect immutable features from changing, thereby

ensuring plausibility. Through numerical experiments and real case studies, we demonstrate the efficacy

of our approach over existing methods, such as DiCE and CGAN, in generating sparse counterfactual

instances with minimal feature changes while maintaining feasibility and enhancing diversity.

The rest of the paper is organized as follows. Section 2 introduces the concept of counterfactu-

als and the existing counterfactual generation models. Section 3 explains the details of our proposed

counterfactual generation approach SCGAN. Section 4 presents the experimental results of SCGAN on

two benchmarks and applies it to a realistic breast cancer dataset, comparing its performance with two

existing counterfactual generation methods. We use SCGAN to extract causal relationships between

breast cancer treatment response and ICM features. Finally, Section 5 summarizes our contributions

and provides directions for future research.

2 Background and Related Work

Counterfactual refers to a statement or situation describing an alternative outcome or event that could

have occurred but did not actually happen [21, 28]. The purpose of generating counterfactual instances

in machine learning is to explore what-if scenarios, thereby revealing the causal relationship between

input features and response. In particular, what-if scenarios provide insight into how changing certain

features might affect the response by generating counterfactual instances and, thereby, finding the hidden

causal links.

The origin of counterfactual explanations can be traced back to Hume’s philosophy, which proposed

that causation involves an event followed by another, where the absence of the first would prevent the

second [29]. Later, this idea gained more prominence through the works of Lewis [30]. In recent years,

different approaches for generating counterfactual explanations have been proposed, such as random

feature permutation [23, 31], constraint satisfaction [32], mutation and crossover methods inspired by

genetic algorithms [33], probabilistic models [34], as well as methods that incorporate LIME and SHAP

to perturb features that are the most critical in explaining black-box models [35, 36]. In the following,

we first provide a list of properties we seek in counterfactuals and subsequently provide an account of

the prominent techniques for generating them.
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Chou et. al proposed a set of properties desired in counterfactual instances to ensure meaningful

explanations. These are proximity, plausibility, sparsity, diversity, and feasibility in generating counter-

factuals [13]. Proximity measures the distance between the original instance and the counterfactual [37].

This metric helps assess how much the counterfactual deviates from the original instance. Counterfactu-

als with lower proximity to the actual instances are sought after. Plausibility ensures that the generated

counterfactuals are valid and logically reasonable [37]. For instance, a desirable counterfactual should

avoid changing immutable features such as gender or race, as these changes are not plausible in real-world

scenarios and may have an inherent bias. For example, explanations like “if a patient were caucasian,

they would respond positively to the treatment.” Such counterfactuals introduce bias towards the general

population and are infeasible in the real world. Sparsity pertains to efficiently determining the minimum

set of features that must be modified to produce a counterfactual [38]. By changing as few features as

possible, the resulting counterfactuals are more interpretable and effective in generating causal expla-

nations by isolating confounding factors. Diversity focuses on generating counterfactuals that involve

changing different sets of features, thereby creating a wide range of possible explanations. By generating

multiple possible explanations, we can identify different causal factors [23,32]. Diversity also promotes in-

terpretability and supports comprehensive explanations for users by providing a thorough understanding

of how different factors affect the outcome. Lastly, feasibility encourages counterfactuals to be realizable

in the real world while staying close to the original instances [39]. For example, counterfactuals like “if

the annual wage of a patient (from a socioeconomically underserved population) is doubled, they would

have a higher survival rate post-surgery.” While it is possible to change the wage, it might not be feasible

without taking other actions, such as earning a degree or learning new skills. Note that the difference

between plausibility and feasibility is that the former checks for the correctness of the counterfactuals

while the latter is concerned with their practicality.

While an ideal counterfactual should possess all the five properties described in the foregoing, we

found that most existing algorithms only achieve some of them. For instance, WatcherCF, one of the first

algorithms for generating model-agnostic counterfactuals, only considers proximity and sparsity terms

in its loss function [31]. DiCE, an improvement of WatcherCF, includes an additional diversity term

in the loss function and incorporates plausibility by adding a constraint for immutable features [23].

However, DiCE does not consider any constraint to check for the feasibility of the generated counterfac-

tuals. In addition to these algorithms, Multi-Objective Counterfactual Explanations (MOCE) proposed

by Dandl et al. formulate the counterfactual search as a multi-objective optimization problem using

genetic algorithms [33]. However, MOCE does not guarantee plausibility or feasibility. There are other

algorithms, such as Model-Agnostic Counterfactual Explanations (MACE) [40] and Recourse [41], that

incorporate properties by adding constraints or using probabilistic models, but generating sparse and

realistic counterfactual instances remains a challenge. A detailed review of counterfactual generation can

be found in [13].

Applying counterfactual explanations for causal inference in the medical field is particularly crucial

because of the high stakes involved in medical decision-making. These decisions have serious consequences

for patients, so clinicians must thoroughly understand the potential outcomes associated with different

treatment options. Counterfactual explanations provide causal relationships between various medical

factors, helping clinicians to make informed decisions. In our recent work, Zhou et al. proposed a

DiCE-based method for identifying causal relationships between imaging phenotypes, clinical profile,

molecular features, and treatment response in breast cancer patients [27]. The authors compared their

approach to traditional explanation methods, such as LIME and Shapley, and highlighted the advantages

of the counterfactual approach. However, due to the computational complexity of DiCE, the authors

used Shapley values to filter out the top 10 most important features for further analysis. It is worth

noting that, as Fernandez et al. have shown, a high importance weight from Shapley is insufficient for a

feature to be part of a counterfactual explanation [42]. Therefore, the use of Shapley for dimensionality
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reduction should be considered as an alternative heuristic approach to generate counterfactuals in high-

dimensional problems.

Due to the challenges of generating high-quality counterfactuals that satisfy the aforementioned

properties, recent studies have turned to explore the potential of Generative Adversarial Networks, or

GANs, as a viable approach [25]. GANs have been widely used in the field of image generation and have

shown impressive results in generating realistic images [43]. GANs generate samples from a complex

data distribution by training a generator network to produce samples that are similar to the real data.

Trained GANs are suitable for generating counterfactuals since they provide an efficient approach for

sampling from any data distribution, in this case, the alternate class. By virtue of generating samples

from a specified data distribution, GANs inherently satisfy the feasibility property.

Through incorporating the sparsity and proximity properties for producing high-quality counterfac-

tuals, Nemirovsky et al. adopted GANs to propose a new counterfactual generation approach, called

CGAN [25]. This framework generates realistic counterfactuals in achieving the intended class while

remaining computationally efficient. In addition to the generator and discriminator networks, CGAN

also includes a classifier network. The role of the classifier is to provide additional supervision during

training by predicting the responses for counterfactuals. In CGAN, a regularization term is used to

encourage sparsity and proximity, which is a combination of the L1 norm and the L2 norm. To ensure

plausibility, CGAN cancels the perturbations applied to immutable features after generating the counter-

factual instances. However, this strategy may not yield true counterfactuals, especially when changes to

immutable features are necessary to realize the alternate response, i.e., one or more immutable features

are causally related to the response.

Based on the literature review, it is clear that counterfactual generation has gained significant at-

tention for establishing causal relationships. However, existing methods have limitations in generating

counterfactuals that simultaneously meet all properties: proximity, plausibility, sparsity, diversity, and

feasibility. These limitations hinder the use of corresponding counterfactual explanations in making ac-

curate causal inferences. This paper builds vertically upon the strengths of CGAN in ensuring feasibility

and proximity of counterfactuals by overcoming the limitations of sparsity, diversity, and plausibility,

therefore achieving all the desired properties.

3 Methodology

3.1 CounterGAN

The idea behind GANs is to maintain two neural networks, a generator and a discriminator, that are

trained together in an adversarial manner [43]. The generator is a fully connected neural network that

produces samples from a target distribution. The discriminator is also a fully connected neural network,

but its purpose is to distinguish between the samples produced by the generator (referred hereafter as

fake) and the real data, akin to a binary classifier. During training, the generator tries to generate data

that mimic the real ones, thereby fooling the discriminator. As the generator gets better at producing

realistic data during the training process, the discriminator also improves at distinguishing between the

real and fake data. The two networks continue to improve in an adversarial manner until they no longer

improve. After the training is complete, the generator is used to sample new instances that resemble the

input data distribution [43].

Traditional GAN suffers from mode collapse, causing the generator to produce identical or similar

outputs irrespective of the input instances, thereby failing to capture the full diversity and distribution

of the training samples. CGAN overcomes some of the issues of mode collapse by generating residuals

that, when added to the original instance, produce the desired counterfactual instances.
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CGAN also employs a classifier (usually a neural network) to predict the class of the candidate in-

stance, thereby ensuring that it belongs to the alternate class. The classifier network is trained separately

before training the generator and discriminator. The overall objective function of CGAN is expressed as:

LCGAN (G,D) = LRGAN (G,D) + Lc(G,C) + LReg(G) (1)

where G is the generator network, D is the discriminator network, C is the classifier network, LRGAN (G,D)

is the residual GAN loss, Lc(G,C) is the classifier loss, and LReg(G) is the regularization term. The

Residual GAN loss LRGAN (G,D) in CGAN is formulated as:

LRGAN (G,D) = Ex∼pdata
[logD(x)] + Ex∼pdata

[log(1 −D(x + G(x)))] (2)

where x is an instance from the original dataset, G(x) is a candidate residual, and x + G(x) is the

resulting counterfactual instance. The generator and discriminator are trained simultaneously in an

adversarial minimax fashion. The generator network aims to minimize the loss function in Equation (1),

while the discriminator network maximizes the same [25].

Without any other constraints, the generator may produce null residuals (i.e., G(x) = 0) since the

resulting counterfactual still remains real and passes the discriminator’s check. The problem of null

residuals is avoided by the classifier loss Lc(G,C) and regularization loss LReg(G) in Equation (1). The

classifier loss Lc(G,C) is formulated as:

Lc(G,C) = Ex,y[−y log(C(x + G(x))) − (1 − y) log(1 − C(x + G(x)))] (3)

where x represents an original instance, y is the corresponding label, and C(x + G(x)) denotes the

output of the classifier network for the candidate counterfactual. The classifier loss measures the binary

cross-entropy between the output of the classifier network for the generated counterfactual instance and

the opposite label (i.e., 1−y). By minimizing this loss, CGAN ensures that the candidate counterfactual

is classified accurately by the classifier network.

The regularization term LReg(G) promotes sparsity and proximity of the counterfactual instances,

which is formulated as a combination of L1 and L2 norm, shown as:

LReg(G) = α
∑
i

∥ G(xi) ∥1 +β
∑
i

∥ G(xi) ∥22 (4)

where xi is an instance drawn from the entire data distribution, α ≥ 0 and β ≥ 0 are weights of L1

and L2 norm, respectively. Here, the L1 norm encourages the generator to produce residuals where

many of the entries are zero, thereby encouraging sparsity. The L2 norm, on the other hand, penalizes

the residuals for deviating from zero, encouraging the feature perturbations to be small, but non-zero,

thereby promoting proximity.

3.2 Sparse CounteRGAN

While CGAN produces counterfactuals that satisfy feasibility and proximity conditions, it fails to en-

sure sparsity, diversity, and plausibility. First, we investigate sparsity. Even though the L1 norm in

Equation (4) promotes sparsity, we note that the generated counterfactuals have small, yet non-zero

perturbations to a large number of features. An example can be seen in Figure 2(e) where all the

counterfactuals generated by CGAN have perturbation in both the features. The lack of sparsity could

be attributed to the training of residual GAN. While generating residual mitigates some of the issues

of mode collapse in a traditional GAN, there is no way to enforce the generator to produce residuals

from the entire spectrum of the distribution. The L2 norm in Equation (4) simultaneously penalizes the
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residuals for deviating from zero, encouraging them to be small, yet non-zero. These two factors reduce

the sparsity of the counterfactuals.

To overcome the sparsity issue, we remove the L2 norm and adopt dropout strategy in training the

discriminator to effectively mitigate the mode collapse issue of residual GAN [26]. The dropout approach

involves removing the output of some randomly selected neurons in the discriminator network with a

probability d, also known as the dropout rate. This causes each neuron to depend on a random subset of

the input neurons, thereby capturing the population behavior instead of relying on a fixed set of neurons.

Hence, the resulting discriminator is flexible and avoids mode collapse by accepting samples from the

entire data distribution. This work considers a dropout rate of 0.9 based on findings in [26].

Second, we look at the diversity of counterfactuals. The existing CGAN architecture does not consider

the already existing counterfactuals when creating new ones. To encourage diversity, we introduce a

diversity term that penalizes the candidate counterfactuals based on their distance from the already

existing ones:

Ldiv = − 1

|X|
∑
x∈X

min
s∈S

dist(cx, s) (5)

where X is the training batch containing the original instances for which we seek to generate counterfac-

tuals, S is the set of already existing counterfactual instances, dist(cx, s) measures the distance between

candidate counterfactual cx for the original instance x and already existing counterfactual s. Specifically,

the distance dist(cx, s) is defined as:

dist(cx, s) =
√

(cx1 − s1)2 + ... + (cxNf
− sNf

)2 (6)

where cxi and si represent the value of ith feature in cx and s respectively, and Nf is the number of

features. The term mins∈S dist(cx, s) represents the minimal distance between a candidate counterfactual

and the already existing counterfactual set. By minimizing Equation (5), we maximize the minimal

distance between the counterfactuals. For a new instance for which we have not generated counterfactuals

yet, S is an empty set. This way, the diversity term penalizes the generator for producing instances similar

to the existing ones, thereby producing diverse counterfactuals.

Combining the L1 norm and diversity term, the new regularization loss is expressed as:

LReg(G) = γ · L1 + λ · Ldiv (7)

where γ ≥ 0 and λ ≥ 0 are used to balance the importance of the sparsity and diversity.

Finally, we look at the plausibility of counterfactuals. To ensure plausibility, i.e., avoiding changes to

immutable features, CGAN first generates counterfactuals without imposing constraints on immutable

features. Any changes observed in immutable features are nullified afterward. However, this may not be

ideal, especially when immutable features are causally related to the outcome. In this work, we use a

masking approach to restrict the set of features that can be changed in a counterfactual instance. The

masking method has been widely applied in image segmentation [44] and natural language processing [45].

In SCGAN, the masking method creates a vector mask consisting of binary values that indicates which

features can be changed and which ones cannot. The masking method is applied to the residual part of

the generator.

By creating a binary mask, we specify which features are mutable and which are immutable, therefore,

ensuring the generation of plausible counterfactual instances. We select the mutable features during

training and set their mask values to 1. The remaining features are assigned 0 in the mask. Applying

the mask during training ensures that only the mutable features are modified.

In addition to the generator and discriminator, SCGAN also has a classifier, akin to the CGAN

model. In binary classification problems, the output of the classifier is a probability value indicating the
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Figure 1: The SCGAN method on an example of breast cancer MR image. The MR image is segmented to
identify specific structures of interest such as the breast tissue and tumor. We employ the radiomic features
extracted from the MR image to create counterfactual instances [46]. The extracted features serve as the input
for training the generator and the discriminator. The generator produces masked residuals that, when added
to the input, result in a realistic counterfactual instance. The produced counterfactual instance is then fed
back to the generator to encourage diversity. The classifier simultaneously provides feedback on whether the
counterfactuals have the desired class.

likelihood of an instance belonging to one of the two classes. However, in the counterfactual generation,

it is necessary to make a binary decision based on this probability. This decision is made by applying a

threshold to the class probability. By default, the threshold is set to 0.5 in this paper. Figure 1 shows

the complete architecture of the proposed SCGAN approach.

3.3 Evaluation Metrics

We evaluate our method using four metrics. First, we investigate the percentage of generated instances

(CF%) that are classified correctly in the alternate class. We accept a generated instance as a coun-

terfactual if the classifier probability exceeds 0.5. Second, we evaluate the average classifier prediction

probability (Avg Pred) of the generated instances. A larger value of Avg Pred indicates higher confidence

in the classifier’s prediction. Third, we measure the average sparsity (Avg Spar) by counting the number

of features changed in the generated instance and averaging over all counterfactuals. The sparsity of a

generated counterfactual c corresponding to an original instance x is defined as:

sparsity(c,x) =

Nf∑
i=1

[xi ̸= ci] (8)

Fourth, we measure average proximity (Avg Prox), which is the average distance between the original

instance and the generated counterfactual. Specifically, we use the Euclidean distance d(c,x) shown

below to measure the distance between an original instance x and a generated counterfactual c:

d(c,x) =
√

(c1 − x1)2 + ... + (cNf
− xNf

)2 (9)

For CF% and Avg Pred, higher values indicate better performance, while for Avg Spar and Avg Prox

metrics, lower values are desirable.
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4 Numerical Experiments

We conduct a comprehensive evaluation of our approach on three distinct datasets: the Pima Indians

Diabetes dataset [47] and the Ionosphere dataset [48] as benchmarks, and the Breast Cancer DCE-

MRI dataset [46] as a case study. We compare SCGAN with two existing counterfactual generation

methods, DiCE [23] and CGAN [25]. We utilize a neural network binary classifier to predict the class

of generated counterfactual instances [49]. The classifier is pre-trained on the original dataset to achieve

a good classification performance. Among various classification methods, neural network delivers the

best results. For a comprehensive comparison of different classifiers, please refer to the detailed study

presented in [27].

We first evaluate our method on the Pima Indians Diabetes dataset [47], following the experiment

in [25]. This dataset comprises of eight features that describe relevant patient characteristics for predict-

ing the presence of diabetes. The classification label is positive if the patient has diabetes (268 instances)

and negative otherwise (500 instances). The second dataset we use to evaluate our method is Ionosphere,

which has 34 numerical features and binary classification labels for radar returns from the ionosphere [48].

“Good” radar returns (225 instances) are those showing evidence of specific types of structure in the

ionosphere. “Bad” returns (126 instances) are those that do not show any evidence. We finally apply our

method to the open-source pre-operative DCE-MRI data from Saha et al., which extracted 529 radiomic

features for 922 breast cancer patients diagnosed with invasive breast cancer between January 2000 to

March 2014 [46]. Please refer to [27] for details on the radiomic features. Out of the 922 patients,

288 were evaluated for neoadjuvant therapy outcomes, categorized as either pCR (64 patients) or pNR

(224 patients). To handle imbalance in the breast cancer dataset, random undersampling is applied as

discussed in [27].

For the numerical experiments, we employ stratified sampling to split the dataset into training and

test sets, guaranteeing a balanced distribution of the target label. This allocation assigned 80% of the

data to the training set, leaving 20% for the test set. Table 1 shows the classifier performance across

all four cases (two benchmarks and the breast cancer dataset with two different feature sets) for test

data. For each dataset, we ensured the model was trained from scratch, allowing it to learn dataset-

specific characteristics. Additionally, we employed 5-fold cross-validation based on the specific dataset

under consideration to determine the optimal parameter settings. This approach allowed us to select

parameters that generalized well to different datasets, ensuring the robustness of our method across

various scenarios. All experiments are conducted on a DELL Precision 7865 Tower with AMD Ryzen

Threadripper PRO 5945WX 12-core processor and 128 GB RAM.

Table 1: Comparison of Classifier Performance

Dataset Accuracy Precision Recall ROC-AUC

Diabetes 83.33% 78.95% 88.24% 89.06%

Ionosphere 92.96% 92.31% 88.89% 97.90%

Breast Cancer 57.69% 69.23% 56.25% 60.00%

Breast Cancer
-Reduced

76.92% 80.00% 66.67% 77.98%

4.1 Benchmark 1 Pima Indians Diabetes

We first visually illustrate the generation of counterfactual instances with DiCE, CGAN, and SCGAN.

Figure 2(a) shows a two-feature projection scatter plots between glucose concentration (x-axis) and

BMI (y-axis) measurements for the Pima Indians. Figure 2(b) shows the decision boundary of the

binary classifier. We select four instances (shown in yellow in Figure 2(c)) representing patients without

diabetes to generate the corresponding counterfactuals. The counterfactuals generated by DiCE (green
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(a) Data points distribution (b) Classifier decision boundary (c) Selected data points

(d) DiCE (e) CGAN (f) SCGAN

Figure 2: Comparison of three counterfactual search techniques on the Pima Indians Diabetes dataset, showing
how they achieve their objectives while generating markedly different counterfactual instances. Due to the two-
feature projection, Figure 2 cannot fully capture the counterfactual’s prediction probability level, and the distance
to the decision boundary does not necessarily imply the classifier probability in individual predictions.

dots shown in Figure 2(d)) require a significant change in both glucose and BMI. We also notice that

some of the counterfactuals lie near the tail of the original data distribution, making them less likely to

be realistic. Using CGAN (as shown in Figure 2(e)), the generated counterfactuals are more realistic and

require smaller changes to features, but necessitate altering both features in all four cases. The proposed

SCGAN method (as seen in Figure 2(f)) results in counterfactuals that achieve the desired classification

and only require altering one feature in two out of the four examples. The resulting counterfactuals are

sparse compared to the ones generated by DiCE or CGAN.

For the Pima Indians Diabetes dataset, we consider three features, Pregnancies, Age, and Diabetes

Pedigree Function, as immutable, while Glucose, Insulin, Body Mass Index, Tricept Skin Fold Thickness,

and Blood Pressure are treated as mutable, as suggested in [25]. In this experiment, we compare three

methods using randomly selected original instances where the patients with no diabetes are classified as

“negative” (class 0). Our objective is to generate instances that belong to the “positive” class (class 1).

We generate 50 counterfactuals for each of the five initial instances and summarize the performance in

Table 2.

All three methods generated counterfactuals with opposite classifier predictions for most instances.

SCGAN with γ = 0.5 generates counterfactuals for 100% of the instances, surpassing both DiCE (96%)

and CGAN (92%). In terms of the average prediction probability, SCGAN generated counterfactuals

with higher values than both DiCE and CGAN. Regarding average sparsity, SCGAN with γ = 1 achieves

the lowest value of 1.62. For the average proximity, SCGAN with γ = 1 achieves better performance

than DiCE, but slightly worse (around 10%) than CGAN. When comparing the last two rows with

different γ values, we observe that a smaller γ leads to worse sparsity. This is expected since a smaller

γ imposes a smaller penalty on the number of non-zero perturbations in the features. However, the

percentage of generated instances that achieve the opposite class and the average prediction probability

of counterfactuals are also higher. While SCGAN is slower as compared to DiCE, run time is not a
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Table 2: Model Performance Comparison for Benchmark 1

Method
CF% ↑ Avg Pred ↑ Avg Spar ↓ Avg Prox ↓ Total Time

Mean SD Mean SD Mean SD Mean SD (5× 50 CFs)

DiCE 96.8 2.71 0.594 0.066 2.112 0.635 0.481 0.211 15.1

CGAN α = 1, β = 0 66.0 28.17 0.576 0.126 1.648 0.424 0.128 0.054 5887.9

SCGAN γ = 1, λ = 5 92.0 14.03 0.652 0.124 1.620 0.661 0.144 0.042 3556.9

SCGAN γ = 0.5, λ = 5 100.0 0.00 0.826 0.077 2.880 1.050 0.172 0.028 3640.0

Figure 3: The feature value distribution of BMI in the Pima Indians Diabetes dataset. The histogram shows
the distribution of values in the entire dataset. Vertical lines depict the original and counterfactual instances
generated by DiCE, CGAN, and SCGAN, color-coded as per the legend.

critical factor in generating counterfactuals. For counterfactual generation, the main priority is producing

instances that align with the desired outcomes.

Figure 3 displays the distribution of BMI in the Pima Indians Diabetes dataset (as a histogram) and

feature values of generated counterfactuals (vertical lines). We observe that the counterfactual instances

generated from SCGAN (blue lines) are more diverse than CGAN (green lines). CGAN and SCGAN

generate counterfactual instances with BMI values in a high-likelihood region, making them realistic. On

the other hand, the counterfactuals generated via DiCE are diverse but lie near the tail of the original

data distribution, suggesting that such instances are less likely to be realistic.

Figure 4 visualizes the counterfactuals generated by DiCE, CGAN, and SCGAN for a selected initial

instance. The counterfactuals are color-coded per their prediction probability, with blue close to 1 (more

likely) and red close to 0 (less likely). We see that SCGAN achieves higher prediction probabilities than

DiCE and CGAN for most counterfactual instances. SCGAN produces more diverse counterfactuals

than CGAN but is not as good as DiCE. However, considering the result shown in Figure 3, SCGAN

considers the feasibility requirement, while the counterfactual instances from DiCE may not be realistic

as they lie towards the tail of the original data distribution.

Our numerical experiments on the Pima Indians Diabetes dataset show that glucose and BMI are

the two most frequently changed features. These results conclude that glucose and BMI are the causal

features in diabetes diagnosis. This conclusion aligns with previous findings in [50].

4.2 Benchmark 2 Ionosphere

The experimental settings for benchmark 2 are similar to those described for benchmark 1. Table 3

summarizes the three methods’ performance. SCGAN generates instances that achieve the opposite class

for most cases (more than 75%), surpassing CGAN (56%) and approaching the performance of DiCE

with γ = 0.05 (with a difference of approximately 5%). Moreover, SCGAN consistently outperforms the

other two methods regarding average prediction probability for both γ settings. When evaluating average
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Figure 4: Counterfactual instances generated by three methods. The horizontal axis represents the features and
the vertical axis represents the normalized feature values. The black zero line represents the actual instance.
Every counterfactual instance has either one or more changes in the feature values, each of which is color-coded
based on their classification probability.

Table 3: Model Performance Comparison for Benchmark 2

Method
CF% ↑ Avg Pred ↑ Avg Spar ↓ Avg Prox ↓ Total Time

Mean SD Mean SD Mean SD Mean SD (5× 50 CFs)

DiCE 95.6 2.939 0.634 0.101 5.53 2.837 1.020 0.388 83

CGAN α = 0.5, β = 0 56.0 40.431 0.532 0.396 21.80 13.410 0.635 0.602 5154

SCGAN γ = 0.5, λ = 5 78.0 44.000 0.748 0.330 8.43 5.510 0.316 0.272 6845

SCGAN γ = 0.05, λ = 5 90.5 12.370 0.933 0.109 22.89 4.141 0.514 0.217 7157

Figure 5: The feature value distribution of Attribute 12 in the Ionosphere dataset. The histogram shows the
distribution of values in the entire dataset. Vertical lines depict the original and counterfactual instances generated
by DiCE, CGAN, and SCGAN, color-coded as per the legend.

sparsity, SCGAN with γ = 0.5 has a lower value than CGAN and is close to the lowest value achieved

by DiCE (with a difference of roughly 8%). For the proximity measurement, SCGAN gets lower values

than both CGAN and SCGAN. When comparing SCGAN with different γ settings, we observed that a

lower γ value produces counterfactuals with higher prediction probabilities but compromised sparsity.

Figure 5 displays the distribution of Attribute 12 in the Ionosphere dataset and the feature values of

generated counterfactual instances. We note that SCGAN generates counterfactuals with feature values

distributed in a wider range than CGAN, indicating diversity. DiCE is the only method that generates

a counterfactual instance with a value above 1, which is beyond the range of the feature distribution in

the dataset.

Figure 6 displays the counterfactuals generated by DiCE, CGAN, and SCGAN for a selected initial

instance. Carefully observing the figure reveals that SCGAN generates counterfactual instances with
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Table 4: Model Performance Comparison for Breast Cancer DCE-MRI Dataset

Method
CF% ↑ Avg Pred ↑ Avg Spar ↓ Avg Prox ↓ Total Time

Mean SD Mean SD Mean SD Mean SD (5× 50 CFs)

CGAN α = 0.02, β = 0 67.6 20.00 0.596 0.319 426.12 54.5 0.770 0.304 6968

SCGAN γ = 0.02, λ = 5 95.6 2.94 0.944 0.161 306.28 72.3 0.628 0.165 6898

SCGAN γ = 0.2, λ = 5 92.4 5.68 0.886 0.101 132.56 75.6 0.514 0.389 7432

smaller changes than DiCE. Compared with SCGAN, CGAN generates instances with smaller changes

but also lower prediction probabilities. SCGAN changes the features moderately and guarantees high

prediction probabilities and diversity.

Figure 6: Counterfactual instances generated by three methods. The horizontal axis represents the features and
the vertical axis represents the normalized feature values. The black zero line represents the actual instance.
Every counterfactual instance is represented as a color-coded line, where the color is based on their classification
probability.

The Ionosphere dataset has 34 attributes to describe 17 pulse numbers obtained from the complex

electromagnetic signal collected by a system in Goose Bay, Labrador [48]. Based on the results from

SCGAN, we observe that the 25th and 27th attributes are the primary contributing factors identifying

the “Good” radar signals from the bad ones.

4.3 Case Study: Breast Cancer DCE-MRI

We generate 50 counterfactuals using CGAN and SCGAN for each initial instance and summarize the

average results in Table 4. SCGAN achieves opposite classifier predictions in more than 90% of instances,

surpassing CGAN, which reaches just over 60%. In addition, SCGAN demonstrates higher prediction

probabilities in generating counterfactual instances than CGAN. SCGAN also outperforms CGAN re-

garding sparsity and proximity in both γ settings. In particular, a higher γ value for SCGAN leads to

counterfactual instances with lower prediction probability but fewer feature changes, as shown in the

last two rows of Table 4. This trade-off highlights the importance of carefully tuning the regularization

coefficient to balance sparsity and prediction probability in counterfactual generation. DiCE cannot

generate any counterfactual instances within the time limit of one hour.

Figure 7 illustrates the distribution of “tumor voxel cluster similarity” (which stands for the similarity

of neighboring tumor voxels in the same cluster) in the Breast Cancer dataset and the feature values of

generated counterfactual instances. Our proposed method, SCGAN, generates counterfactual instances

with feature values that are more diverse and from a higher data density region compared to CGAN.

This characteristic of our method demonstrates its ability to generate counterfactual instances that are

more realistic.

To avoid confounding effects from correlated features, we filtered out correlated and collinear features.

Specifically, we calculate the correlation matrix and look for features with a high correlation coefficient.
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Figure 7: The feature value distribution of the similar clustered tumor voxel proportion in the Breast Cancer
dataset. The histogram shows the feature’s value distribution in the dataset. Vertical lines depict the original
and counterfactuals generated by CGAN, and SCGAN, color-coded as per the legend.

Table 5: Model Performance Comparison for Reduced Breast Cancer DCE-MRI Dataset

Method
CF% ↑ Avg Pred ↑ Avg Spar ↓ Avg Prox ↓ Total Time

Mean SD Mean SD Mean SD Mean SD (5× 50 CFs)

CGAN α = 0.02, β = 0 66.0 23.87 0.672 0.359 27.912 1.991 0.250 0.044 2725.3

SCGAN γ = 0.02, λ = 5 100.0 0.000 0.999 0.001 30.02 2.569 1.348 0.535 2763.1

SCGAN γ = 2, λ = 5 92.4 3.441 0.920 0.246 17.464 2.876 1.444 0.087 2919.2

If a pair of features has a high correlation coefficient (> 0.85), then one of them is dropped. Secondly, the

variance inflation factor (VIF) is calculated for each feature to assess the degree of collinearity. Features

with a high VIF (> 10) indicate high collinearity and are dropped. Using these criteria, we filter out

41 features for the subsequent analysis. In this case, even with 41 features, DiCE did not generate any

counterfactual instances within the time limit of one hour.

We generate 50 counterfactual instances using CGAN and SCGAN for each initial instance and

summarize the average performance in Table 5. Overall, SCGAN produces a higher percentage of

instances that achieve the opposite class (CF%) than CGAN. Furthermore, the prediction probabilities

of generated counterfactuals from SCGAN are larger. In terms of average sparsity, SCGAN with γ = 2

demonstrates the lowest value, approximately 17, among all cases. Even in the case of SCGAN with

γ = 0.02, the average sparsity is not significantly worse than CGAN (less for around 6%). Based on the

average proximity values, we note that SCGAN performs worse as compared to CGAN. This is because

categorical features are only allowed to change as integers in SCGAN, but not in CGAN. In the latter,

categorical features are treated the same as numerical features and may get decimal values.

Based on the generated counterfactuals from SCGAN, we observe that only three out of the 41

filtered ICM features are involved all the time, namely PR status (which stands for progesterone receptors

status), the HER2 status (where HER2 is a protein that helps breast cancer cells to grow rapidly), and

the variance of uptake (which captures the inhomogeneity of IV uptake between successive MRI frames),

which is consistent with the previous finding in [51]. These are considered causal for predicting the

treatment response in breast cancer.

Causal relationships help guide oncologists to optimize decision-making in breast cancer treatment.

Healthcare professionals can employ different feasible counterfactual explanations to increase the likeli-

hood of achieving pCR. By emphasizing causal features, they are able to improve treatment outcomes

for patients who struggle to achieve pCR. Furthermore, counterfactual explanations identify influential

patient-specific features. For instance, if changing PR status consistently leads to pCR for a specific
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Figure 8: Comparison of distributions for simulated data and generated counterfactuals.

patient, modifying it becomes an option to improve the treatment response. This allows oncologists to

apply hormone therapy to block PR-positive tumors before tumor treatment. In our experiment, we

removed correlated and collinear features. While this helps eliminate the confounding factors, dealing

with correlations in generating causal inference is still challenging. Finding effective ways to handle cor-

relations is important for enhancing the accuracy and applicability of counterfactual generation methods,

which in turn will support informed decision-making.

4.4 Validating Feasibility of Counterfactuals

As counterfactuals are unobservable in the real world, we utilize a simulated dataset to check the fea-

sibility (or realism) of the results. This controlled environment enables a comparison of the produced

counterfactuals against the true instances as specified in the data generation process. To this end, we

simulated two groups, each with one feature and 500 instances. The samples in class 0 is generated

from N (50, 1) and class 1 from N (60, 1). We generate counterfactuals for class 0 such that the resulting

instances belong to class 1. We compare the distribution of the counterfactuals with the original data in

class 1 to assess their feasibility. Figure 8 shows the distribution of the counterfactual instances and the

original dataset. We use the two-sample Kolmogorov-Smirnov (KS) test to check if the two distributions

are the same [52]. The KS test, conducted at a significance level of 0.05, yielded a p-value of 0.182. This

p-value suggests that there is no statistically significant difference between the two distributions. Addi-

tionally, visual comparisons of the distributions also support this finding. This simulation demonstrates

SCGAN’s ability to produce feasible counterfactuals critical in generating meaningful explanations.

5 Conclusions

In this paper, we extend the CGAN approach to generating counterfactual instances that are sparse and

diverse to achieve causal inference and overcome the computational limitations of DiCE. Our method

introduces dropout training of the discriminator to promote sparsity, a diversity term to maximize

distances among generated counterfactuals, and a masking method to handle immutable features, thereby

ensuring plausiblity. We evaluate our method on two benchmarks and apply it to a breast cancer dataset

as the case study. We compare their performance with DiCE and CGAN. The results demonstrate

that SCGAN generates sparse, diverse, and plausible counterfactual instances, making it a valuable

tool for understanding the causal relationships between pathologic response to NST and ICM features.

By performing counterfactual analysis, we identified cause-and-effect relationships between breast MR

imaging phenotypes, molecular features, and pathologic response to NST.
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Further research is required to improve the efficiency and scalability of the method without retraining

the model and better methods for handling categorical features. Tuning the coefficients of the regular-

ization terms is a potential direction for future research to balance prediction probability and sparsity

in generating counterfactual instances.
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