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Abstract 

Background and aims: Subjective Cognitive Decline (SCD) is a condition in which individual 

complain of cognitive decline with normal performances on neuropsychological evaluation. 

Many studies demonstrated a higher prevalence of Alzheimer’s pathology in patients 

diagnosed with SCD as compared to the general population. Consequently, SCD was 

suggested as an early symptomatic phase of Alzheimer’s disease (AD). We will describe the 

study protocol of a prospective cohort study (PREVIEW) that aim to identify features and 

tools to accurately detect SCD patients who will progress to AD. 

 

Methods: We will include patients self-referred to our memory clinic and diagnosed with 

SCD. Participants will undergo: clinical, neurologic and neuropsychological examination, 

estimation of cognitive reserve and depression, evaluation of personality traits, APOE and 

BDNF genotyping, electroencephalography and event-related potential recording, lumbar 

puncture for measurement of Aβ42, t-tau, and p-tau concentration and Aβ42/Aβ40 ratio. 

Recruited patients will have follow-up neuropsychological examination every two years. 

Collected data will be used to train a machine learning algorithm to define the risk of 

progression from SCD to MCI and AD. 

 

Discussion: There is an urgent need to select cost-effective and easily accessible tools to 

identify patients at the earliest stages of the disease. Previous studies identified 

demographic, cognitive, genetic, neurophysiological and brain structure features to stratify 

SCD patients according to the risk of progression to objective cognitive decline. 

Nevertheless, only a few studies considered all these features together and applied machine 

learning approaches on SCD patients. 

 

Conclusions: the PREVIEW study aim to identify new cost-effective disease biomarkers 

(e.g., EEG-derived biomarkers) and define automated algorithm to detect patients at risk for 

AD in a very early stage of the disease. 
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1. Introduction 

 

Research and clinical practice on Alzheimer’s disease (AD) is at a turning point. As disease 

modifying therapies (DMTs) for Alzheimer's disease are becoming available (1), 

neurologists, researchers and health services will be faced with the predictably increasing 

demands of diagnostic assessment of patients with cognitive disorders. Moreover, it is a 

shared understanding that DMT should be administered at the earliest stages of the disease, 

to stop the pathologic process before neurodegeneration starts (2). For this reason, 

international research is focusing on prodromal and preclinical phases of AD. Subjective 

cognitive decline (SCD) was defined as a self-experienced persistent decline in cognitive 

capacity in comparison with the previously normal status, during which the subject has 

normal age-, sex-, and education-adjusted performance on standardized cognitive tests (3). 

SCD was associated with neuroradiological features suggestive of AD (4), amyloid 

deposition (5,6) and higher risk of progression to Mild Cognitive Impairment (MCI) or 

dementia as individuals without SCD (7). Based on this evidence, the National Institute of 

Aging-Alzheimer’s Association (NIA-AA) included SCD as a first manifestation of the 

symptomatic stages of AD (8), preceding MCI (9). Hence, SCD might represent a target 

population for DMT to preserve cognitive function and psychological well-being (10). On the 

other hand, SCD constitutes a heterogeneous group with several possible trajectories (11) 

and many potential underlying causes including: normal aging, personality traits, other 

psychiatric, neurologic or medical disorders, substance use, and medications (12). 

Therefore, it is crucial to identify features and tools to accurately detect prodromal AD among 

patients with SCD.  

This paper describes the protocol of the PREVIEW (PRedicting the EVolution of SubjectIvE 

Cognitive Decline to Alzheimer’s Disease With machine learning) study that will 

prospectively investigate baseline predictors and biomarkers of Alzheimer’s pathology and 

progression to MCI and dementia in a large cohort of patients with SCD.  

In recent years, The Regional Reference Centre for Alzheimer's Disease and Cognitive 

Disorders of Careggi Hospital (Florence, Italy) analyzed a large set of neuropsychological, 

personality and lifestyles data from patients with SCD collected in about 25 years, identifying 

demographic (13,14), cognitive (15,16), personality (15) and genetic (13,17–22) features 

that increase the risk of progression from SCD to MCI or AD.  

In this study we will integrate our previous findings with data from non-invasive techniques, 

namely electroencephalography (EEG) and event-related potentials (ERP) recording. These 
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techniques reliably measure the neural circuits associated with cognitive processes and may 

provide sensitive metrics for early diagnosis of cognitive impairment (23). We will  apply 

machine learning approaches, an emerging and promising tool that showed great potential 

in diagnosis and classification of neurodegenerative diseases and other medical conditions 

(24–26). We aim to: 

i) integrate a multimodal set of data from SCD patients including clinical data, 

neuropsychological assessment, personality traits, cognitive reserve, genetic 

factors and features from EEG and ERP recordings; 

ii) assess the accuracy of these data in predicting conversion from SCD to MCI and 

AD through machine learning tools; 

iii) define a management protocol for SCD to be applied in memory clinic settings. 

The PREVIEW study was registered on ClinicalTrials.gov (registration number:  

NCT05569083). 

 

2. Methods and Analysis 

2.1. Study Design and Participants 

This is a longitudinal single center observational cohort study. We will consider consecutive 

spontaneous patients, who self-referred to the Centre for AD and Adult Cognitive Disorders 

of Careggi Hospital in Florence, classified as SCD according to SCD-I criteria (27).  

We will recruit patients who meet the following criteria: 

a. complaining of cognitive decline with a duration of ≥ 6 months;  

b. Mini Mental State Examination (MMSE) score greater than 24, corrected for age 

and education; 

c. normal functioning on the Activities of Daily Living (ADL) and the Instrumental 

Activities of Daily Living (IADL) scales (28);  

d. unsatisfied criteria for MCI and AD according to NIA-AA criteria (29,30); 

e. give their written informed consent. 

Exclusion criteria are: 

a. history of head injury, current neurological and/or systemic disease, symptoms of 

psychosis, major depression, alcoholism or other substance abuse;  

b. the complete data loss of patients during follow-up. 

 

All recruited patients will undergo at baseline: comprehensive familial and clinical history, 

extensive neuropsychological assessment, estimation of premorbid intelligence, 
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assessment of depression, personality and leisure activities evaluation, APOE and BDNF 

genotype analysis, EEG and ERP recording. CSF analysis will be performed in patients who 

will give additional informed consent for lumbar puncture.  

Patients will undergo neuropsychological evaluation every two years. Progression to MCI 

and to AD dementia will be defined according to NIA-AA criteria (29,31). Patients who will 

progress to dementia will be addressed to diagnostic and therapeutic work-out adopted in 

our center (Fig.1). 

Two samples of i) age-matched healthy controls (without cognitive concern) and ii) MCI 

patients will undergo EEG and ERP recording for the purpose of cross-sectional comparison 

with SCD group at baseline. 

 

2.2. Neuropysychological evaluation, assessment of depression and estimation of 

premorbid intelligence 

Extensive neuropsychological examination will include: global measurements (MMSE)(32), 

tasks exploring verbal and spatial short- working and long-term memory (Digit and Visuo-

spatial Span forward and backward (33), Rey Auditory Verbal Learning Test – RAVLT (34), 

Short Story Immediate and Delayed Recall (35), Rey-Osterrieth complex figure recall (36)), 

attention (Trail Making Test A (37), attentional matrices (38), Multiple Features Targets 

Cancellation – MFTC (39)), language (Category Fluency Task (40), Phonemic Fluency Task 

(34) and Italian language battery: Screening for Aphasia NeuroDegeneration – SAND(41)), 

constructional praxis (Copying Drawings (34), Rey-Osterrieth complex figure copy (36), 

Clock test (42)) and executive function (Trail Making Test B (37), Stroop Test (43), Frontal 

Assessment Battery(44)). The subjective perception of memory impairment will be 

investigated using the Memory Assessment Clinics-Questionnaire – MAC-Q (45). Premorbid 

intelligence will be estimated using short intelligence test – TIB (46), that has been 

constructed as an Italian equivalent of the National Adult Reading Test – NART (47). The 

presence and severity of depressive symptoms will be evaluated by means of the 22-item 

Hamilton Depression Rating Scale (HDRS) (48). Katz Index of Independence in Activities of 

Daily Living (ADL) (49) scale will be used to assess functional capacities at baseline and at 

follow-up. 

 

2.3. Personality Traits and Leisure Activities 

We will use the Big Five Factors Questionnaire (BFFQ) (50) to assess personality traits. 

Participants will be asked to fill out a questionnaire that measures the five factors of: 1) 
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emotional stability, 2) energy, 3) conscientiousness, 4) agreeableness, and 5) openness to 

culture and experience. The inventory follows a widely accepted five-traits personality model 

(50,51). For the 24 items of each factor, subjects will rate their level of agreement on a five-

point scale ranging from strongly agree to strongly disagree. Item scores will be computed 

for each factor to yield a summary measure of the trait with higher values representing a 

greater degree of the explored dimension.  

At baseline, subjects will be interviewed regarding participation, when they were 30-40 years 

old, in nine Intellectual Activities, seven Social Activities and seven Physical Activities 

(modified from Yarnold PR et al. (52)). The frequency of participation will be reported for 

each activity on a Likert scale ranging from 0 to 5, where 0 refers to never, 1 to occasionally, 

2 to monthly, 3 to once a week, 4 to several days per week and 5 to daily.  

 

2.4. EEG and ERP recording  

Resting-state EEG data will be collected at the Neurophysiological Laboratory of IRCCS 

Don Gnocchi (Florence, Italy) using the 64-channels Galileo-NT system (E.B. Neuro S.p.a.). 

The EEG will be recorded continuously from 64 electrodes using an EEG Prewired 

Headcups. Electrodes were positioned according to the 10–10 international system. (AF7, 

AF3, Fp1, Fp2, Af4, Af8, F7, F5, F3, F1, F2, F4, F6, F8, FT7, FC5, FC3, FC1,FC2, FC4, 

FC6, FT8, T3, C5, C3, C1, C2, C4, C6, T4 TP7, CP5, CP3, CP1, CP2, CP4, CP6, TP8, T5, 

P5, P3, P1, P2, P4, P6, T6, Fpz, PO7, PO3, O1, O2, PO4, PO8, Oz, AFz, Fz, FCz, Cz, CPz, 

Pz, and POz).The ground electrode will be placed in front of Fz. Horizontal eye movements 

will be detected by electrooculogram (EOG). Data will be digitized at a sampling rate of 512 

Hz and analogue-digital precision will be 16 bits. The recording will be referenced to the 

common average of all electrodes, excluding Fp1 and Fp2. Re-referencing will be done prior 

to the EEG artifact detection and analysis. Electrode-skin impedance will be set below 5 

kilo-ohms. Subjects will be sat in a reclined chair in a comfortable position. Resting EEG 

recording begin with a 10-minute eyes-closed registration followed by an alternance of 3 

minutes eyes-open and 3 minutes eyes closed, repeated twice. First phase of recording was 

designed to be longer in order to obtain a reliable resting state recording at eyes closed. 

Only the eyes-closed portions of the signal will be used for subsequent analyses.  

ERP acquisition will be performed with the same the same EEG system used for EEG data 

acquisition. The participants will be administered an ERP test battery with concurrently 

recorded EEG consisting of a 3-choice vigilance task (3CVT) and standard image 

recognition task (SIR). The first is designed to evaluate sustained visual attention and the 
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second designed to evaluate attention, encoding, and image recognition memory. In 

particular, SIR images were defined as stimuli to distinguish working memory from semantic 

memory loss and extend previous results of image recognition ERP effects.   

In order to remove electrophysiological and non-electrophysiological artifacts from the raw 

signals, we used a custom preprocessing pipeline written in MATLAB with the use of the 

EEGLAB toolbox functions (53). The pipeline consisted of two main steps: the PREP 

pipeline (54), followed by independent component analysis (ICA) to remove artifactual 

components (55). Moreover, to generate the ERP epochs, time windows from -300 ms to + 

1000 ms will be created for each EEG recording channel, with the stimulus presentation 

centered at 0 ms and the average of the trials related to each epoch will be calculated. 

 

2.5. AD biomarker measurement and genetic analysis of APOE and BDNF genes. 

Blood and CSF samples will be immediately centrifuged, stored at -80 °C and analyzed at 

the Laboratory of Neurogenetics of Careggi University Hospital. Aβ42, Aβ42/Aβ40 ratio, t-tau, 

and p-tau will be measured using a chemiluminescent enzyme immunoassay (CLEIA) 

analyzer LUMIPULSE G600 (Fujirebio, Tokyo, Japan). Cut-off values for CSF will be 

determined following Fujirebio guidelines (Diagnostic sensitivity and specificity using clinical 

diagnosis and follow-up golden standard, November 19th, 2018): Aβ42 > 670 pg/ml, 

Aβ42/Aβ40 ratio > 0.062, t-tau < 400 pg/ml and p-tau < 60 pg/ml. The three SNPs (rs429358, 

rs7412 and rs6265 on APOE and BDNF genes respectively) will be analyzed by the 

polymerase chain reaction (PCR) on genomic DNA and with the analysis of melting curves 

(HRMA) using the Rotor-Gene 6,000 (Rotor-Gene, Corbett Research, Mortlake, Australia). 

 

2.6. Data Collection and Management 

Data collection will be carried anonymously on REDCap, an online-based software for the 

design of databases. Data will be collected in a pseudo-anonymized way, attributing a record 

ID to each patient on the electronic database and saving the correspondences between 

names and identification codes on a separate document. 

 

2.7. EEG pre-processing 

The first step of preprocessing will rely on the PREP pipeline, which performs several 

preprocessing steps automatically, allowing to obtain robust average re-referenced signals. 

At first, PREP high-pass filter signals of all channels, by means of a Hamming windowed 

FIR filter (using EEGLAB’s pop_eegfiltnew function) with a 1 Hz cut-off frequency. Line noise 
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at 50 Hz and its harmonics were removed by using the CleanLine EEGLAB plugin. Noisy 

channels, i.e., those channels having abnormal and/or uncorrelated activity compared to 

others will be removed by using PREP noisy channel subroutine, which performs the bad 

channel selection by combining an ensemble of methods: the deviation criterion, the 

correlation criterion, the noisiness criterion, and the predictability criterion. Remaining 

channels activity will be used to estimate a robust average reference, based on robust 

statistics such as the median and interquartile range. Finally, removed channels will be 

interpolated, by means of spherical interpolation. The obtained re-referenced and filtered 

signals will be subjected to the second preprocessing step. 

Independent components will be extracted by using the Infomax ICA algorithm (57), as 

implemented in binica EEGLAB routine. A semi-automated procedure will be then used to 

distinguish between brain-related components and artifactual ones. We used ICLabel (58) 

to classify automatically independent components into brain or artifactual components (line 

noise, muscle, eye, channel noise, heart, “other”) based on a neural network trained on 

crowd-sourced data. ICLabel returns the probability of each component to belong to one of 

the above-mentioned classes. We will then use DIPFIT to perform a single dipole fitting of 

the independent component map onto a template brain (MNI-152 atlas). Given that brain 

components should be dipolar (59), a high residual variance of the fitted dipole should 

indicate a low probability of the component being brain-related. Hence, components labeled 

by ICLabel as “brain” with a confidence higher than a threshold (75%) and fitting dipole 

residual variance lower than another threshold (20%) will be retained in the final signals. 

Noise components with high confidence and high dipole residual variance will be instead 

automatically removed from the ICs list. All the remaining components will be inspected 

visually and flagged either as brain or non-brain depending on their power spectra profiles 

and time-courses. Channel-level signals will be reconstructed from the reduced IC space 

including only brain-related sources. Finally, we will perform a visual inspection of the 

cleaned signals, to remove possible remaining artifacts (e.g., temporally localized muscle 

activity not removed by the ICA procedure).  

 

2.8. EEG Statistical Analysis  

At first, we will compute the power spectral density (PSD) of the signal in each of the 

recorded channels, applying the Welch’s method on continuous windows of EEG signals, 

using Hanning windows with no overlap. We will divide the spectrum in four canonical 

frequency bands, namely: delta (1-4 Hz), theta (4-8Hz), alpha (8-13 Hz) and beta (13-30 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 19, 2023. ; https://doi.org/10.1101/2023.04.15.23288619doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.15.23288619
http://creativecommons.org/licenses/by-nc-nd/4.0/


Hz). We will divide the scalp in six regions of interest (ROIs)(60): frontal right (Fp2, AF4, 

AF8, F2, F4, F6, F8) frontal left (Fp1, AF3, AF7, F1, F3, F5, F7), central right (FC2, FC4, 

FC6, FT8, C2, C4, C6, T4, CP2, CP4, CP6), central left (FC1,FC3, FC5, FT7, C1, C3, C5, 

T3, CP1, CP3, CP5), occipital right (P2, P4, P6, T6, PO8, PO4, O2) and occipital left (P1, 

P3, P5, T5, PO7, PO3, O1). ROI power will be computed as the average relative power from 

channels belonging to each ROI.  

We will extract several network metrics from the weighted undirected adjacency matrices. 

First, we will extract the average strength of the connectivity among pairs of ROIs, i.e., the 

mean weight of non-zero connections. Then, the weighted clustering coefficient (C) and 

weighted characteristic path length (L) will be computed as previously described (61).  

Finally, we will compute the small-world coefficient  

𝛺 =  
𝐿𝑟

𝐿
−  

𝐶

𝐶𝑙
 

Where L and C are the previously computed weighted clustering coefficient and weighted 

characteristic path length, whereas Lr is the weighted characteristic path length of an 

equivalent random network and Cl is the weighted clustering coefficient of an equivalent 

lattice network.  

The last statistical analysis will consist in extracting microstate maps for each subject 

individually. We will extract a first set of common microstates from the entirety of subjects 

(independent of conditions), by using the modified k-means algorithm (62). To reduce the 

computation time, 1000 global field power (GFP) peaks will be randomly selected as input 

topographies to the clustering algorithm, as these maps should have the highest signal-to-

noise ratio. GFP is defined (63) as the standard deviation of all electrodes’ potentials at a 

given time. Topographies having GFP higher than two standard deviations from the mean 

will be then discarded from the selection process, as to avoid introducing noisy maps in the 

clustering algorithm. We will run the modified k-means (20 repetitions, 1000 max iterations) 

for each number of clusters from two to fifteen. For each iteration of the process, the found 

microstate maps were back-fitted to the entire preprocessed EEG signal, by assigning each 

topography from each time-point to the one minimizing the global map dissimilarity (GMD), 

namely the GFP of the difference between the two maps. The global explained variance will 

be computed for each topography set. Finally, we will select the number of microstates for 

which the local improvement in the global explained variance metric will be less than 5%. 

Once we will determine the globally optimal number of maps, we will fix this number for all 

subsequent analyses, as to allow for easier comparison between groups. The microstate 
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extraction will be performed using the EEGLAB Microstate plugin, while the back-fitting with 

the Microstate EEGLAB toolbox (64). 

Spectral features, network metrics and microstate features (duration, transition probability) 

will be compared across conditions and will lay the ground for the machine learning analysis. 

 

2.9. Machine learning classification of patient conditions 

Machine learning analysis will proceed as follows. We will define a set of multi-modal 

features including all the features extracted from EEG (see previous subsection), 

neuropsychological tests, personality traits and genetic variants. We will define a common 

metric based on the dispersion of each single dimension of the profile and then we will train 

a machine learning algorithm to associate each profile “vector” to the associated evolution 

of the disease after a fixed time (at first the possible categories will be only SCD, MCI, AD 

with no further sublevels, but this can be improved in further rounds). First, we will perform 

this classification with standard machine learning procedures as support vector machine 

(SVM, using binary decision trees) and k-nearest neighbors (kNN). In a separate set of 

analysis, we will follow a deep learning approach, using the same subject profiles to train a 

multi-level feedforward artificial neural network (ANN) predicting the condition of the patient 

after a fixed time. The networks will be trained with standard gradient descent and 

backpropagation techniques and by means of dropout and batch normalization procedures 

we will obtain robust automatic classification results. Comparing Machine learning and ANN 

classification performance we will decide the most convenient approach for the task. 

Moreover, we will apply standard dimensionality reduction techniques to extract the most 

salient features and repeat the procedure described above to assess whether it is possible 

to achieve the same results with a subset of the screenings. Once the classification at the 

current state will be performed, we will exploit longitudinal data to develop an algorithm able 

to predict the future evolution of cognitive impairment. For instance, an algorithm trained to 

discriminate between healthy subjects and MCI patients could be applied to SCD patients 

and evaluate the risk of progression of the patient based on the distance relative to the two 

clusters. 
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3. Discussion 

On June 7, 2021, the Food and Drug Administration (FDA) granted provisional approval of 

aducanumab, an anti-amyloid monoclonal antibody, for the treatment of patients with MCI 

due to AD and mild AD dementia (65). Two more monoclonal antibodies, donanemab (66) 

and lecanemab (67), are under review by the FDA and additional new treatments for AD 

may become available in the foreseeable future (1). These treatments are not without risk, 

with amyloid-related imaging abnormality (ARIA) as the most common adverse effect (68). 

In this scenario, there is an urgent need to select cost-effective and easily accessible tools 

to identify patients at the earliest stages of the disease trying to minimize, as far as possible, 

the inclusion of patients who will not progress to AD. The currently recognized disease 

biomarkers of AD, such as PET neuroimaging (69–71) or CSF biomarkers (72,73), are 

expensive, almost invasive and, therefore, not suitable to be applied on large populations. 

At the same time, a general population screening might lead to an unacceptable amount of 

false positive results and consequent further costs. In this perspective, patients with 

subjective cognitive decline (SCD) represent an optimal selected population to be screened 

for prodromal AD. Many studies explored the demographic, cognitive, genetic, 

neurophysiological and brain structure features potentially associated with the probability 

that SCD was due to AD and the risk of progression to objective cognitive decline. Regarding 

demographic and genetic features, the SCD-Initiative proposed a set of features (SCD-plus) 

to increase the likelihood that SCD indicates pathological change due to AD (27). Our 

research group of the Regional Reference Centre for Alzheimer's Disease and Cognitive 

Disorders of Careggi Hospital previously showed that combining age and APOE genotype 

allow to stratify SCD patients according to the risk of conversion to AD (13). Other genes 

have also been identified to be linked with changes in cognition in SCD such as KIBRA (17), 

BDNF (19), CLOCK, PER2 (18,21) and HTT (22,74). Other studies focused on the role of 

neuropsychometric scores: data from a community based study by Hao et al. including 84 

healthy controls and 517 subjects with SCD showed that individuals classified as SCD-plus 

had poorer performances in global cognitive scores and in long-term verbal memory tasks 

(75). The DELCODE study, an observational longitudinal multicenter study including 209 

healthy controls and 240 SCD patients, showed that subjects experiencing SCD performed 

worse than healthy controls in tests assessing memory, executive functions and language 

abilities (76). Poptsi et al. showed that tasks assessing working memory components, 

inhibition and switching and cognitive flexibility were able to differentiate SCD by older adults 

without SCD (77). However, only a few longitudinal studies assessed the prognostic value 
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of neuropsychological assessment at baseline, often with conflicting results (78–81). In a 

previous study, we analyzed data from 287 patients with SCD and MCI showing that SCD 

patients who progressed to MCI and AD obtained significantly lower scores in 

neuropsychological tests for long-term verbal memory and ecological memory at the 

baseline evaluation compared to SCD who remained stable (15). 

Several studies reported that lifetime experiences, such as years of education (82), 

occupational attainment and engagement in mentally stimulating leisure activities (15), may 

protect against dementia. These findings have been interpreted in the context of the 

cognitive reserve hypothesis, which assume that highly intelligent or educated individuals 

appear to be able to better cope with the presence of a neurodegenerative pathology, 

maintaining a normal functional level for a longer time than less educated people (83). Many 

studies focused on the relationship between SCD and cognitive reserve (84–88). Our group 

demonstrated that intellectual activities carried out by patients in previous decades and 

higher premorbid intelligence act as protective factors, reducing the risk of progression from 

SCD to MCI (15,16).  

The interaction between SCD and mood disorders is controversial. Two recent community-

based studies on very large populations showed that depressive symptoms increase the risk 

of progression to objective cognitive decline and dementia in SCD patients (89,90). A meta-

analysis by Huang et al. showed that depression was significantly higher in individuals with 

SCD than in normal individuals but there was no difference between SCD and MCI or 

between SCD converters and non-converters (91). In a 7-years of follow-up study of more 

than 13000 cognitively normal individuals over 50-years old, SCD and depression were 

independently associated with the risk of developing MCI or dementia but the risk was 

highest when both depression and SCD coexisted at baseline (90).  

Studies on personality traits showed conflicting results about the association with SCD. Most 

studies agree that high conscientiousness and low neuroticism are associated with a 

reduced risk of incident AD (92,93). On the contrary, we found that emotional stability was 

significantly higher in SCD who progressed to MCI or AD (94).  

EEG was extensively evaluated as a toll for the diagnosis of dementia in past decades (95–

97). Nevertheless, previous studies mostly tried to identify quantitative EEG markers of AD 

as compared to healthy controls. These markers were classified into four main categories: 

i) spectral markers, ii) connectivity and network (and/or connectivity) metrics, iii) complexity 

measures and iv) microstates (98). Regarding spectral markers, slowing in oscillations of 

the EEG activity was observed, with a decrease of higher frequency activity (alpha and beta 
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bands) or increase of low-frequency power (delta and theta bands) in AD and MCI groups 

compared to healthy controls (99–101). Other studies showed a reduction in complexity of 

the EEG signal throughout the development of dementia (102–104). Connectivity studies 

looked for covariation patterns in EEG sensor or source signals: they found that connectivity 

between brain areas, specifically in the higher frequency bands (for spectral-related 

connectivity measures) decreased as cognitive impairment progressed (105–108). More 

recently, ERP was suggested as a potential sensitive and robust biomarker to track disease 

progression and to evaluate response to therapy (109). ERPs are reflections of summated 

postsynaptic inhibitory and excitatory membrane potentials primarily generated by cortical 

pyramidal cells. Characteristic time-locked ERP waveforms are elicited in response to 

sensory, motor, and cognitive events (110). Early components (50–200 ms while the 

stimulus is encoded) reflect sensory processing of the characteristics of the stimuli but can 

be influenced to some extent by arousal and attention (111). Late ERP components (P300, 

N400, P600, and late positive potential [LPP]) reflect feature evaluation, memory matching, 

and processing speed (112). Multiple reports suggest that abnormal amplitude and latency 

of LPP are associated with cognitive decline (113). LPP is believed to reflect memory 

encoding and retrieval with possible sources located in the parahippocampal gyrus, medial 

temporal lobe, and posterior cingulate gyrus, commonly affected by AD (114). To the best 

of our knowledge only few studies described quantitative EEG changes in patients with SCD 

(115–117) while ERP was not been investigated in this population. 

Demographic, personality, cognitive, genetic, EEG and ERP features which we will collect 

for the PREVIEW study will be used to train a machine learning algorithm. Other studies 

already adopted this approach to predict dementia in non-demented population (118,119) 

and positive AD biomarkers in patients with MCI (120,121). Most studies demonstrated that 

machine learning algorithms are able to classify images from AD, MCI, and healthy 

participants with very high accuracy levels (122,123). Nevertheless, only few studies 

focused on predicting progression of cognitive decline (124–127) and we are not aware of 

studies that applied machine learning in predicting progression from SCD to dementia. This 

approach will allow us to consider all collected variables at once, allowing reducing 

redundancies between them and minimizing the costs for an optimal performance. This 

represents the main strength and the first innovative outcome of our project. The collection 

of AD CSF biomarkers is a second relevant strength of our study for two main reasons: i) as 

previous studies reported that SCD patients develop AD in an average time of ten years 

(7,94), a long follow-up period will be needed to reach an acceptable sample size of patients 
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progressed to AD. Considering CSF biomarkers, we could identify patients at higher risk for 

AD (according to the ATN system (128)) and classify them as prodromal AD. This 

classification might be considered as a surrogate target for preliminary cross-sectional 

analyses; ii) as stated before, SCD may also represent the first clinical manifestation of 

medical conditions other than AD. CSF biomarkers will allow us to distinguish SCD with 

Alzheimer’s pathology from SCD due to other causes.  

It is to be noted that this study will include patients that are self-referred to our memory clinic, 

as recommended by previous studies, to reduce the heterogenicity of the sample and to 

increase the chances of finding subjects with preclinical AD in comparison with community-

based studies (129).  

Finally, we would like to stress that all the features that we will consider as possible 

predictors will be derived from non-invasive, relatively inexpensive and easily accessible 

techniques. This will allow us to define a predictive model that may serve as a cost-effective 

and globally scalable tool for a first step in a diagnostic pathway before confirmation of AD 

pathology via more invasive and expensive tests. 

Our project has some limitations: i) CSF will not be available for all the patients; ii) 

neuroimaging techniques will be used only for basal assessment of patients and will not be 

considered for machine learning analysis; iii) healthy controls will undergo only EEG and 

ERP recording.  

 

4. Conclusion 

The upcoming of DMTs will lead to a radical change in management of patients with 

cognitive decline due to AD. As the effectiveness of these drugs is strongly linked to the 

disease stage, clinicians should be ideally able to detect individuals at risk of AD before 

neurodegeneration begins. Individuals experiencing cognitive complaint without objective 

demonstration of impairment may represent the perfect target population for this purpose. 

PREVIEW studies will involve SCD patients extensively characterized through clinical, 

neuropsychological, neurophysiological, and genetic assessment. The identified potential 

biomarkers will be evaluated by a machine learning approach aiming to design the most 

reliable model to predict the risk of progression to AD. 

 

5. Ethics and Dissemination 

All subjects will be recruited in accordance with the Declaration of Helsinki and with the 

ethical standards of the Committee on Human Experimentation of Careggi University 
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Hospital (Florence, Italy). The study was approved by the local Institutional Review Board 

(reference 15691oss). All participants in this study will sign an informed consent, agreeing 

to participate and to share the results deriving from their data. 
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