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ABSTRACT 

 

Background Irregular sleep-wake timing may cause circadian disruption leading to several chronic age-related 

diseases. We examined the relationship between sleep regularity and risk of all-cause, cardiovascular disease 

(CVD), and cancer mortality in 88,975 participants from the prospective UK Biobank cohort. 

Methods The sleep regularity index (SRI) was calculated as the probability of an individual being in the same 

state (asleep or awake) at any two time points 24 hours apart, averaged over 7-days of accelerometry (range 0-

100, with 100 being perfectly regular). The SRI was related to the risk of mortality in time-to-event models.  

Findings The mean sample age was 62 years (SD, 8), 56% were women, and the median SRI was 60 (SD, 10). 

There were 3010 deaths during a mean follow-up of 7.1 years. Following adjustments for demographic and 

clinical variables, we identified a non-linear relationship between the SRI and all-cause mortality hazard (p 

[global test of spline term] < 0·001). Hazard Ratios, relative to the median SRI, were 1·53 (95% confidence 

interval [CI]: 1·41, 1·66) for participants with SRI at the 5th percentile (SRI = 41) and 0·90 (95% CI: 0·81, 1·00) 

for those with SRI at the 95th percentile (SRI = 75), respectively. Findings for CVD mortality and cancer 

mortality followed a similar pattern. 

Conclusions Irregular sleep-wake patterns are associated with higher mortality risk.   

Funding National Health and Medical Research Council of Australia (GTN2009264; GTN1158384), National 

Institute on Aging (AG062531), Alzheimer's Association (2018-AARG-591358), and the Banting Fellowship 

Program (#454104).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 15, 2023. ; https://doi.org/10.1101/2023.04.14.23288550doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.14.23288550
http://creativecommons.org/licenses/by/4.0/


2 
 

INTRODUCTION 

Circadian rhythms are endogenous cycles in physiological, hormonal, and behavioral processes largely 

synchronized to the external 24-hour light-dark cycle. The sleep-wake cycle is perhaps the most notable 

biological process that follows the 24-hour circadian rhythm.1 The timing of light exposure is the primary 

external driver of circadian rhythms. Therefore, rapid changes in sleep timing can cause circadian misalignment 

through fluctuating light-dark exposure.2 

 

Circadian misalignment is associated with several age-related diseases, including cancer and cardiovascular 

disease (CVD).3-5 However, the health impacts of irregular sleep wake timing are still emerging. This remains an 

important area of study since modern societal and lifestyle trends, including exposure to artificial and blue light 

at night, longer work hours, shift work, and the 24-7 lifestyle have blurred the distinction between day and 

night, increasing the propensity for circadian disruption.6 The present study assessed the relationship between 

sleep regularity and the risk of incident all-cause mortality, cancer mortality, and CVD mortality in the UK 

Biobank (UKB). We measured sleep regularity via accelerometry to calculate the sleep regularity index (SRI), a 

new metric sensitive to differences in sleep-wake timing on a circadian timescale.  

 

METHODS 

Participants 

Over 500,000 adults aged 40 to 69 years were recruited to the UKB cohort between 2006 and 2010 across 22 

assessment centers. Participants were invited by the UK National Health Service patient registers, resulting in a 

5·5% participation rate. Respondents were more likely to be older, female, and less likely to live in 

socioeconomically deprived areas than the general population.7 Baseline demographics, medical history, 

lifestyle, vitals, and blood samples were collected. A total of 106,053 participants completed a 7-day wrist-worn 

accelerometer study through random selection between February 2013 and December 2015.  

 

Measurement of sleep regularity 

Accelerometry data were collected using a wrist-worn device (Axivity AX3, United Kingdom) over a 7-

day/night period. Estimated sleep status (awake or asleep) at a given time was calculated using the open-source 

R package GGIR version 2·7-1,8 using available algorithms.9,10 To distinguish sleep from sustained periods of 

inactivity without reference to a sleep diary (not available in the UKB), GGIR uses an algorithm to determine a 

daily ‘sleep period time window’ for each participant.11 This defines the time window between the onset and end 

of the main daily sleep period, during which periods of sustained inactivity are interpreted as sleep. The 

algorithm does not, by default, detect bouts of sleep outside of this window and hence is not able to identify 

naps. Accelerometry data of low quality were removed using established UKB criteria (Appendix 1). Most 

participants (88%) provided complete accelerometry data. Participants with fewer than two valid SRI 

measurements (i.e., less than 2 contiguous 24-hour wear periods; <1%) were excluded. In total, 88,975 (84%) 

participants provided valid SRI data and were included in the study.  

 

The SRI captures the probability of a participant being in the same state (asleep or awake) at any two time 

points 24�hours apart.12 An individual who sleeps and wakes at precisely the same time each day would have 
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an index of 100, whereas an individual who sleeps and wakes at entirely random times would have an index of 

0. Each participant provided k-1 SRI measurements (where k is the number of valid 24-hour periods), one for 

each contiguous two-day pair. These SRI measurements were averaged using a linear mixed effects model with 

a random intercept for the participant and fixed effects for the day of the week and daylight savings transition. 

The average SRI was standardized over the day of the week and daylight savings transitions, so all SRI results 

were comparable.  

 

Mortality ascertainment 

Mortality occurrence was identified through linkage with NHS Digital for participants from England and Wales 

and the NHS Central Register for participants from Scotland, with complete records available until January 

2022. Death records included the date of death and the ICD-10 code for the primary cause. ICD-10 codes I00-

I99 and C00-C97 defined CVD and cancer mortality, respectively. 

 

Ascertainment of disease status at baseline  

Past or prevalent cancer (ICD-10 codes D00-D09 and D37-D48), diabetes (codes E10-E14), mental and 

behavioral disorders (codes F00-F99), nervous system disorders (codes G00-G99), and CVD (codes I00-I99) at 

the time of the accelerometry study were ascertained through self-report at the UKB baseline session and 

through linkage with hospital inpatient records using the above ICD-10 codes. Linkage with hospital inpatient 

records was also used to identify disease occurrence between the UKB baseline session and the time of the 

accelerometry study.  

 

Data Analysis  

Data analysis was performed using R version 4·2·1. Cox proportional hazards models were used to examine 

associations between the SRI and incident all-cause mortality, CVD mortality, and cancer mortality. 

Surveillance for mortality commenced from the time of accelerometry (2013-2015) until the end of follow-up 

(January 2022), with a median follow-up time of 7·1 years (Q1, Q3: 6·6, 7·6). Non-events were censored at the 

last date they were known to be alive. For CVD and cancer mortality, deaths from competing causes were 

censored at the time of death. The SRI and all continuous confounders were modeled with restricted cubic 

splines with knots at the 10th, 50th, and 90th percentiles to allow for departures from linearity. Effect 

modification was assessed by adding product terms to Cox models. Missing data were infrequent (< 2%) for 

most confounder variables and were imputed (10 imputations) by predictive mean matching using the 

aregImpute function of R package Hmisc.13  

 

In addition to Cox models, discrete-time hazards models, including an interaction between SRI and time 

(aggregated into 3-month intervals and modeled with a restricted cubic spline with knots at the 5th, 35th, 65th, and 

95th percentiles), were fitted to relax the assumption of proportionality and allow hazard ratios (HRs) to vary 

over time.14 The SRI by time interaction in this model provided a test of proportionality (a small p value would 

indicate strong evidence against the proportional hazards assumption). Time-varying HRs were then displayed 

visually. In cases where HRs showed clear time-variation (i.e., hazards were non-proportional), we nonetheless 

present HRs from the Cox models as these can be interpreted as a weighted average of the time-varying HRs.15 
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The discrete-time hazards model for all-cause mortality was also used to estimate standardized cumulative 

incidence (risk) across levels of SRI, with confidence intervals obtained by bootstrapping.16 To reduce 

computation demand, only single imputation was used for the discrete-time hazards models.  

  

All models were adjusted for the following variables that were selected using a directed acyclic graph 

(Appendix, Figure S1): age, sex, ethnicity (White, Asian, mixed race, Black, or other), Townsend deprivation 

index, retirement status (retired vs. all other work arrangements), shift work (shift worker vs. non-shift worker), 

sick or disabled (self-reported employment category), household income (ordinal with 5 levels), highest level of 

education (ordinal with 6 levels), smoking status (current, former, never), smoking (pack years), and use of 

sedative, antidepressant, or antipsychotic medication.  

 

     Sensitivity analyses 

We fitted a second statistical model to determine whether the observed associations were independent of sleep 

time and disruption. Therefore, Model 2 included additional adjustments for overnight sleep duration and wake 

after sleep onset (WASO), averaged across accelerometry days (plus primary model covariates). In the second 

sensitivity analysis (Model 3), we adjusted for past or prevalent disease at baseline (cancer, CVD, mental and 

behavioural disorders, nervous system disorders, diabetes), in addition to the variables in the primary model. 

These variables were included as part of a sensitivity analysis as it is unclear whether they may be mediators or 

confounders of the SRI-mortality relationship. Long-standing irregular sleep may lead to prevalent disease (or a 

history of disease) at baseline and influence disease risk factors,17-20 indicating that these disease variables may 

play a mediating role (and consequently should not be adjusted). Conversely, past or prevalent disease may have 

effects disruptive to regular sleep and these variables may therefore confound the SRI-mortality relationship. 

Disease risk factor variables body mass index (BMI), moderate and vigorous physical activity (accelerometry-

derived), systolic blood pressure (BP), and use of BP lowering medication, in addition to the variables in Model 

3, were included in a final sensitivity analysis (Model 4), as it is similarly unclear whether they may confound or 

mediate the SRI-mortality relationship. 

 

     Comparison of SRI with other regularity measures 

Preliminary reports which identified irregular sleep as a potential CVD risk factor measured sleep regularity as 

the amount of deviation in sleep patterns from an individual’s average (i.e., the standard deviation [SD] of 

nocturnal sleep duration and sleep onset time).21,22 To contrast these SD-based metrics with the SRI, we fitted 

independent Cox models (each with primary model covariates) and estimated HRs for all-cause mortality for 

each of the three measures. Additionally, we added the SRI to a model containing both SD-based regularity 

measures (alongside primary model covariates) to test whether the SRI contained additional mortality risk 

information beyond that captured by the two SD metrics.  

 

RESULTS 

Table 1 displays sample characteristics. The final sample size was 88,975. There were 3010 all cause deaths 

during a median follow-up of 7·1 years (Q1, Q3: 6·6, 7·6). The most common primary cause of death was cancer 

(n = 1701, 57%) followed by CVD (n = 616, 20%).  
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SRI and all-cause mortality 

We identified a non-linear association between the SRI and all-cause mortality hazard (p [global test of spline 

term] < 0·001) (Figure 1). Compared to the sample median (SRI = 61), mortality rates were highest among 

those with the most irregular sleep and decreased almost linearly as SRI approached its median, after which the 

decrease began to plateau (Figure 1). HRs, relative to the median SRI, were 1·53 (95% CI: 1·41, 1·66) for 

participants with SRI at the 5th percentile (SRI = 41) and 0.90 (95% CI: 0·81, 1·00) for those with SRI at the 95th 

percentile (SRI = 75), respectively. Standardized cumulative incidence curves for all-cause mortality are 

displayed for the SRI at the 5th percentile, median, and 95th percentile in Figure 2. There was little indication 

that hazard ratios varied according to age (p interaction = 0.48), sex (p = 0.36), household income (p = 0.62), 

sleep duration (p = 0.47), moderate to vigorous physical activity (p = 0.13), past or prevalent CVD (p = 0.48), or 

past or prevalent cancer (p = 0.29).  

 

There was strong evidence against the proportionality assumption in the discrete-time hazards model (p [time x 

SRI interaction] < 0·001). Time-varying HRs for the 5th and 95th SRI percentiles compared to the median are 

displayed in the appendix (Figure S2). For the 5th percentile relative to the median, HRs were greatest in the 

earliest period of follow-up (HRs> 2), declining until approximately 2·5 years, after which they remained 

approximately stable with a HR of around 1·5. There was no clear time variation in the HR for the 95th 

percentile of SRI vs. the median.  

 

CVD-specific mortality  

The SRI was associated with CVD-specific mortality in the primary model (p [global] < 0·001; Figure 1). HRs, 

relative to the median SRI, were 1·88 (95% CI: 1·61, 2·21) and 0·93 (95% CI: 0·73, 1·20) for the 5th and 95th 

percentiles, respectively. There was no evidence of non-proportional hazards in the discrete-time hazards model 

(p [time x SRI interaction] = 0·57). There was little indication that HRs varied according to age (p interaction = 

0.17), household income (p = 0.30), sleep duration (p = 0.69), moderate to vigorous physical activity (p = 0.95), 

past or prevalent CVD (p = 0.16), or past or prevalent cancer (p = 0.24). HRs for low SRI were larger for males 

than females (p interaction = 0.006; Figure S4). 

 

Cancer-specific mortality 

The SRI was associated with cancer mortality in the primary model (p [global] < 0·001). HRs, relative to the 

median SRI, were 1·36 (95% CI: 1·22, 1·53) and 0·89 (95% CI: 0·77, 1·02) for the 5th and 95th percentiles, 

respectively. There was strong evidence of non-proportional hazards in the cancer-mortality discrete-time 

hazards model (p [time x SRI interaction] < 0·001). HRs, for the 5th percentile vs. the median, were large at the 

beginning of follow-up (HRs> 2) and declined until approximately four years, after which they were small (~ 

1·05) and compatible with the null (Appendix, Figure S3). There was no indication that HRs for the 95th SRI 

percentile relative to the median varied over follow-up. There was little indication that hazard ratios varied 

according to age (p interaction = 0.48), sex (p = 0.36), household income (p = 0.62), sleep duration (p = 0.49), 

moderate to vigorous physical activity (p = 0.42), past or prevalent CVD (p = 0.82), or past or prevalent cancer 

(p = 0.12).  
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Sensitivity analyses 

Sensitivity analyses are displayed in the appendix (Figures S5-7). Overall, results were similar and not 

meaningfully altered following adjustments for sleep time and WASO (Model 2) or past or prevalent baseline 

disease, including cancer and CVD (Model 3). The SRI remained associated with mortality after further 

adjustments for past or prevalent diseases, BMI, systolic BP, BP treatment, and physical activity (Model 4), 

though effect sizes were attenuated. For example, when comparing the 5th percentile to the median, HRs were 

1·22 (95% CI: 1·07, 1·39) for all-cause, 1·43 (95% CI: 1·21, 1·69) for CVD, and 1·15 (95% CI: 1·01, 1·29) for 

cancer mortality.  

 

Comparison of SRI with sleep duration SD and sleep onset time SD 

The SRI was modestly negatively correlated with the sleep duration SD (-0.32) and sleep onset time SD (-0.42; 

see correlation matrix in Table S1). Figure 3 displays HRs, relative to the median, for the SRI, sleep duration 

SD, and sleep onset time SD. For each measure, greater sleep irregularity (i.e., lower SRI or higher SD 

representing more day-to-day variability) was associated with an increased all-cause mortality rate in 

independent models (all p [global] < 0·001). HRs, for low regularity compared to the median, were largest for 

the SRI (Figure 3). The addition of the SRI to a model containing both SD metrics (alongside primary model 

covariates) improved model fit (p [likelihood ratio test] < 0·001). Conversely, the addition of sleep duration SD 

and sleep onset time SD to a model containing the SRI (and primary model covariates) did not meaningfully 

improve model fit (p [likelihood ratio test] = 0·10). 

 

 

DISCUSSION 

Among 88,975 individuals followed for a median of 7·1 years, there was a non-linear association between sleep 

regularity and the risk of mortality; mortality rates were highest in persons with the most irregular sleep and 

decreased approximately linearly as sleep regularity approached its median, after which the decrease began to 

plateau. Our findings were independent of past or prevalent illness (including cancer and CVD at baseline), 

sleep duration, sleep fragmentation, and other confounding factors. Overall, these data indicate a relationship 

between sleep regularity and longevity in a large community-based cohort.     

 

Physiological processes associated with CVD and cancer are under circadian control. Mutations or deletions to 

circadian clock genes such as CLOCK, PER, and BMAL1 influence BP, endothelial function, and glucose 

homeostasis.23-26 Both major (e.g., chronic shift work) and minor (e.g., daylight savings transitions) stressors to 

the circadian system have been associated with a higher risk of CVD.3,5 Similarly, circadian misalignment has 

also been implicated in the pathogenesis of cancer. For example, circadian clocks are critical to the orchestration 

of cell division27, and altered clock function can precipitate aberrant cell proliferation28 as well as growth and 

DNA damage in cancer cells.29 Many systems are under circadian influence, including the sleep-wake cycle, and 

less clear has been the extent to which differences in sleep regularity are related to negative health outcomes. We 

extend this research by demonstrating that differences in sleep regularity are associated with the risk of mortality 

from both CVD and cancer.    
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Whereas sleep regularity has not been examined with respect to incident cancer or mortality, the current findings 

extend research showing that greater sleep-wake variability, as measured by the SD of sleep onset or duration, 

was independently associated with a higher risk of incident CVD in the multi-ethnic study of atherosclerosis but 

not the UK Biobank.21,22 We demonstrate that the SRI contains information about mortality risk beyond that 

contained in the SD of sleep duration and onset, whereas the converse was not the case. The SRI may be 

superior to the SD-based metrics because the SRI captures rapid changes in sleep patterns across consecutive 

days, as compared to the SD-based metrics which only calculate deviation from an individual’s average. Rapid 

changes in sleep timing have been hypothesised as being principally challenging for the circadian system to 

accommodate12 which may, in turn, produce negative health outcomes.  

 

We found evidence that hazard rates across levels of SRI were non-proportional (i.e., varied across the follow-

up period) for all-cause and cancer mortality (which accounted for most deaths), though not for CVD mortality. 

For cancer mortality, HRs for low SRI compared to the median were largest in the earliest follow-up period and 

decreased thereafter. One plausible interpretation of this finding is that irregular sleep may be a manifestation of 

the underlying physiological processes of cancer itself or of cancer treatment (i.e., the SRI-cancer mortality 

association may be due to reverse causation). However, this thesis is challenged by the fact that associations 

between the SRI and cancer mortality remained similar after adjusting for past or prevalent cancer at baseline. In 

the case of CVD mortality, no such evidence of a decline in HRs over follow-up time was evident; a potential 

causal role of irregular sleep on CVD death cannot be easily ruled out.  

 

Sleep of insufficient or excessive duration is associated with many adverse health outcomes, including increased 

mortality risk.30 As of 2022, sleep duration was included by the American Heart Association in their Essential 

Eight guidelines for CVD prevention.31 However, sleep is far more complex than its habitual duration and 

quality, with sleep regularity receiving comparatively little attention. As sleep-tracking wearables become more 

accessible, objective measurement of sleep regularity has the potential for public and clinical use. Much like 

sleep duration, replicating the current findings across different samples will be necessary for establishing 

population norms and clinical targets. Furthermore, identifying the determinants of poor sleep regularity may be 

of import, not only considering biological factors, but broader social determinants that impact circadian 

rhythmicity (e.g., racial/ethnic disparities32, neighbourhood factors33) and consequently overall health. 

 

Our study is not without limitations. Firstly, the study was observational. We are, therefore, unable to establish 

cause and effect. Although we performed extensive analyses to control for confounding, we cannot exclude the 

possibility that our results are explained by residual confounding. As such, although therapies exist for 

improving sleep regularity, it’s not clear if these interventions are able to extend the lifespan. Second, sleep and 

wake were estimated through activity patterns from accelerometry. As compared to polysomnography, there is 

the potential to misclassify sleep and wake, although accelerometry is more suited to estimate circadian patterns 

over several days; there are several strengths to using accelerometry (e.g., days of continuous recording, 

minimal technical apparatus affecting sleep quality), making it the recommended clinical tool for assessing 

circadian rhythms.34 In addition, sleep diaries in the UKB were not available. Consequently, the algorithm we 
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used to determine sleep and wake relied on the identification of a main ‘sleep period time window’ and did not 

identify napping.  

 

Circadian rhythms have a major influence on health and disease. Although sleep wake timing is under circadian 

control, research on sleep regularity as a risk factor for mortality was equivocal. These data suggest sleep 

regularity as an important correlate of longevity, independent of sleep duration, fragmentation, and quality. 

Future work is needed to determine the underlying mechanisms to inform possible interventions to extend the 

lifespan.  
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Table 1: Sample characteristics (n = 88,975) 
 SRI tertile 
Characteristic < 56.8 

n = 29,361 
56.8 to 65.2 
n = 29,361 

>65.2 
n = 30,252 

Sex (male), n (%) 16,429 (56%) 12,747 (43%) 9,691 (32%) 
Age (years) 62.3 (7.8) 61.8 (7.8) 61.6 (7.9) 
BMI 27.8 (4.9) 26.6 (4.3) 25.8 (4.1) 
Ethnicity, n (%)    
    Asian 1,199 (4.1%) 1,110 (3.8%) 1,114 (3.7%) 
    Black 159 (0.5%) 107 (0.4%) 76 (0.3%) 
    Mixed race 1,024 (3.5%) 831 (2.8%) 658 (2.2%) 
    White 26,621 (91%) 27,070 (93%) 28,210 (93%) 
    Other 233 (0.8%) 145 (0.5%) 129 (0.4%) 
Townsend deprivation index (score units) -1.36 (3.01) -1.79 (2.76) -2.01 (2.63) 
Household income* (thousands), n (%)    
    <18 4,917 (19%) 3,601 (14%) 3,266 (12%) 
    18-30 6,665 (25%) 6,225 (24%) 6,450 (24%) 
    31-50 7,352 (28%) 7,741 (29%) 7,843 (29%) 
    51-100 5,888 (22%) 6,816 (26%) 7,280 (27%) 
    >100 1,633 (6.2%) 1,994 (7.6%) 2,159 (8.0%) 
Retired, n (%) 9,467 (32%) 8,984 (31%) 9,442 (31%) 
Shift worker, n (%) 1,869 (6.4%) 1,146 (3.9%) 912 (3.0%) 
Smoking status, n (%)    
    Current 2,790 (9.5%) 1,863 (6.4%) 1,451 (4.8%) 
    Former 10,956 (37%) 10,587 (36%) 10,367 (34%) 
    Never 15,526 (53%) 16,830 (57%) 18,361 (61%) 
Sedative medication, n (%) 334 (1.1%) 231 (0.8%) 216 (0.7%) 
Antidepressant medication, n (%) 2,217 (7.6%) 1,543 (5.3%) 1,385 (4.6%) 
Past or revalent cancer, n (%) 3,941 (13%) 3,800 (13%) 3,897 (13%) 
Past or prevalent CVD, n (%) 13,949 (48%) 11,602 (40%) 10,727 (35%) 
Past or prevalent diabetes, n (%) 1,976 (6.7%) 1,059 (3.6%) 724 (2.4%) 
Past or prevalent neurological disease, n (%) 3,946 (13%) 3,380 (12%) 3,467 (11%) 
Past or prevalent mental/behavioural disorder, n (%) 3,521 (12%) 2,482 (8.5%) 2,184 (7.2%) 
Average night time sleep duration (hours; actigraphy-
derived) 

6.33 (0.97) 6.59 (0.78) 6.79 (0.66) 

Average night time wake after sleep onset (hours; 
actigraphy-derived) 

0.86 (0.30) 0.80 (0.26) 0.70 (0.23) 

Sleep duration SD, hours 1.33 (0.64) 1.11 (0.52) 0.94 (0.48) 
Sleep onset time SD, hours  1.41 (1.12) 0.96 (0.64) 0.72 (0.51) 
SRI, score units 48.5 (7.3) 61.2 (2.4) 70.3 (3.7) 
Data are mean (SD), unless specified otherwise. *pounds. SRI = sleep regularity index; CVD = cardiovascular 
disease.  
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Figure 1. Adjusted hazard ratios for all-cause (A), CVD (B), and cancer (C) mortality.  

P values from global (2 degree of freedom) test of spline term. Hazard ratios (HR) are relative to the median 

SRI (SRI = 60). HRs for all-cause mortality, CVD mortality, and cancer mortality were estimated using Cox 

proportional hazards models, adjusted for age, Townsend deprivation index, sex, antidepressant, antipsychotic, 

and sedative medication, ethnicity, household income, education, smoking status (former, current, never), 

smoking pack years, shift work, retirement status, and sick or disabled (self-reported employment category). All 

continuous confounders and the SRI were modeled with restricted cubic splines (knots at 10th, 50th, and 90th 

percentiles) to allow for departures from linearity. 
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Figure 2. Cumulative incidence of all-cause mortality across SRI.  

Standardized cumulative incidence of all-cause mortality for SRI at 41 (5th percentile), 61 (median), and 75 (95th 

percentile). Estimates from a discrete-time hazards models including an interaction between SRI and time 

(aggregated into 3-month intervals and modeled with a restricted cubic spline with knots at the 5th, 35th, 65th, and 

95th percentiles) and primary model covariates. Confidence intervals were obtained by bootstrapping.  
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Figure 3. Adjusted hazard ratios for all-cause mortality for the SRI (A), sleep duration SD (B), and sleep 

onset SD (C) measures.  

P values from global (2 degree of freedom) test of exposure spline term. Hazard ratios (HR) are relative to the 

median SRI (SRI = 60). HRs were estimated using Cox proportional hazards models, adjusted for age, 

Townsend deprivation index, sex, antidepressant, antipsychotic, and sedative medication, ethnicity, household 

income, education, smoking status (former, current, never), smoking pack years, shift work, retirement status, 

and sick or disabled (self-reported employment category). All continuous confounders and the sleep regularity 

metrics were modeled with restricted cubic splines (knots at 10th, 50th, and 90th percentiles) to allow for 

departures from linearity.
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Supplementary appendix  

Supplement to: Cribb, Sha, Yiallourou, et al. Sleep Regularity and Mortality: A Prospective Analysis in the UK 

Biobank 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 15, 2023. ; https://doi.org/10.1101/2023.04.14.23288550doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.14.23288550
http://creativecommons.org/licenses/by/4.0/


2 
 

Appendix 

Table of Contents 

Appendix 1: Removal of low-quality accelerometer data 

Appendix 2: STROBE checklist 

Table S1: Correlation between sleep regularity index and standard deviation-based regularity metrics 

Figure S1.  Directed acyclic graph for identification of adjustment variables 

Figure S2. Time-varying HRs for 5th and 95th percentiles of SRI (relative to median) for all-cause mortality 

Figure S3. Time-varying HRs for 5th and 95th percentiles of SRI (relative to median) for cancer-mortality 

Figure S4. SRI and all-cause mortality in sensitivity analyses 

Figure S5. SRI and all-cause mortality in sensitivity analyses 

Figure S6. SRI and CVD-mortality in sensitivity analyses 

Figure S7. SRI and cancer-mortality in sensitivity analyses 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 15, 2023. ; https://doi.org/10.1101/2023.04.14.23288550doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.14.23288550
http://creativecommons.org/licenses/by/4.0/


3 
 

 

Appendix 1: Methods. Removal of low-quality accelerometer data 
Accelerometry data of low quality were removed using established UKB criteria; 
incongruity of self-reported wear time and accelerometer wear time data (5%); insufficient wear time (< 72 
hours; 5%); and poorly calibrated data (<1%). Lastly, data were removed for participants in which GGIR was 
unable to determine a sleep window (5%) and for participants providing less than two valid SRI measurements 
(i.e., 2 24-hour wear periods; <1%). In total, 88,975 (84%) participants provided valid sleep regularity index 
data and were included in the study.     
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Appendix 2: STROBE Statement—Checklist of items that should be included in reports of cohort studies  
 

Item 
No Recommendation 

 Title and abstract 1 (a) Indicate the study’s design with a commonly used term in the title or the 
abstract (see title) 
(b) Provide in the abstract an informative and balanced summary of what was 
done and what was found (see pg 2) 

Introduction 
Background/rationale 2 Explain the scientific background and rationale for the investigation being 

reported  (pg 3) 
Objectives 3 State specific objectives, including any prespecified hypotheses (pg 3) 

Methods 
Study design 4 Present key elements of study design early in the paper (Pg 3) 
Setting 5 Describe the setting, locations, and relevant dates, including periods of 

recruitment, exposure, follow-up, and data collection (Pg 3) 
Participants 6 (a) Give the eligibility criteria, and the sources and methods of selection of 

participants. Describe methods of follow-up (Pg 3-4) 
(b) For matched studies, give matching criteria and number of exposed and 
unexposed NA 

Variables 7 Clearly define all outcomes, exposures, predictors, potential confounders, and 
effect modifiers. Give diagnostic criteria, if applicable (Pg 4) 

Data sources/ 
measurement 

8*  For each variable of interest, give sources of data and details of methods of 
assessment (measurement). Describe comparability of assessment methods if 
there is more than one group (Pg 3-4) 

Bias 9 Describe any efforts to address potential sources of bias (pg 5) 
Study size 10 Explain how the study size was arrived at (pg 3 and appendix) 
Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If 

applicable, describe which groupings were chosen and why (pg 5) 
Statistical methods 12 (a) Describe all statistical methods, including those used to control for 

confounding (pg 4-5, Figure S1) 
(b) Describe any methods used to examine subgroups and interactions NA 
(c) Explain how missing data were addressed (pg 4-5) 
(d) If applicable, explain how loss to follow-up was addressed 
(e) Describe any sensitivity analyses (pg 5) 

Results 
Participants 13* (a) Report numbers of individuals at each stage of study—eg numbers 

potentially eligible, examined for eligibility, confirmed eligible, included in 
the study, completing follow-up, and analysed (Pg 3) 
(b) Give reasons for non-participation at each stage 
(c) Consider use of a flow diagram Not considered necessary but can be 
created upon request 

Descriptive data 14* (a) Give characteristics of study participants (eg demographic, clinical, 
social) and information on exposures and potential confounders Table 1 
(b) Indicate number of participants with missing data for each variable of 
interest  
Missing data were infrequent, as described in methods 
(c) Summarise follow-up time (eg, average and total amount) (pg 5) 

Outcome data 15* Report numbers of outcome events or summary measures over time (pg 5) 

Main results 16 (a) Give unadjusted estimates and, if applicable, confounder-adjusted 
estimates and their precision (eg, 95% confidence interval). Make clear which 
confounders were adjusted for and why they were included Figures and 
Appendix figures 
(b) Report category boundaries when continuous variables were categorized 
NA 
(c) If relevant, consider translating estimates of relative risk into absolute risk 
for a meaningful time period Figure 2 
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Other analyses 17 Report other analyses done—eg analyses of subgroups and interactions, and 
sensitivity analyses (pg 6) 

Discussion 
Key results 18 Summarise key results with reference to study objectives (pg 7) 
Limitations 19 Discuss limitations of the study, taking into account sources of potential bias 

or imprecision. Discuss both direction and magnitude of any potential bias 
(pg 8) 

Interpretation 20 Give a cautious overall interpretation of results considering objectives, 
limitations, multiplicity of analyses, results from similar studies, and other 
relevant evidence (pg 8) 

Generalisability 21 Discuss the generalisability (external validity) of the study results (pg 7-8) 

Other information 
Funding 22 Give the source of funding and the role of the funders for the present study 

and, if applicable, for the original study on which the present article is based 
(pg 8) 

 

*Give information separately for exposed and unexposed groups. 

 

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological 

background and published examples of transparent reporting. The STROBE checklist is best used in conjunction 

with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of 

Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the 

STROBE Initiative is available at http://www.strobe-statement.org. 
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Table S1: Correlation between sleep regularity index and standard deviation-based regularity metrics 

Regularity measure Sleep regularity index Sleep duration SD Sleep onset SD 

Sleep regularity index 1 -0.32 -0.42 

Sleep duration SD -0.32 1 0.55 

Sleep onset SD -0.42 0.55 1 
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Figure S1. Directed acyclic graph for identification of adjustment variables. The green node indicates the 
exposure variable (SRI), and the blue node (Mortality) is the outcome variable. Pale grey nodes indicate 
unobserved variables; white nodes indicate a variable which has been conditioned on (by regression adjustment 
or restriction). Paths in red are biasing paths. Arrows indicate the direction of causal effect between two nodes. 
P is an unobserved variable representing unmeasured causes of sleep habits (e.g., genetics). U is an unobserved 
variable representing unmeasured causes of disease and cardiovascular dysfunction (e.g., genetics, biological 
ageing). Z is an unobserved variable representing unmeasured causes of health behaviours (e.g., personality 
factors, genetics). Green paths from SRI to Prevalent disease, BP medication, Systolic BP, BMI, and Physical 
activity and from these nodes to Mortality represent potential mediation of an SRI effect. Conversely, red paths 
indicate potential sources of confounding (e.g., a backdoor path from Mortality to Prevalent disease to SRI via 
U). Given the current evidence base, we are unable to determine whether and to what extent variables such as 
Prevalent disease act as mediators or confounders (via U) of the SRI-mortality association. AP = anti-psychotic; 
AD = antidepressant; BMI = body mass index; BP = blood pressure; CVD = cardiovascular disease; Deprivation 
= the Townsend deprivation index; SRI = sleep regularity index; WASO = wake after sleep onset.  
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Figure S2. Time-varying HRs for 5th and 95th percentiles of SRI (relative to median) for all-cause 
mortality. A: Hazard ratios for 5th percentile vs median SRI; B: Hazard ratios for 95th percentile vs median SRI. 
Discrete time hazards model including time (aggregated into 3-month intervals and modelled with a restricted 
cubic spline with knots at the 5th, 35th, 65th, and 95th percentiles), SRI, and an SRI by time interaction. Adjusted 
for age, Townsend deprivation index, sex, antidepressant, antipsychotic, and sedative medication, ethnicity, 
household income, education, smoking status (former, current, never), smoking pack years, shift work, 
retirement status, and sick or disabled (self-reported employment category). All continuous confounders and the 
SRI were modelled with restricted cubic splines (knots at 10th, 50th, and 90th percentiles) to allow for departures 
from linearity. There was strong evidence of an interaction between time and SRI (p [interaction] < 0.001). 
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Figure S3. Time-varying HRs for 5th and 95th percentiles of SRI (relative to median) for cancer-mortality. 
A: Hazard ratios for 5th percentile vs median SRI; B: Hazard ratios for 95th percentile vs median SRI. Discrete 
time hazards model including time (aggregated into 3-month intervals and modelled with a restricted cubic 
spline with knots at the 5th, 35th, 65th, and 95th percentiles), SRI, and an SRI by time interaction. Adjusted for 
age, Townsend deprivation index, sex, antidepressant, antipsychotic, and sedative medication, ethnicity, 
household income, education, smoking status (former, current, never), smoking pack years, shift work, 
retirement status, and sick or disabled (self-reported employment category). All continuous confounders and the 
SRI were modelled with restricted cubic splines (knots at 10th, 50th, and 90th percentiles) to allow for departures 
from linearity. There was strong evidence of an interaction between time and SRI (p [interaction] < 0.001).  
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Figure S4. SRI and CVD-specific mortality by sex. Adjusted for age, Townsend deprivation index, 
antidepressant, antipsychotic, and sedative medication, ethnicity, household income, education, smoking status 
(former, current, never), smoking pack years, shift work, retirement status, and sick or disabled (self-reported 
employment category). Hazard ratios are relative to the median SRI (SRI = 60).  
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Figure S5. SRI and all-cause mortality in sensitivity analyses. P values from global (2 degree of freedom) 
test of spline term. Hazard ratios are relative to the median SRI (SRI = 60).  
 
  Model 2 (M2) adjustments: Adjusted for age, Townsend deprivation index, sex, antidepressant, 
antipsychotic, and sedative medication, ethnicity, household income, education, smoking status (former, current, 
never), smoking pack years, shift work, retirement status, and sick or disabled (self-reported employment 
category), average sleep time, and average wake after sleep onset time. M2 results: HRs, relative to the median 
SRI, were 1.42 (95% CI: 1.31, 1.55) and 0.90 (95% CI: 0.80, 1.00) for SRI at the 5th and 95th percentiles, 
respectively.  
  Model 3 (M3) adjustments: Adjusted for age, Townsend deprivation index, sex, antidepressant, 
antipsychotic, and sedative medication, ethnicity, household income, education, smoking status (former, current, 
never), smoking pack years, shift work, retirement status, and sick or disabled (self-reported employment 
category), and past or prevalent diabetes, cancer, mental and behavioural disorder, neurological illness, and 
cardiovascular illness. M3 Results: HRs, relative to the median SRI, were 1.46 (95% CI: 1.35, 1.58) and 0.93 
(95% CI: 0.83, 1.03) for the 5th and 95th percentiles of SRI, respectively.  
  Model 4 (M4) adjustments: Model 3 with additional adjustment for BMI, moderate and vigorous 
physical activity, systolic blood pressure, and blood pressure medication. M4 results: HRs, relative to the 
median SRI, were 1.20 (95% CI: 1.11, 1.31) and 1.00 (95% CI: 0.90, 1.12) for the 5th and 95th percentiles, 
respectively.  
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Figure S6. SRI and CVD-mortality in sensitivity analyses. P values from global (2 degree of freedom) test of 
spline term. Hazard ratios are relative to the median SRI (SRI = 60).  
 
  Model 2 (M2) adjustments: Adjusted for age, Townsend deprivation index, sex, antidepressant, 
antipsychotic, and sedative medication, ethnicity, household income, education, smoking status (former, current, 
never), smoking pack years, shift work, retirement status, and sick or disabled (self-reported employment 
category), average sleep time, and average wake after sleep onset time. M2 results: HRs were 1.66 (95% CI: 
1.40, 1.96) and 0.95 (95% CI: 0.73, 1.22) for the 5th and 95th percentile vs. the median SRI, respectively.  
  Model (M3) adjustments: Adjusted for age, Townsend deprivation index, sex, antidepressant, 
antipsychotic, and sedative medication, ethnicity, household income, education, smoking status (former, current, 
never), smoking pack years, shift work, retirement status, and sick or disabled (self-reported employment 
category), and past or prevalent diabetes, cancer, mental and behavioural disorder, neurological illness, and 
cardiovascular illness. M3 results: HRs were 1.73 (95% CI: 1.47, 2.02) and 0.99 (95% CI: 0.77, 1.26) for the 5th 
and 95th percentiles, respectively.  
  Model 4 (M4) adjustments: Model 3 with additional adjustment for BMI, moderate and vigorous 
physical activity, systolic blood pressure, and blood pressure medication. M4 results: HRs were somewhat 
attenuated: 1.43 (95% CI: 1.21, 1.69) and 1.09 (95% CI: 0.85, 1.40), for the 5th and 95th percentiles, respectively.  
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Figure S7. SRI and cancer-mortality in sensitivity analyses. P values from global (2 degree of freedom) test 
of spline term. Hazard ratios are relative to the median SRI (SRI = 60).  
  Model 2 (M2) adjustments: Adjusted for age, Townsend deprivation index, sex, antidepressant, 
antipsychotic, and sedative medication, ethnicity, household income, education, smoking status (former, current, 
never), smoking pack years, shift work, retirement status, and sick or disabled (self-reported employment 
category), average sleep time, and average wake after sleep onset time. M2 results: HRs were 1.35 (95% CI: 
1.20, 1.52) and 0.88 (95% CI: 0.76, 1.02) for the 5th and 95th percentile vs. the median SRI, respectively.  
  Model 3 (M3) adjustments: Adjusted for age, Townsend deprivation index, sex, antidepressant, 
antipsychotic, and sedative medication, ethnicity, household income, education, smoking status (former, current, 
never), smoking pack years, shift work, retirement status, and sick or disabled (self-reported employment 
category), and past or prevalent diabetes, cancer, mental and behavioural disorder, neurological illness, and 
cardiovascular illness. M3 results: HRs were 1.33 (95% CI: 1.19, 1.49) and 0.90 (95% CI: 0.78, 1.04) for the 5th 
and 95th percentiles, respectively.  
  Model 4 (M4) adjustments: Model 3 with additional adjustment for BMI, moderate and vigorous 
physical activity, systolic blood pressure, and blood pressure medication. M4 results: HRs were 1.15 (95% CI: 
1.02, 1.30) and 0.97 (95% CI: 0.84, 1.12) for the 5th and 95th percentiles, respectively.  
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