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Abstract
Motivation: Cancer is a collection of diseases caused by the deregulation of cell processes, which
is triggered by somatic mutations. The search for patterns in somatic mutations, known as
mutational signatures, is a growing field of study that has already became a useful tool in
oncology. Several algorithms have been proposed to perform one or both the following two
tasks: 1) de novo estimation of signatures and their exposures, 2) estimation of the exposures of
each one of a set of pre-defined signatures. Our group developed signeR, a Bayesian approach to
both these tasks.
Results: Here we present a new version of the software, signeR 2.0, which extends the
possibilities of previous analyses to explore the relation of signature exposures to other data of
clinical relevance. signeR 2.0 includes an user-friendly interface developed using the R-Shiny
framework and improvements in performance. This version allows the analysis of submitted data
or public TCGA data, which is embedded on the package for easy access.
Availability: signer 2.0 is an open-source R package available through the Bioconductor project
at https://doi.org/doi:10.18129/B9.bioc.signeR
Contact: itojal@accamargo.org.br or rrosales@usp.br

Introduction
DNA mutations accumulate throughout an individual’s life and may result in the deregulation of
metabolic processes observed in tumor cells (Stratton, 2011). Specific patterns of somatic muta-
tions are characteristic of the exposure to some carcinogens, which are more frequently found in
some tumor types. The study of these ’mutational signatures’ has become a solid field of research
in oncology, and is now seen as a field which has made significant advances over the last years
(Alexandrov, Nik-Zainal, Wedge, et al., 2013; Koh et al., 2021). The importance of studying muta-
tional signatures in oncology is irrefragable, as mutation patterns are related to cancer aetiology,
diagnosis and prognosis, appear to predict response to therapy (Liu, Xia, et al., 2022; Liu, Lin, et al.,
2022) and may echo genomic alterations induced by chemotherapy, making the valuable tools for
most aspects of cancer research Koh et al., 2021.

The first method to extract mutational signatures from somatic mutation counts was based on
non-negative matrix factorisation (NMF) techniques applied to Single Nucleotide Variations (SNVs)
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counts, see Alexandrov, Nik-Zainal, Wedge, et al., 2013. Since then, several methods formutational
signature extraction have emerged, most of them based on variations of the NMF algorithm; see
Kim et al., 2021 for a recent overview and a comparison of current methods. Our group developed
signeR, a Bayesian approach to the NMF paradigm for mutational signature extraction, Rosales et
al., 2017. A key idea that led to the development of signeR is that the signature extraction problem
can be treated as an inferential task, subject to statistical modelling. signeR is able to extract the
underlying signatures by estimating both the number of signatures present in the data and the rel-
ative contribution of each signature to the total amount of observed mutation counts. The relative
contribution of a signature to the total amount of counts is known as a signature exposure. signeR
can also be used to estimate the sample exposure levels of known mutational signatures, such as
those described by the COSMIC consortium (Tate et al., 2018) or the Signal initiative (Degasperi
et al., 2020). This functionality follows a tendency observed in literature: as signatures have be-
come known and well determined by the study of extensive datasets, algorithms capable of fitting
mutation samples to available signatures started to emerge (e.g. deconstructSig, Rosenthal et al.,
2016).

Mutational signatures have recently been proposed as markers for cancer prognosis or drug
sensitivity (see reviews by Brady, Gout, and Zhang, 2022 and Levatic et al., 2022). Available ev-
idence suggests that the estimation of exposure levels to mutational processes may be incorpo-
rated within the cancer diagnostic workflow, whichmay improve diagnosis in the future Van Hoeck
et al., 2019. As an example, our group recently considered signeR to stratify gastric cancer patients
for therapeutic intervention (Buttura et al., 2021). Those results highlight the scientific potential of
relating mutational signatures to other relevant features in cancer, such as clinical or molecular
data.

In this article we describe an enhanced version of signeR that is computationally more efficient
and has several new functionalities. A major contribution of signeR 2.0 is that it allows to study the
relation of each signature exposure to almost any other clinical feature of interest, such as overall
survival, tumor staging or cancer subtypes. These features may be categorical (e.g. cancer molec-
ular subtypes), continuous (e.g. gene expression) or survival data. Such additional information is
nowadays present in several data bases as for instance in The Cancer Genome Atlas consortium
(TCGA, Zhang et al., 2021). Clustering or machine learning algorithms used to relate exposures to
clinical features are repeatedly applied to different results obtained while estimating the matrix of
exposures to signatures. The decomposition of mutation data may lead to multiple similarly suit-
able solutions, thus the estimation of signatures and exposures is not exact. Most publications use
bootstrapmethods to evaluate the robustness of results obtained frommutation data decomposi-
tion (Alexandrov, Nik-Zainal, Siu, et al., 2015; Huang, Wojtowicz, and Przytycka, 2018). Our method,
however, employs a Gibbs sampler to generate a posterior distribution of estimate signatures and
exposures.

The utility of signeR 2.0 is demonstrated here by considering TCGA data obtained from stomach
adenocarcinomas. Mutational signatures previously identified by the COSMIC consortium (Tate et
al., 2018) for this type of cancer were used as templates to correlate their observed exposures to
several other clinical data of interest. These analyses include the clustering of samples according
to signatures exposures, the search for signatures showing significant differences in distribution
among tumor subtypes and the evaluation of how exposure levels affect patients overall survival.

The software interface is user-friendly and intuitive, facilitating the estimation of mutational
signatures and further extending the study of their relation to other clinical data to users with little
programming background. We hope that this version of signeR will aid in subsequent genome
based studies of cancers, eventually leading to new insights and discoveries.
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System and methods
Database content
The new version of signeR described here provides a query interface, signerRFlow, to explore the
interplay of mutational signature exposures and several other features present in clinical data.
To do so, signeR 2.0 embedded into its framework the most recently processed and up-to-date
molecular and clinical dataset of The Cancer Genome Atlas (TCGA) consortium ( https://www.cancer.
gov/about-nci/organization/ccg/research/structural-genomics/tcga) along with a catalog of mutational
signatures (COSMIC Single Base Substitution signatures v3.2, the latest version by the software
construction, https://cancer.sanger.ac.uk/cosmic/signatures/SBS).

Interface design
The signeRFlow app was developed using shiny Chang et al., 2022, an R package for building inter-
active web apps. It is implemented as an open-source R package available along with signeR 2.0
through the Bioconductor project at https://doi.org/doi:10.18129/B9.bioc.signeR.

Algorithm
signeR 2.0 presents an updated version of the signeR Bayesian approach Rosales et al., 2017, with
parallel computation capabilities devoted to hasten processing time. The hyper-hyper parameters
of our Bayesian hierarchical model have been estimated for the TCGA data. This saves further
computational time and resources. Nevertheless, as in previous versions, there is still an option to
estimate the hype-hyper parameters while inferring signatures and their exposures.

To further explore the genotype-phenotype relationships between mutational signatures and
other data of interest, signeR 2.0 provides an unified data modeling toolkit. If additional samples
information is available, including molecular and clinical data such as cancer sub-type or overall
survival, signeR 2.0 is able to evaluate how this information relates to the estimated exposures to
mutational signatures. When the additional data is of a categorical nature, differences in exposures
among groups can be analyzed and, if some of the samples are unlabeled they can be labeled
based on the similarity of their exposure profiles to those of labeled samples. In the case of a
continuous additional feature, its correlation to estimated exposures can be evaluated. Survival
data can also be analyzed by estimating the relation of survival to mutational signature exposure.
We describe briefly each of these new features next.

signeR takes as input a matrix𝑀 = (𝑀𝑖𝑗) of mutation counts found in a set of genome samples.
Each column of 𝑀 , denoted hereafter as 𝑀𝑗 , corresponds to a genome sample and each row to
a given mutation type. As an output signeR can estimate two matrices 𝑃 and 𝐸 of mutation sig-
natures and signature exposures such that 𝑀 ≈ 𝑃𝐸. Alternatively, signeR can estimate only the
exposures 𝐸 to known signatures. In both cases, the algorithm estimates exposures by drawing a
sample 𝐸(1), 𝐸(2), …, 𝐸(𝑅) of exposure matrices, approximately distributed according to our model
posterior distribution (Rosales et al., 2017). All subsequent analyses described here are based on
the repeated application of statistical or learning algorithms to the matrices 𝐸(𝑟), 1 ≤ 𝑟 ≤ 𝑅. Af-
ter each of the sampled matrices 𝐸(𝑟) is analyzed, results are joined and findings are considered
significant if they are consistent throughout most of these analyses. A general description of this
procedure is shown by the pseudo-code presented in Algorithm 1.

If estimated exposures are confronted to a categorical feature, signeR 2.0 uses non-parametric
tests (Wilcoxon-Mann-Whitney or Kruskal-Wallis tests) to assess the enrichment of exposures in
any of the categories. For each signature, the tests are applied on each 𝐸(𝑟), and obtained 𝑝-values
are inverted and log-transformed for visualisation purposes. Resulting values are called Differen-
tial Exposure Scores and can be visualized as a boxplot (for more details see Rosales et al., 2017).
signeR 2.0 is also able to evaluate the ability of exposure levels to discriminate samples among cat-
egories. Several classification algorithms are available for this purpose. signeR currently includes:
1. 𝑘-nearest neighbors, 2. linear vector quantization, 3. Logistic regression, 4. linear discriminant
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Algorithm 1 Exposure data analysis: general structure
1: signeR Gibbs sampler generates 𝐸(𝑟) realizations of the exposure matrix
2: for 𝑖 = 1, 2,…, R do
3: Analyze 𝐸(𝑟) by:

a. Testing each signature for relations with covariate (DES, correlation or logrank tests) OR
b. Testing if exposures are able to model covariate (sample classification, linear or Cox mod-

els) OR
c. Clustering samples by exposures

4: end for
5: Summarize found results.

analysis, 5. least absolute shrinkage and selection operator (lasso), 6. naive Bayes, 7. support
vector machines, and 8. random forests. In all cases, given a genome sample 𝑀𝑗 and a exposure
matrix 𝐸(𝑟) the chosen classifier is used to label𝑀𝑗 in one of the categories. The final label for𝑀𝑗

is obtained as the most frequent label obtained by considering 𝐸(𝑟), 1 ≤ 𝑖 ≤ 𝑅.
When a continuous feature is considered, such as gene expression, the correlation of each

signatures exposure to this feature can be assessed. A correlation test is applied to each 𝐸(𝑟) and
the found 𝑝-values, inverted and log-transformed, are shown as a boxplot. A similar approach,
considering all signatures together, is used by signeR 2.0 to evaluate whether the feature can be
linearly modeled based on exposures.

Survival data, often present in cancer studies, can also be related to exposures. For each signa-
ture and each 𝐸(𝑟), signeR 2.0 stratifies patients according to exposure levels and applies logrank
tests to compare obtained groups. The impact of exposures on survival can also be quantified via
Cox proportional hazard models (Therneau and Grambsch, 2000). Again, all tests are applied to
each 𝐸(𝑟) and results are summarized by taking the median of all the obtained statistics (𝑝-values
and hazard ratios).

Finally, when no additional data is available, signeR 2.0 includes unsupervisedmethods such as
hierarchical and fuzzy clustering to discover sample sub-groups based entirely on the estimated
exposures. Several options are available for the required distance measure (see R function dist
documentation) or the agglomerative procedure (see R function hclust documentation). If a hier-
archical clustering is used, the algorithm is applied to each exposure matrix 𝐸(𝑟), 1 ≤ 𝑖 ≤ 𝑅, as
mentioned in the pseudo-code Algorithm 1. The obtained dendrograms are compared and shown
on a final chart, were the relative frequency with which each branch were found is displayed. In
case the user chooses to use fuzzy clustering, the fuzzy C-means algorithm is applied to each 𝐸(𝑟),
thus generating matrices of membership grades of each genome sample to each cluster. Those
grades are averaged to yield the final result. For visualisation purposes a hierarchical procedure
is applied to the mean membership grades so that similar samples are displayed together on the
final chart.

Tests and learning algorithms available on signeR 2.0 are obtained from specialized R packages
(e.g. pvclust or survival). Their complete list can be found on the package documentation and is
included as Supplementary Material. Few examples of the application of these functionalities to a
data set from TCGA data base are presented in Section .

Implementation: signeRFlow
The signeRFlow app includes three major components and consists of a pipeline that allows: (i)
data input and pre-processing; (ii) mutational signature estimation or fitting and (iii) exposure data
modeling. A schematic overview of signerFlow is shown in Figure 1.

The flexible input interface was designed to allow users to upload their own data either as VCF
file or a SNVmatrix file (Smf, an example of the file structure can be found within the interface). Ad-
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Figure 1. General overview of SigneRFlow. Starting from the top, clinical and molecular features from publicly
available TCGA databases or own user data can be loaded. After pre-processing, a friendly interface provides
options to setup both de novo and fitting analyses. After pre-processing, a friendly interface provides
analytical methods for downstream analysis.

ditionally, the user can select a previous cancer study of interest from the TCGA database available
in the TCGA Explorer module. In the first option, users can add clinical information, while available
clinical data for TCGA samples is already organizedwithin signeRFlow and easily accessible through
the interface.

Upon data upload completion, the mutational signature analysis is ready to commence. In this
step, the user can take advantage of a Bayesian approach to perform de novo identification of
mutational signatures. signeR 2.0 provides flexible options for choosing the number of searched
signatures or optimizing it, within a fixed range, according to the Bayesian Information Criterion
(BIC). In addition, signeRFlow is able to fit the mutational spectra of studied genome samples to
known mutational signatures, thus estimating the samples exposure levels to related mutational
processes. Single Base Substitution (SBS) signatures from COSMIC are available within signeRFlow
for fitting analysis, although users can upload other signatures as well. Whenever a mutational
signature analysis is performed, signeRFlow offers several plot options to visualize estimated sig-
natures and their exposures, as well as the convergence of the MCMC model used to estimate
them (Supplementary Figure 5). For the fitting to known signatures, exposure plots are available
(see, for instance, Figure 2A).

Finally, signeRFlow provides a toolbox containing state of art techniques on learning algorithms
for exposure data analysis (see Algorithm 1). For example, hierarchical and fuzzy clustering can
be used to explore the qualitative differences among samples evidenced by signature exposures.
Furthermore, to unveil the interplay of mutational signatures with clinical or genomic features,
signeRFlow provides comprehensive options for covariate analysis considering either categorical
or numerical features. In the first case, signeR 2.0 Differential Exposure Score (DES) can highlight
signatures that are differentially active among previously defined groups of samples, while the
function ExposureClassify evaluates the assignment of samples to groups according to exposure
profiles. On the other hand, sample correlation and linear regression can be performed. Lastly, the
effect of exposure levels on prognosis can be investigated by comparing the survival distributions
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of sample groups with contrasting exposure levels or by Cox regression analysis. The next section
presents a concrete example of these possibilities.

A case study
Although standard histological classification techniques are fundamental for dividing cancer into
sub-types and disease stratification, the exposure to mutational processes may provide additional
information extending further this characterization. We illustrate this here by using the differential
exposure score (DES, Rosales et al., 2017) estimated while analysing a data set with 439 samples
selected from the stomach adenocarcinoma (STAD) cohort from TCGA. The mutational spectra of
these samples were fitted to known signatures previously reported to be characteristic of STAD
(Alexandrov, Nik-Zainal, Siu, et al., 2015). According to COSMIC nomenclature, the signatures in-
cluded in this analysis are Single Base Substitutions (SBS) numbers 2, 3, 5, 10b, 13, 15, 17a, 17b,
18, 20, 21, 26, 28, 34, 40, 41, 44, and 93. The estimated exposures (i.e. the empirical average of the
realizations obtained by signeR for the exposure matrix) are shown in Figure 2A.

As an exploratory approach, a Fuzzy clustering algorithm was applied to the exposures found
by signeR. Results are shown in Figure 2B. Interestingly, 3 of the 6 groups found via fuzzy clustering
(Figure 2B, clusters 1, 4 and 5) aremainly composed of samples characterized by highmicrosatellite
instability (MSI), an important marker for tumour prognosis (Bass, 2014).

Motivated by the clustering results, we considered several supervised approaches available on
signeR 2.0. The sample molecular sub-types proposed in Bass, 2014, namely Epstein-Barr virus
(EBV)-positive tumours, tumours characterized by microsatellite instability (MSI), genomically sta-
ble (GS) tumours and tumours showing chromosomal instability (CIN), were adopted as targets to
evaluate how the exposures of individual signatures correlate to them. For each signature, differ-
ences in exposures among STAD sample groups were evaluated by the Kruskal-Wallis test (Differ-
ential Exposure Scores). Results are shown in Figure 2C. Thirteen COSMIC signatures show different
levels of activity in sample subtypes. Among signatures with higher exposures in MSI samples we
found SBS1, a clock-like signature which in most cancers correlates with the age of the individual,
and five mutational signatures associated with defective DNA mismatch repair and microsatellite
instability: SBS15, SBS20, SBS21, SBS26 and SBS44 (COSMIC consortium).

The potential of exposure data to classify cancer samples was also tested in signeRFlow, based
on the microsatellite instability (MSI) status also described by Bass, 2014. According to clustering
and DES results, exposure data seems adequate to identify samples with high microsatellite insta-
bility. Thus, the original sample classification asMSI-High,MSI-Low andMSStable was grouped as
MSI-High and others and the classification algorithm adopted this grouping as target. A 𝑘-fold cross
validation approach (𝑘=8) was adopted, producing a ROC curve for the classification found, as well
as the related confusion matrix (Figure 2D). It is worth noting that, as shown in the last column of
the confusion matrix, a few samples are not consistently classified by signeR 2.0 and therefore are
considered as undefined. Although the fraction of these samples is small (< 0.69%), their labeling
to some group could be spurious, which is avoided by our approach because it incorporates the
variability of exposure data.

Finally, we considered the impact of signature exposure levels on disease prognosis. For each
signature, samples were stratified by their exposure levels, after searching for the cutoff value
leading to the most relevant contrast on the overall survival of found strata (function maxstas, R
package maxstat). The survival contrast among the resulting groups was evaluated by the logrank-
test, repeatedly applied to the realizations of the exposure matrix. Signatures SBSx, x = 1, 5, 15, 21
and 26 were reported as significant in prognosis. According to COSMIC, the first two are clock-like
signatures, which correlates with the age of the individual, while the last three are associated with
MSI samples. As an example, Kaplan-Meier survival curves for signature SBS26 can be found on
Figure 2E.

The results presented in this section are consistent with previous knowledge about STAD. They
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exemplify how the new signeR functionalities described here can be used to gain further insights
about the molecular nature of cancers.

Discussion
signeR 2.0 is a software suite devoted to explore the information obtained from exposure to mu-
tational processes data. It offers an updated version of the signeR Bayesian approach, with paral-
lel computation functionalities and pre-computed hyper-hyper parameters, which saves computa-
tional time. It is presented in an user interface, signeRFlow, which brings in a ready-to-use form
methods to estimate exposure data from mutation counts and to relate them with available clini-
cal data from genome samples under study. The results of previous applications of signeR to the
TCGA datasets, both de novo and fitting analyses, are available for exploration with signeR 2.0 tools,
accompanied by related clinical data. To this end, signeR 2.0 offers a collection of established data
analysis methods (classifiers, linear models, survival analysis, etc.) and interfaces to apply them to
generated samples of the exposure matrix, outputting summary statistics of individual results.

Results found on the gastric adenocarcinoma dataset (TCGA-STAD) show the software’s poten-
tial for exploring available data, hopefully leading to further insights and new discoveries. The
observed relation of exposures to some signatures andMSI status or age is in accordance with the
literature (Bass, 2014) and demonstrates the potential of this tool to identify patterns of interest
in cancer samples. Provided algorithms can be valuable tools to improve patient stratification or
prognosis. Due to its software interface, signeRFlow, the use of signeR 2.0 does not require ex-
tensive computational training and therefore the tool is accessible for a wider audience. signeR
2.0 is available as a Bioconductor package. A detailed explanation about how to use its interface
is provided as Supplementary material (S1) and also in the package documentation. signeR is an
ongoing project and new versions and functionalities will be released soon.
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Figure 2. A) Heatmap of estimated exposures obtained by fitting 19 COSMIC signatures to the STAD dataset. Genome samples are displayed as columns of the

heatmap while COSMIC signatures are arranged as rows and estimated (log-transformed) exposures levels are shown by the colour scale. B) Fuzzy clustering of

samples according to estimated exposures, compared to known classifications by molecular profiles. Clusters were organized in columns and for each sample (row)

the colour code indicates the membership grade to each cluster. Following the fuzzy clustering approach, a hierarchical clustering algorithm was applied to the

membership grades (dendrogram at left), enabling better visualisation of results and allowing to establish a relation to molecular sub-types and MSI status

(annotation columns at right side). C) 𝑝-values found by Kruskal-Wallis test for differences in exposures among the four sample groups. For comparison and display

purposes, the 𝑝-values were inverted and log-transformed. Box-plots of obtained scores are displayed and the signficance cutoff of 0.05 is indicated by the red line.

The labels at the x axis correspond to the id of each signature and, for those showing significant differences, the group characterized by higher exposure levels. D)

ROC curve of the exposure-based classification of samples according to their MSI status and related confusion matrix. E) Kaplan-Meier curves showing the overall

survival of STAD patients after stratification by the exposures obtained while fitting COSMIC signature SBS26. The displayed 𝑝-value was found by application of the

log-rank test for defined sample groups.
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