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Abstract:

Despite a growing interest in the gut microbiome of non-industrialized regions of the world, data linking
microbiome features from such settings to diverse phenotypes remains uncommon. Here, using
metagenomic data from a community-based cohort of 1,187 people from isolated villages in the
Mesoamerican highlands of Western Honduras, we report 7,117 statistically robust associations spanning
788 gut microbial species (including both known and unknown taxa) and 126 phenotypes (including
physical and mental health, medication use, diet, animal exposure, and social and economic measures).
We report 394 new associations with mental health phenotypes alone, as well as 3,004 associations with
diverse socioeconomic phenotypes. Distinctly, we also found 1,210 associations with microbiome
metabolic pathways. We also report 302 significant associations after including strain-level phylogenies
from 666 microbial species. Including the strain-phylogenetic information changes the overall
relationship between gut microbiome and these phenotypes, and strain-level phylogenetic information
enhances the observed relationship between microbiome and phenotypes as a whole. Our findings suggest
new roles that gut microbiome surveillance can play in understanding broad features of individual and
public health.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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Thanks to long-run investments in gut microbiome research in industrialized countries, the
pervasive role that the human microbiome plays in influencing health-related and other phenotypes, or
how various phenotypes may, reciprocally, influence the microbiome, is becoming increasingly clear.!
Yet these studies have largely focused on industrialized populations.? However, the majority of the human
population lives outside of North America and Europe, and nearly half of the human population lives
outside urban areas. Non-industrialized populations often experience problems with access to healthcare
resources, have distinctive patterns of social interactions (e.g., low population density, fewer contacts
with strangers), and have other distinctive exposures (e.g., animals and diet).>*’ Prior studies of non-
industrialized populations have documented the presence of rich uncharacterized taxa that are often
absent in industrialized cohorts.® And advances in genomics (such as strain-level information) are still
uncommonly applied in non-industrialized settings.

The village communities in the western highlands of Honduras are geographically isolated (Fig.
1A), consisting in a large proportion of the descendants of Mayan peoples who today still form traditional
face-to-face social networks and who depend on subsistence agriculture and coffee cultivation. We
collected population-level data in these small communities, including deep sequencing data and a
comprehensive set of both individual and community-level characteristics regarding diverse
psychological, socioeconomic, and health phenotypes. Our cohort consists of 1,187 people living in 11
villages which are part of a larger cohort developed for a different original purpose.” The adult population
size in our 11 villages ranges from 66 to 432 individuals, and the average household size is 4.68. The
average age of participants was 39.67 (SD=17.06; range: 15 - 93); 62.4% were women and 37.6% were
men; and 26.3% of them were married. Each of our 11 villages has its own intricately connected social
networks with minimal inter-village contact, and they are not only separated by distance but also by
elevation (Fig. 1A).

Variations in microbiome composition can be appreciated even within the same village. For
instance, there is a pattern of decreasing similarity as individuals live farther away from the village center
(Fig. 1B-C). This aspect is also reflected within the social networks of the villagers. Villagers located at
the topological center of the network have a more similar microbiome to the rest of the village, unlike
those at the social periphery (B= 3.66 x 107, p-value =0.761 from linear regression model; see Methods
for details, and also Fig. 1A).
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Fig. 1: Geographic overview of the Honduras microbiome project: (A) A satellite view of the Honduran
villages (in orange) which constitute the microbiome dataset. On the top left, there is a zoomed-in satellite view of
an illustrative village with each inhabitant (n=57) colored with beta diversity (Bray-Curtis dissimilarity) relative to
the average microbiome composition of the rest of the village, and connected by white edges which represent social
interactions between individuals. Green nodes are indicative of being very similar in microbiome composition to the
rest of the village, whereas red nodes are dissimilar. Square nodes indicate male and circle nodes indicate female
villagers. (B) Scatter-plot of Bray-Curtis dissimilarity (of the above village) and the distance of households from the
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population-weighted village centroid (see methods) shows a positive correlation (p = 0.144, p-value =0.05) of gut
microbiome dissimilarity with distance. Individual dots are colored according to the person’s dissimilarity from the
village’s average microbiome. The light grey areas indicate a 95% confidence interval. (C) Combined plot of all the
village Bray-Curtis dissimilarities and distance from village centroids. The black regression line indicates a
consistent trend (p = 0.311, p-value =0.00253) of increasing microbiome dissimilarity with regard to the distance
from the village centroid. The individual dots are colored according to the village they belong to. The light grey
areas indicate a 95% confidence interval.

Overall, we found 7,117 associations when examining 788 microbial species and 126 phenotypes
(including physical and mental health, medication use, diet, animal exposure, and social and economic
measures) (See Supplementary Table 1). All comparisons involved appropriate statistical controls (see
Methods) and were corrected for multiple hypothesis testing using a False Discovery Rate (FDR)
procedure. Distinctly, we also found 1,210 associations with metabolic pathways (See Supplementary
Table 2). The 126 phenotypes exist as continuous, categorical, and discrete variable types (Supplementary
Tables 3-5). Of course, several of the phenotype variables were correlated (for example, individuals with
high hemoglobin A1C strongly correlated with reporting a diagnosis of diabetes and the household wealth
index correlated with owning a refrigerator (Extended Data Fig. 1)). Similarly, clustering of phenotypes
based on species effect sizes (obtained from the species-phenotype association models) showed that
multiple phenotypes within different categories have similar microbial signatures (Extended Data Fig. 2).

For the health phenotypes, 722 species were found to be significantly associated with at least one
phenotype (Supplementary Table 1 and 3). Among the 722 significant species, 556 of them belonged to
Firmicutes, making this phylum the one most associated with health phenotypes. Among all the
associated species, 28.12% were identified as unknown?® at several taxonomic levels. uSGB2240
(unknown at the genus level) from the Rikenellaceae family was the most frequently associated species,
significantly associated with 11 health phenotypes; in particular, it was observed to be depleted in
individuals with worse overall health, high BMI, heart disease, intestinal illness, allergies, moderate-
severe anxiety, mild depression, and nervousness; and it was enriched in patients with dementia (Fig.
2A). Multiple health phenotypes were characterized by similar changes in relative abundances in multiple
species. We also observed that different phenotypes shared similar sets of microbial signatures, especially
when looking at species reported as depleted. For instance, uSGB2240 is associated with mental health in
general (associating with 5 mental health phenotypes). Microbial species from the Rikenellaceae family
have been previously found to be associated with at least one anxiety disorder.’

Furthermore, a total of 167 pathways were associated with at least one health phenotype, totaling
249 pathway associations (for details regarding ascertainment of microbial metabolic pathways, see
Methods). Among the 249 associations, physiological variables had 120 associations, followed by 80
associations in chronic illness phenotypes; 20 in medication use; 19 in acute conditions; 8 in personality
measures, alcohol, cigarettes, and mental health; and 2 in overall health (Supplementary Table 2).

We performed association analysis for the subset of individuals falling in unhealthy ranges of
various phenotypes (i.e., BMI<18 and BMI>25 to account for underweight and over-weight individuals,
or diastolic pressure>89 to account for hypertensive individuals) compared to healthy individuals as
controls (Extended Data Fig. 3, Supplementary Table 6). High diastolic blood pressure had the strongest
effect sizes among the health phenotypes. Three species were associated with four unhealthy phenotypes.
Bacteroides bouchesdurhonensis was found associated with the anemic range of total hemoglobin, high
heart rate, and high blood pressure (Supplmentary Table 6); uSGB6513, an unknown species in the
Bacilli family, was associated with high hemoglobin Alc and high blood pressure; and Clostridia
bacterium (SGB4394) was associated with high hemoglobin A1C (6.5-7), overweight BMI, and high
blood pressure (Supplementary Table 6).

We also evaluated whether the diversity of the microbiome was itself associated with various health
(and other) phenotypes. The majority of the villagers self-reported themselves as healthy individuals
(n=847, 72%) and only 132 villagers (11%) reported having more than one disease. Villagers with
reported illnesses (except arthritis) were found to have lower diversity relative to healthy villagers (Fig.
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2B); in particular, villagers with reported stomach illness had decreased diversity (p-value= 4.9¢-5
Wilcoxon Rank Sum test). Villagers taking various medications also had lower diversity (Fig. 2C); anti-
parasitic drug users showed the lowest diversity (p-value=7.1e-4 Wilcoxon Rank Sum test) followed by
anti-diarrheal users (p-value=9¢-3 Wilcoxon Rank Sum test) and antibiotic users (p-value=12e-3
Wilcoxon Rank Sum test). We found no material associations with other categories of medications.

Overall, all the health phenotypes put together contribute 7.87% of the total variance explained in
microbial species composition (Extended Data Fig. 4 and Supplementary Table 7). Similarly, 15.2% of
the variance in pathways composition is relevant to health phenotypes.

We also performed a simple comparison by comparing all chronically ill individuals to those
without any chronic conditions. With 848 healthy people and 339 chronically ill people, we use
differential abundance analysis. We found that 134 species were significantly differentially abundant
(Fig. 2D). Among them, Bacteroides ovatus and Bacteroides caccae have been implicated with IBD.!%!!
Specifically, B. caccae has been shown to be linked with an increase in the degradation of mucus and
increased inflammation;'? Parabacteroides distasonis has been shown to reduce metabolic dysfunction
and obesity;'? Alistipes putredinis has been shown to play a direct role on health through diet'*; and
Prevotella sp. 885 has been shown to decrease with advanced Chronic Kidney Disease. !
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We also explored possible associations with animal exposure and diet."!®!”1¥ An unusual feature of
our setting is that more than 90% of villagers reported having exposure to different types of animals,
including wild animals, farm animals, and pets, affording possible zoonotic transmission. Overall, for all
food and animal phenotypes, 632 species were found to be significantly associated with at least one of the
phenotypes, resulting in 1,858 associations (Fig. 3A, Supplementary Table 4). Among all the associating
bacterial species, 26% were unknown. Among the 632 significant species, 471 of them belonged to
Firmicutes, making this phylum the one most commonly associated with specific animals or food
categories. We found 8 pathways associated with exposure to animals (Supplementary Table 2). Animal
exposure contributed to 3.48% of the variation in species composition. We found no difference in overall
Shannon diversity in individuals exposed to different animal categories (Extended Data Fig. 5).
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Fig. 3: Microbiome association with animal and food phenotypes: 74 species that best represent gut
microbiome associations with animal exposure and food consumption (see Supplementary Table 1 for a complete
list of associations). The number of individuals (N) involved in the respective phenotypes is shown in brackets. The
presence of color shows p-value significant species for that phenotype (FDR<0.05); the intensity of color
corresponds to the strength of the effect size. Unknown species are indicated with “{}”, specifying the taxonomic
level at which the species is known. The top ribbon indicates the phylum of the associating species. Phenotypes
without “N” are recorded for all individuals.
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Diet has been extensively studied and shown to have a substantial impact on the gut
microbiome.'®1%2° We assessed associations with microbial features and food frequency consumption
(Extended Data Fig. 5) and found 1,319 significant associations with diet (Fig. 3A). Bacteroides
intestinalis (SGB1846) was the species associated with the most food phenotypes. Bifidobacterium
longum (SGB17248), Escherichia coli (SGB10068), and Klebsiella pneumoniae (SGB10115) were
associated with cream/butter and cheese in our cohort, similar to other studies.?'?>* Even though the
majority of the individuals were consuming tortillas and beans on a daily basis, we measured diet
diversity using the Diet Diversity Score** (DDS) (see Methods and Extended Data Fig. 6). We identified a
total of 36 significant associations between the DDS and gut microbiome species (Fig. 3A); in particular
one of the significant species, Flavonifractor plautii (SGB15132), was also found in another study with
individuals having high DDS.? We also found 451 pathway associations with food phenotypes
(Supplementary Table 2). Diet was responsible for 3.09% and 4.04% of the variance explained in our
sample in species and pathways composition respectively (Extended Data Fig. 4).

For all socioeconomic phenotypes, 718 species were found to be significantly associated with at
least one of the phenotypes (Fig. 4A, Supplementary Table 1). Among all the 718 associated species, 27%
of them were unknown, and 546 of them belong to Firmicutes, making it again the most dominant phyla
for socioeconomic factors. Moreover, uSGB4929 of the Lachnospiraceae family is the species with the
strongest association, significantly associated with 15 socio-economic phenotypes. We also found 512
associations with pathways, with 3 of them associating with 7 of the socio-economic phenotypes
(Supplementary Table 2).

Socioeconomic factors are relevant to many exposures and habits of individuals. Higher monthly
expenditures are correlated with a better diet and better household essentials such as having a refrigerator
or a paved floor. Indeed, most of the bacteria associated with higher monthly expenditures are the same as
the ones associated with better diet quality.?®?’

Even though all of the subjects in our sample are poor, economic status still varied among them and
was associated with possessions and diets potentially relevant to the microbiome. Overall, the average
household wealth index score (ranging from 1 (least wealthy) to 5 (most wealthy)) is 3.21, and the
standard deviation was 1.36. In terms of measures of economic status, both monthly expenditure and
travel were associated with the microbiome. Of course, wealth was also directly correlated with owning
various items (such as a TV or a mobile phone) some of which (such as a refrigerator or a stove) might
affect food consumption and others of which (such as having glass windows, cement walls, more sleeping
rooms, an earthen floor, or a metal roof) might affect microbiome exposures via other routes (Extended
Data Fig. 1). This is evident in Fig. 4A. The analysis with the wealth index revealed similar patterns of
association, where a high index was associated with the same bacterial species as owning expensive items
(like glass windows) and conversely. The variance explained by economic factors was 5.03% for species
and 5.04% for pathways (Extended Data Fig. 4), indicating the relative importance of economic factors in
explaining variation in the gut microbiome.

Moreover, as shown in Fig. 4B, even at the level of overall microbial diversity, the subjects from
the less well-off households (in the bottom three quintiles of the wealth distribution) had a Shannon index
that was higher from that of the subjects from the wealthiest households (in the top quintile).
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friendship (non-kin) networks, familial (kin) network, and “all” (kin+non-kin) networks. The number of individuals
(N) involved in the respective phenotypes is shown in brackets. The presence of color shows p-value significant

species for that phenotype (FDR<0.05); the depth of color corresponds to the strength of the effect size reported

from the mode. Unknown species are indicated with “{}”, specifying the taxonomic level at which the species is

known. Phenotypes without “N” are recorded for all individuals. (B) Shannon diversity of villagers belonging to

households classified by household wealth index, ranging from 1 (least wealthy) to 5 (most wealthy). All

comparisons were performed using the Wilcoxon Rank Sum test and corrected for multiple hypothesis testing.
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In addition to the above factors, Fig. 4A and Extended Data Fig. 4 show that education (0.27%
variance explained in species, 0.38% in pathways) was also related to the gut microbiome and had 127
associations. And environmental exposures in the village, like the extent of nearby deforestation or the
distances to the main road, health center, or village center, had 66 significant associations with 0.7% and
2.11% of the variance explained in species and pathways, suggesting such exposures play some (small)
role in influencing the overall gut microbiome. In the past, household-level environmental exposures
(such as water sources) have also been known to influence both pathogenic and non-pathogenic bacterial
species in the human gut microbiome.?®?*° OQur results reveal 124 unique associations between the
household water sources and the gut microbiome, with 0.85% of the species variance and 0.73% of the
pathway variance explained. Moreover, Supplementary Table S2 reveals 489 pathway associations with
economic variables (including income, risky behavior, village factors, and household variables). The
remaining 9 pathway associations were found with water sources. In addition, social network factors had
409 unique associations with the microbiome, with familial factors making up 101 associations, and
friendship factors having 159 associations. Overall, social factors made up 1.68% of the variance
explained in the case of species and 1.21% of pathways (Extended Data Fig. 4).

Finally, moving beyond species-specific associations with phenotypes, there is meaningful
variation between the genetic makeup of the same species across different individuals that is in turn
associated with diverse phenotypes. This is shown in Fig. SA with an illustrative example where frequent
fruit consumers are clustered together within the strain phylogeny plot of uSGB14230 (in the Clostridia
family). Other studies have established links between several Clostridium species and a good diet.*!*
This strain-level phylogeny effect reflects the phylogenetic tree structure of this single species (Fig. SA);
that is, the fruit-eating phenotype is associated with a particular locations on the strain-level phylogenetic
tree of this bacterial species. Therefore, even within the same species, different strains have different
phenotype relationships.

Overall, including strain phylogenies in the model of microbiome genotype-phenotype associations
(N=83,916) changes the results: by adjusting the model by considering the strain-level phylogeny and
then comparing it with the unadjusted model, there is an overall shift of the estimated -coefficient of
5.12% — across all our species and phenotypes combined (Fig. 5B). A total of 45.02% (238) of the
associations are present (significant) in both results (with and without strain-phylogenetic effect). But
19.88% (105) associations are present only in the absence of the other level. Among the 238 associations
which were present in the models both with and without strain information, the inclusion of strain-
phylogenetic effects flips the direction of effect in 28.26% (67) of the associations (Extended Data Fig.
7).

The significant association between species and phenotype after including the strain information
into the model can be broken down. After considering all phenotypes and including strain-level
phylogenetic information, we found 302 significant associations that can be observed across ten sub-
categories of phenotypes across 666 species (Extended Data Fig. 8). The health phenotypes (comprising
physiological variables, chronic conditions, medication usage, mental health, etc.), showed 54
associations in total, with 34 species. The food and animal categories had 66 associations with 38 species.
As for the socioeconomic factors (comprising economic and social variables, and water sources), they had
almost three times as many associations as any other, with 182 associations over 69 species.

Since, as shown in Fig. 5B, adding the strain-phylogenetic effect alters the relationship between
species and phenotypes, we performed a parallel comparison of the individual effect sizes in the two
models. Examining the effects sizes of species (across all phenotypes) revealed 6 species which were
significantly altered after adding the strain-phylogenetic effect. The species Faecalibacterium prausnitzii
(SGB15318 group), Clostridium sp. NSJ 42 (SGB6174 group), and Ruminococcaceae bacterium
(SGB15249) undergo the maximum significant change in effect sizes across all phenotypes (p<0.01)
when including the strain-phylogenetic effect (Fig. SC).

On the other side, 35 phenotypes were significantly different after including the strain-phylogeneitc
effect. Among them, the clustering coefficient and transitivity (which are social network properties)
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underwent the maximum significant change (p<0.0001), and the relationship of antibiotics was also
changed substantially (Fig. 5D).
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Fig. 5: Microbial strain association with host phenotypes: (A) Strain-level phylogeny of Clostridia
uSGB14230 shows leaves that are colored with the frequency of fruit consumption (as an illustrative phenotype) in
individual subjects. The strain-phylogenetic effect here is a direct consequence of the overall leaf structure. (B)
Comparison of effect sizes in phenotype-species association plot in the presence and absence of strain-phylogenetic
information (indicated by blue dots) across 83,916 species-phenotype relationships (see Methods). f-coefficients
from the association models with and without including phylogenetic information are positively correlating
(Spearman correlation coefficient p=0.57, p < 2.2x107'%), and the red line is the linear fit (B = 0.94882, intercept
=0.007267), showing the relationship between the two models. (C) List of species (across all phenotypes) which are
most affected after including the strain-phylogenetic effect. Comparisons are generated using Wilcoxon ranked-sum
test. Blue and red dashed lines indicate p<0.05* and p<0.01** respectively. (D) List of phenotypes (across all
species) which are most affected after including the strain-phylogenetic effect. Comparisons are generated using
Wilcoxon ranked-sum test. Blue, red, green, and purple dashed lines indicate p<<0.05*, p<0.01**  p<0.001*** and
p<0.0001**** respectively.

Integrated, standardized, large-population-based cohorts to study the microbiome are uncommon,
but such studies offer the prospect of disentangling factors shaping the gut microbiome or being shaped
by it. By extending our knowledge of the human gut microbiome to a novel population in a developing
world setting; by assessing previously uncharacterized taxa; and by using strain-level genomic
information, our goal is to advance understanding of the possible relationship of the gut microbiome and a
broad range of human phenotypes. Hence, compared to prior research, our work is distinctive in that we
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analyze large, non-Westernized rural population, have a very broad range of phenotypes, and report
strain-level analyses.

We find that variation in the gut microbiome across individuals living in this traditional way can
nevertheless still be at least partly explained by variations in diet, lifestyle, environmental exposures, and
health factors. Overall, we found 7,117 unique associations between 788 bacterial species and 126
phenotypes from health, environment, and socioeconomic categories. These associations included many
uncharacterized species which in many cases were shown to have a stronger effect than known species.
Phenotype associations were also identified after including strain-level phylogenies, which often had a
profound effect on the extent of the association between microbiome species and the human phenotypes
under consideration. After including strain-level phylogenies, certain phenotype categories (especially
socioeconomic status) had a much higher effect size. Similarly, some species, such as Faecalibacterium
prausnitzii, were also more affected by including strain-phylogenetic information, acquiring more
associations with phenotypes.

Still, despite measuring a large number and variety of phenotypes, only 26.3% of the variation
across individuals in microbiome composition was accounted for by these phenotypes, in keeping with
prior studies."**333 This suggests that microbiome composition in individuals may be quite idiosyncratic
or may depend on details of social interactions or unmeasured environmental exposures. Rare species
may also helps account for this variation. The current understanding of how individual and population-
level microbiomes come to be shaped is thus still incomplete. Nevertheless, the phenotypes we
ascertained in Honduras did combine to account for 26.3% of the species variation (as noted) and 37.4%
of the pathway variation; this may be compared to a recent study from the Netherlands were the measured
phenotypes accounted for 13% and 16.2% of the variation, respectively,' although different
methodologies for taxonomic and functional characterization were used, reflecting ongoing
methodological advances.

The gut microbiome is known to be related to various health conditions both in humans and in
mice,* and conditions like cancer, obesity, diabetes, autism, anxiety, and depression can induce shifts in
the gut composition (as shown in many mostly Westernized populations),!-3¢-37-38.39:40.41.42 Acohol intake
and cigarette use have been linked to gut microbiome dysbiosis, as have medications.**44>4047 In keeping
with these prior studies, we confirm such findings in this rural non-Western cohort.**>* Indeed, we
found 2,255 associations between the microbiome and health-related phenotypes. Chronic illnesses and
medication use were the most strongly associated. Among chronic illnesses, intestinal illnesses show the
greatest differences. We uncovered 572 total associations between gut microbiome species and
physiological measurement ranges that may be linked to underlying chronic conditions such as obesity,
diabetes, and hypertension. Moreover, we find 328 associations with mental health phenotypes alone, a
relatively understudied area.

Looking at the overall microbial composition among healthy and chronically ill subjects, the
Shannon diversity was generally lower in most of the chronically ill people, especially those with
allergies and gastrointestinal illnesses. Moreover, comparing healthy individuals to those who are
chronically ill, we found 36 taxa to be differentially enriched in one of the groups. Among medication
users, those taking anti-parasitic medication had the largest drop in overall diversity. Differential
abundance analysis revealed 134 significant species, with uSGB2238 of the Rikenellaceae family showing
an increased relative abundance in healthy people, and Bacteroides ovatus being more enriched in ill
people. Among these groups, 7 of the top 10 differentially abundant species in healthy guts were
unknown species in our sample from these isolated Honduras villages.

Another factor which greatly influences the gut microbiome is diet.*® Our sample population
exhibits a consistent diet, with beans and tortillas being consumed by most people on a daily basis. Still,
we found 1,471 associations with food categories. A previously studied Dutch cohort found that pets had
notable associations with the microbiome,' and we also found 617 associations with a broader range of
animal exposures. Furthermore, our sample was spread across 11 villages separated in space and
elevation, and the overall gut microbiome was observed to vary with relative spatial position within the
villages; the dissimilarity score with a village-averaged microbiome increased as subjects lived further
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away from the village center. The Dutch cohort also showed that rural residence and greenspace were
associated with different microbiome profiles.!

Social and economic factors had 3,004 associations, with the bulk of the strong associations coming
from unknown species. The gut microbiome had 2,280 unique associations with economic factors alone,
making it the second highest associating category of variables we examined, after health. Prior research in
Honduras has highlighted the crucial importance of socioeconomic status in addressing health in such
communities.*

Social interaction is an integral part of Honduran villagers’ life. In total, 616 unique associations
with social network factors were found. Studies investigating social interactions between mice have
shown the evolutionary advantage of having a behavior that enhances social interaction that consequently
facilitates microbiome transmission. *¢3%3! In wild mice, social associations are predictive of microbiome
composition, and the microbiome is correlated across mice interaction networks.>? In humans, strain-level
similarities have been shown in familial and partner networks within and outside households.**** Whether
these interactions translate into exposures that directly contribute to health is an important area for follow-
up studies.

Uncharacterized taxa play a vital role in all these associations, as in prior non-Western cohorts.®
Despite the number of unknown species in Honduran cohort being about a third of total distinguishable
species, their relative strength of associations was observed to be higher in all the phenotype categories.
Strain-level information is also relevant to the microbiome-phenotype relationship and should optimally
be accounted for. For instance, after including this effect, animal exposure and economic phenotypes are
the strongest factors associated with the gut microbiome overall.

By expanding our knowledge of the human microbiome to a novel non-Westernized cohort, it is
possible to further our understanding of the role of the gut microbiome in chronic illness and, at the same
time, open up opportunities to use such findings to develop inexpensive biomarkers to aid diagnostics in
rural settings.>® To the extent that a healthy microbiome is driven by modifiable social and
environmental factors (such as diet, smoking, living arrangements, lifestyle, and so on), understanding
which factors to target or what possible microbiome-modifying interventions to implement can help
advance individual and collective health.
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Methods

Sample collection, library preparation, and sequencing:

Participants were instructed on how to self-collect the fecal samples using a training module and
asked to return samples to a local team which then stored them in liquid nitrogen at the collection site and
then moved them to a -80 C° freezer in Copan Ruinas, Honduras. Samples were then shipped on dry ice
to the United Stated of America and stored in -80 C° freezers.

Stool material was homogenized using TissueLyzer from Quigen and the resulting lysate was
prepared for extraction with the Chemagic Stool gDNA extraction kit (Perkin Elmer) and extracted on the
Chemagic 360 Instrument (Perkin Elmer) following the manufacturer’s protocol. Sequencing libraries
were prepared using the KAPA Hyper Library Preparation kit (KAPA Biosystems). Shotgun
metagenomic sequencing was carried out on Illumina NovaSeq 6000. Samples not reaching the desired
sequencing depth of 50Gbp were resequenced on a separate run.

Raw metagenomic reads were deduplicated using prinseq lite (version 0.20.2°7) with default
parameters. The resulting reads were screened for human contamination (hg19) with BMTagger*® and
then quality filtered with trimmomatic® (version 0.36, parameters
ILLUMINACLIP:nextera_truseq_adapters.fasta:2:30:10:8:true SLIDINGWINDOW:4:15 LEADING:3
TRAILING:3 MINLEN:50).

This resulted in a total of 1,187 samples (with an average 8.68498 x 107 reads).

Taxonomic profiling and diversity analysis:

Quantification of organisms’ relative abundance was performed using MetaPhlAn 4%, which
internally mapped the metagenomes against a database of ~5.1M marker genes describing more than 27k~
species-level genome bins (SGB).

We identified a total of 2,285 species in our dataset. Among the 2,285 species, 788 species were
used for association analysis after filtering for minimum relative abundance values (10%), and a minimum
of 15% prevalence in the population (i.e., >119 people).

We performed strain-level profiling for a subset of species present in at least 10% of the subjects
(n=666) with StrainPhlAn4® (parameters: -phylophlan_mode accurate)

Microbiome species richness was estimated using the Shannon entropy index and the total number
of observed species (i.e., those with relative abundance simply greater than zero). Multidimensional
scaling analysis (vegan cmdscale function) was performed on Bray-Curtis dissimilarity (vegan vegdist
function) calculated on the relative abundances obtained by MetaPhlAn4.

Functional potential analysis was performed using HUMANN 3.0.%° Gene family profiles were
normalized using relative abundances and collapsed into MetaCyc pathways. In total, we found 1,180
pathways associated with at least one individual.

To understand the amount of variance explained by various factors, we performed a
PERMANOVA analysis (adonis function from the vegan package®') using the “bray” method; the
diversity matrix was calculated on both species-level relative abundances and MetaCYC pathway relative
abundances as input, and including 126 variables into the model. All the comparisons were run with 999
permutations.

Phenotype characterization:

We measured a broad range of phenotypes using standard measures.” Description and statistics on
all phenotypes can be found in Supplementary Tables 2-4.

Physiological measurements were deemed within normal limits according to CDC® and NBME®
guidelines (Extended Data Fig. 3).

We used self-reported information to discern whether people were healthy or were diagnosed with
various conditions. General anxiety disorder is derived from a set of 7 questions from a self-reported
survey-based questionnaire, which assigns a score of 0 to “not at all”, 1 to “several days”, 2 to “more than
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half the days”, and 3 to “nearly every day”. The scores are added up (maximum of 21) and partitioned as:
minimal or none (<5), mild (6 - 10), moderate (11 - 15), and severe (>16).** The PHQ9 (Patient Health
Questionnaire) score measuring depression was computed in a similar fashion, with the levels being:
minimal or none (<5), mild (6 - 10), moderate (11 - 15), moderately severe (16 - 19), and severe (>20).9

Frequency of intake of various food items were self-reported, ranging from: “Never/rarely” to
“Every day”. These frequencies were used as input in the diet-microbiome association model. The diet
diversity score (DDS)** was calculated from classifying individual food types into one of the following
categories: Cereals, roots/tubers, vegetables, fruits, meat/poultry/offal, eggs, fish/seafood,
Pulses/legumes/nuts, milk and milk products, oils/fats, or sugar/honey. If any of these food items were
consumed on a daily basis, the respective categories would get 1 for that individual. The sum across these
categories would define the DDS score of this individual. The maximum possible DDS score would be 11
and the minimum would be 0.

Numerical values were reported for alcohol frequency and cigarette frequency. The daily alcohol
intake ranged from “1 or 2” to “10 or more” drinks. Cigarette usage was report as a “Yes” or “No”.

The household wealth index is computed using Multiple Correspondence Analysis (MCA) based on
all the household items. The index ranged from 1 indicating the least wealthy households to 5 indicating
most wealthy households.

We explored associations with several social network features, including degree, transitivity, and
betweenness centrality of each individual. To uncouple the effects of kin and non-kin social connections,
we investigated microbiome associations in familial networks, friendship networks, and combined
networks. In the combined network, we computed the amount of kin in a person’s first three degrees of
social connections (i.e., among a person’s friends, friends of friends, and friends of friends of friends) to
comprehend the relative effect of having kin close to a person within the social network. In addition to kin
and non-kin relationships, we also explored the microbiome’s association with cohabiting partners.

Population-weighted village centroid:

We collected the GPS coordinates (latitude and longitudes) of all the building in the village. Since
multiple individuals can reside in a building, the population-weighted centroid was chosen as the
reference center of the village, which was then used to compute every individual’s distance from this
village center. Satellite plots were created using “ggmap” package in R.%

Model for microbiome-phenotype regression:

For the association model with species-level microbiome and phenotypes, a linear mixed model
was used to explore the relationship of the variability in phenotype and the variability in the microbiome.
For this purpose, we used the ImerTest package (v 3.1) in R.

This mixed model was computed for every species and phenotype pair.

Species abundance ~ age + sex + BMI + batch effect + bristol stool scale + DNA concentration
+ Sampling date + 1|village + phenotype

Species’ relative abundances were transformed using the CLR (Centered-Log Ratio) and used as
nput.

Since technical factors (age, sex, DNA concentration, sequencing batch, sampling date) along with
BMI and Bristol stool scale accounted for 2.8% of the species variation and 6.1% of the pathway
variation, we used these variables as primary controls in our association models (Extended Data Fig. 4,
Extended Data Fig. 9).

Furthermore, all associations were corrected for both microbiome species and phenotype using
multiple hypothesis testing (Benjamini-Hochberg correction) and all significant associations are corrected
for an FDR (False Discovery Rate) <0.05.
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Strain-phenotype analysis:

For strain-level analysis, we used the ANPAN package. Using the leaf distance in the phylogenetic
tree, a linear mixed model — namely Phylogenetic Generalized Linear Mixed Model (ANPAN package v
0.2.0) — was implemented to get associations between phenotypes and strains:

Phenotype ~ age + sex + BMI + batch effect + bristol stool scale + DNA concentration
+ Sampling date + species(abundance) + 1|village + 1|leaf + €

In total, 83,916 associations were explored, coming from 666 species (which met strainphlan
marker thresholds) and 126 phenotypes.

Differential abundance analysis:

We used the MaAsLin 2 (v 1.0.0) package in R to determine the association between species and
disease status (healthy or unhealthy) of individuals and to estimate the effect sizes and adjusted p-values
(FDR corrected). A list of significantly positive and negatively associating species was recorded. Species-
level relative abundances were normalized (in MaAsLin2) and used as input for MaAsLin2 in which age,
sex, BMI, DNA concentration, sampling date, and Bristol stool scale were used as fixed effects and
village as a random effect. All the resulting p-values obtained by the MaAsLin2 models were corrected
for multiple hypothesis testing using FDR.
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Species
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Physiological measurements

Acute conditions
Chronic conditions
Medications
Personalities
Cognitive
Unfavorable habits
Anxiety
Depression

Pets

Farm animals
Wild animals

Food

Co-habiting partners
Education
Friendship

Family

All relationships
Risky behavior
Village factors
Income
Household essentials
Water sources
Technical factors

= Health factors

Food and animal
factors

)

> Socio-economic
factors

—
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Extended Data Fig. 4 (Variance explained): PERMANOVA analysis (999 permutations, p-

value<0.001) computed on all phenotypes shows the variance explained in species and pathway compositions with a
breakdown of sub-categories of all phenotypes (health, food and animal, socioeconomic factors). Technical factors
include age, sex, DNA concentration, sequencing batch, and sampling date. (See Supplementary Table 7 for
complete breakdown of variance explained in each sub-categories)
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Extended Data Fig. 5: (A) Alpha diversity among villagers expose to animals. (B) Pair-wise
Bray-Curtis dissimilarity between villagers who are exposed to animals compared to unexposed villagers.

L AN N D
" D NSO Q b
q’ //(b ;b /(b /(v /'\ /GD /'\ /q’ /'\
VI IIII IS IY
26 0.0041
) 0.04
!q—) [ 1
= 9]
3 ]
S 4
-3 -
= —
5, -
g \
2.
0 1 2 3 4 5 6 7 8 9

Diet diversity score

Extended Data Fig. 6 (Diet diversity score): Plot showing the Shannon diversities of individuals
with varying diet diversity scores. Individuals belonging to DDS score of 4 are significantly different
from those in group 1 and 3. All comparisons are performed using Wilcoxon ranked sum test.
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Extended Data Fig. 7: (A) Side-by-side comparison of significant associations (FDR<0.05) in
both models (with and without strain-phylogenies). Each quadrant indicates presence and absence of
associations in either model. (B) Figure showing direction/sign flipping of common significant
associations in both models.
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Extended Data Fig. 8 (Species-phenotype association with strain effect) Effect size distribution of
302 significant associations (FDR<0.05) with all phenotypes (shown as categories and sub-categories)
with microbiome species, after incorporating strain-level phylogenetic information. Each dot represents a
species with the corresponding phenotype category. In general, it is apparent that socio-economic factors
have a lot more associations after including the strain effect.
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PCoA1
Extended Data Fig. 9: Principal Coordinates Analysis (PCoA) of the Bray-Curtis dissimilarity
computed using the species-level relative abundances (legend) generated by MetaPhlAn4. Health status,
age, sex, body mass index (BMI), and Bristol stool scale are shown as arrows along with the direction of
influence. Samples are colored with the relative abundances of Prevotella copri (clade A).
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