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Abstract

Disruptions in routine immunizations due to the COVID-19 pandemic have been a cause of
significant concern for health organizations worldwide. This research develops a system science
approach to examine the potential risk of geographical clustering of underimmunized individuals for
an infectious disease like measles. We use an activity-based population network model and school
immunization records to identify underimmunized clusters of zip codes in the Commonwealth of
Virginia. Although Virginia has high vaccine coverage at the state level for measles, finer-scale
investigation at the zip code level finds three statistically significant underimmunized clusters.
To estimate the criticality of these clusters, a stochastic agent-based network epidemic model
is used. Results show that different clusters can cause vastly different outbreaks in the region,
depending on their size, location, and network characteristics. This research aims to understand
why some underimmunized geographical clusters do not cause a large outbreak while others do. A
detailed network analysis shows that it is not the average degree of the cluster or the percentage
of underimmunized individuals in the cluster but the average eigenvector centrality of the cluster
that is important in determining its potential risk.

1 Introduction

Measles is a highly contagious vaccine-preventable disease [Becker et al., 2016]. The United States
(US) maintains a very high vaccination coverage level to induce herd immunity. However, disruptions
in routine immunizations caused by the COVID-19 pandemic have become a major concern for the
heightened risk of outbreaks of vaccine-preventable diseases, in general, and measles, in particular [San-
toli, 2020, DeSilva et al., 2022, Murthy et al., 2021]. In 2021, twenty-five million kids were estimated
to have missed their routine immunizations [Guglielmi, 2022].

According to a recent World Health Organization (WHO) report, measles cases were up by 79%
worldwide in the first two months of 2022 compared to the same period in 2021. In 2022, many countries
experienced measles outbreaks, such as India, Somalia, Yemen, Zimbabwe, and Pakistan. Zimbabwe’s
Ministry of Health and Child Care reported more than 6,500 cases of measles on September 6, 2022
[Marima and Nolen, 2022].

In addition, spatial clustering of unvaccinated or under-vaccinated individuals may increase the
risk of outbreaks. For instance, the 2019 measles outbreak in the US shows that spatial concentration
of unvaccinated and under-vaccinated people can cause an epidemic outbreak even when the overall
vaccine coverage rate in the region is high enough for herd immunity [Patel, 2019, Masters et al.,
2020]. Several prior studies have demonstrated the existence of spatial underimmunized clusters of the
Measles, Mumps, and Rubella (MMR) vaccine in the US with significantly lower immunization rates,
using different methods [Cadena et al., 2019, Lieu et al., 2015, Dayan et al., 2005]. A scan statistics
method is used by [Neill, 2012, Jung et al., 2010] to identify statistically significant geographical
underimmunized clusters. This hypothesis testing approach for anomaly detection has previously been
used in several studies to detect hotspots and anomalies in spatial datasets [Neill, 2009, Duczmal et al.,
2006]. An extension of the scan statistics method for networks, used here in this research, discovers
high-resolution clusters without any shape restrictions [Cadena et al., 2019].
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However, not all underimmunized clusters pose an equal risk of outbreaks. For instance, although
Virginia has a high immunization coverage rate of 95.8% among kindergartners [Seither et al., 2022],
which is more than the target immunization rate for herd immunity, it has multiple underimmunized
clusters, as shown in this paper. Further, Virginia has a high importation risk because of the two major
international airports. For instance, a measles outbreak in 2021 affected the Central and Northern
Health Regions of Virginia [Virginia Department of Health, 2021]. Additionally, as mentioned above,
COVID-19 has disrupted routine immunizations, which might have led to a drop in MMR immunization
rates across the state.

In this research, we formalize the outbreak risk of a cluster by its “criticality”, which is defined as
the “probability of a large outbreak” caused by a single case of measles in the cluster. Our goal is to
determine the criticality of different clusters. We focus on clusters that are most significant in terms
of underimmunization rates. Given the limited public health resources, an objective measure of the
criticality of clusters will help prioritize mitigation efforts.

Finding significant underimmunized clusters and computing their criticality is a challenging com-
putational problem. We use a synthetic social contact network model for Virginia, and school-level
immunization data in the state, along with a network scan statistics approach to find significant un-
derimmunized clusters. We combine this with a detailed stochastic agent-based simulation framework
to estimate the criticality of each significant cluster, by simulating outbreaks that originate in these
clusters. We also examine how the criticality of clusters changes under a hypothetical 5% drop in
MMR rate, possibly due to COVID-19. Finally, we study the demographic, geographic, and network
factors associated with such clusters, which can help explain the potential risk of a cluster.

2 Methods

To find significant clusters and their criticality, we first identify statistically significant underimmunized
clusters; for this purpose, we develop a zip code level spatial network from a detailed activity-based
population contact network and use a network scan statistics method. Next, we investigate the critical-
ity of each cluster by importing a single case of measles and simulating its spread using an agent-based
model.
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Figure 1: Four major components of the framework: 1) An activity-based population network
G(V,E), where a node represents an individual, and an edge represents a contact between two people; 2)
Underimmunized spatial clusters in a zip code level networkGz(Vz, Ez), where nodes are zip codes,
and a connection between two zip codes represents a geographically shared boundary; 3) Criticality
analysis of each cluster using the stochastic network epidemic model; and 4) Understanding criticality
by investigating network properties of unvaccinated sub-network Gu.
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2.1 Synthetic social contact network model

We construct a contact graph G(V,E) for a population V , on which a disease can spread. In network
G, nodes represent individuals, and edges represent a connection between two nodes. E.g., an edge
(u, v) ∈ E between two people u and v is formed if they come into close proximity, which can enable
disease spread. Additionally, we assume that each node v is associated with a geographical location,
denoted by loc(v). The nodes in G have specific node properties, which come from geographic location
and demographic characteristics such as age, gender, household size, household location, and household
income. The edges are weighted, where weights are the contact time duration. This model combines
various data sets from commercial and public sources, including the US census data, into a common
architecture for creating a digital twin of the Virginia population. For more details on the construction
of the social network, please see our earlier works [Eubank et al., 2004, Barrett et al., 2009, Thakur
et al., 2022, Cadena et al., 2019].

The model places each individual in a household with others, and each household is located geo-
graphically in such a way that the aggregation of this synthetic population at the block group level
is statistically equivalent to the US census block group data. The daily activities of individuals are
assigned using time use surveys such as American Time Use Survey data [ATUS, 2021] and National
Household Travel Survey Data [NHTS, 2021]. The geographic location for each activity is assigned
from detailed land use data [HERE, 2021, NCES, 2021, LandScan, 2021, OpenStreetMap, 2021]. This
activity-based network model also contains information about school locations, which are used for
assigning schools to school-aged children [Cadena et al., 2019].

2.2 Finding significant underimmunized clusters

For this step, we first develop a zip code level spatial network, Gz(Vz, Ez) for Virginia, where nodes
are zip codes, and edges are connections between two zip codes. If two zip codes share a geographic
boundary, they form an edge in the network Gz. Each node or zip code i has two node properties:
1) population Pi, and 2) immunization rate ri. We get Pi and ri by aggregating the activity-based
synthetic population network model G at the zip code level. Finally, we use a modified Kulldroff’s scan
statistics method to find statistically significant underimmunized clusters in the network Gz [Cadena
et al., 2019].

Immunization rate among children. We use the publicly available Virginia School Immuniza-
tion Survey (SIS) record [ SIS reporting, 2021] for Fall 2018 to calculate the MMR immunization rate
among children (up to 17 years old). SIS contains immunization records for public schools. However,
few kindergarten-level schools or schools with less than ten students report an overall vaccination rate
instead of MMR specific immunization rate; and for some schools, there is no MMR immunization rate
available in the SIS data. To handle the missing MMR immunization rate for these schools, we make
the following assumptions:

1. If the MMR vaccination rate is not available for a school, but the overall immunization rate is
available, then we use the overall immunization rate for that school.

2. In the synthetic population network modelG, if the immunization rate for a school is not available
from SIS data, we use the nearest neighboring school’s MMR immunization rate.

We find the nearest school by calculating the Haversine distance using the latitude and longitude.
For children younger than eleven years old, we use the corresponding school’s kindergarten immuniza-
tion record. To infer the immunization rate among kids 12-17 years old, we use the associated school’s
6th-grade immunization record. Previous studies have found that immunization status among children
in the same household, even in the neighborhoods, schools, or jurisdictions, are positively correlated
because of the geographic aggregation of vaccine refusal [Atwell et al., 2013, Lieu et al., 2015, Omer
et al., 2008].

Immunization rate among adults. CDC’s ChildVaxView program reports state-level vacci-
nation coverage among 19–35-month-olds via National Immunization Survey [ChildVaxView—CDC,
2021, Hill et al., 2018]. To obtain the state-level immunization rate among adults, we use a weighted
average of the rates from the National Immunization survey report for 1995-2004 since the children
from these years are adults in the current study year. We assign these immunization rates to the adults
uniformly per age group.
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Identify underimmunized clusters using network scan statistics. The network scan statis-
tics, based on hypothesis testing, finds statistically significant underimmunized clusters or hotspots in
network Gz [Kulldorff, 1997, Neill, 2009]. A cluster C ⊂ Gz in the proximity network Gz can have
an arbitrary shape. We calculate the score function or scan statistic of a cluster of zip codes C as

F (C) = Pr[Data|H1(C)]
[Data|H0]

which is a likelihood ratio of the probability of the observed data (i.e., a certain

level of underimmunization in C) generated under an alternative hypothesis H1(C), to the probability
of the observations under the null hypothesis H0. We use the Poisson version of the Kulldorff scan
statistic, which assumes that the observations are generated from a simple parametric distribution,
Poisson distribution (a common assumption in epidemiological data analysis). The null hypothesis H0

is generated proportionally from the baseline count (1− µ)Pi, where µ is the state-wide immunization
rate. The alternative hypothesis of a cluster H1(C) counts the vaccine distribution among nodes out-
side C; in Vz −C, the unvaccinated count comes from a rate proportional to the baseline counts. But,
for the nodes within C, the counts are generated at a higher rate than expected. The objective is to
find clusters that maximize the scan statistic F (C). We use the Monte Carlo sampling approach to
compute the p-value for each cluster. Optimization over arbitrarily shaped clusters is computationally
extensive as score function F (C) of interest is typically non-convex and NP-hard to optimize. We use
a general dynamic programming method for optimizing a large class of parametric and non-parametric
scan statistics [Cadena et al., 2017].

2.3 Criticality analysis

A stochastic agent-based network epidemic model allows us to investigate the impact of an underim-
munized cluster.

Network epidemic model. We use an SEIR model for measles [Anderson and May, 1992,
Keeling, 1997, Moon et al., 2019a, Moon and Scoglio, 2021], where an unvaccinated node can be in
one of four health states: Susceptible (S), Exposed (E), Infected (I), and Recovered/Removed (R). Let
x(t) be the health state vector at time t; xi(t) ∈ [0, 1, 2, 3] is the health state of an unvaccinated node i
at time t. Here, 0, 1, 2, and 3 correspond to susceptible, exposed, infected, and recovered health state.
A node i in network G has a vaccination status: vaccinated or unvaccinated. Let v be a vaccination
vector: vi ∈ [0, 1] denotes the probability that node i is vaccinated.

We assume that the vaccine has 100% efficacy (which is typically not true in practice); therefore,
vaccinated nodes do not directly participate in the disease transmission. However, the presence of
vaccinated nodes is important in the model as they affect the pathways to transmission by fragmenting
the contact network.

We generally assume the source of the outbreak is a random infection in a subset Vc ⊂ V . Here,
Vc is the set of nodes which are located in cluster C. We use I(v, Vc) to denote the total number of
infections given the vaccination vector v and source in Vc. We use an agent-based stochastic individual
network model to simulate the spread of measles in the contact network G (Fig. 2A). This model keeps
track of disease progression and different health states of each node.

Initially, we model that all the unvaccinated nodes are susceptible, and the disease starts from a
random susceptible node. An infected node will transmit the disease to its susceptible neighbors in the
contact network G with a transmission probability β. We use β = 0.5, as estimated from the recent
New York City (NYC) outbreak that resulted in 649 cases between September 2018 and August 2019
[Thakur et al., 2022]. The outbreak size was calibrated for Virginia’s population size.

The disease model assumes that an exposed node will be infectious after a latent period. The
maximum duration of the latent period is nine days and follows a discrete probability distribution
{0, 0, 0, 0, 0, 0.1, 0.1, 0.4, 0.4}. The infectious or recovery period of an infected node is also nine days
and follows a discrete probability distribution {0, 0, 0, 0, 0, 0, 0.3, 0.4, 0.3} (Fig. 2B) [Liu et al., 2015].
We assume that a recovered individual will not get reinfected.

Intervention. We assume that 90% (compliance rate) of the new infectious nodes will begin home-
isolation after three days as the measles rash starts after 3-5 days [Liu et al., 2015]. In our network
model, all non-home edges of the isolated cases are removed so they can only spread the disease to
their household members.

Disease spread. An agent-based stochastic epidemic simulator EpiHiper [Machi et al., 2021,
Eubank et al., 2010] simulates the spread of measles in the contact network G. It is a scalable system.
Parallel programming and distributed memory systems allow it to handle millions of nodes and billions
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Figure 2: Disease transmission model. (A) Network SEIR (susceptible-exposed-infected-recovered)
epidemic model, (B) probability mass function (PMF) for incubation period and infectious period.

of edges. The simulation starts from a random infected node and runs for 365-time steps (or days).
From 300 stochastic EpiHiper realizations, we compute the probability of having a large outbreak. If
the number of infections exceeds OC = 500, we define it as a large outbreak. The total number of
infections is

∑365
t=0(x(t)1→2); here, x(t)1→2 is the new infected nodes at day t.

Criticality of a cluster. We define the criticality of the set Vc ⊂ V in immunization v, denoted
by crit(Vc,v), as the probability of a large outbreak, when the initial infection occurs in subset Vc. The
probability of having a large outbreak is Pr[I(v, Vc) > OC]; here, OC is the large outbreak condition.
We consider a large outbreak if the total number of infections is more than OC.

2.4 Characterizing critical clusters

This research hypothesizes that all underimmunized clusters are not equally critical. When seeded,
some clusters cause a large outbreak while others do not. To understand the potential reasons behind
the criticality of clusters, we investigate their geographic and network properties. We explore the
impact of geographic location, size, population density, and underimmunization rate on the criticality
of a cluster. For network attributes, we measure their degree and eigenvector centrality. We also
investigate the connected components.

Degree. The degree of a node i in a network is the number of neighbors of node i. If degree of a
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node i is ki, then average node degree of the network is
∑|V |

i=0 ki

|V | . The average degree is important as it

indicates the connectivity in a network [Barabási, 2013]. Moreover, high-degree nodes can act as hubs
in spreading the disease [Dezső and Barabási, 2002].

Eigenvector centrality. It indicates the influence of a node in a network. The eigenvector
centrality of a node is proportional to the sum of the centrality of its neighbors. It represents the
spectral properties of the adjacency matrix A [Pastor-Satorras and Castellano, 2018]. In contrast to
degree centrality, eigenvector centrality takes the entire network into account. This property makes
eigenvector centrality particularly useful for understanding the influence of graph characteristics on
epidemic spreading [Van Mieghem et al., 2008]. Eigenvector centrality ei of a node i in a network
G(V,E) is:

ei = λ−1
1

∑
j∈V

aijej

Here, A = [aij ] is the adjacency matrix of the network G, where aij = 1 if node i has a connection
with node j, and aij = 0 otherwise. λ1 is the largest eigenvalue or spectral radius of the adjacency
matrix A [Moon et al., 2019b]. The principal eigenvector, which corresponds to the largest eigenvalue,
controls the structural and dynamical properties of a complex network. A large eigenvector centrality
of a node indicates that it has many neighbors or important neighbors in the network. Eigenvector
centrality is a good measure of a node’s spreading power [Canright and Engø-Monsen, 2006, Griffin
and Nunn, 2012, Goltsev et al., 2012].

We use two networks for network analysis, namely, the full contact network G(V,E), and unvacci-
nated sub-networks Gu(Vu, Eu) ⊂ G(V,E). In a sub-network Gu, all the nodes Vu are unvaccinated;
analysis of this sub-network is essential as the disease spreads only over this sub-network.

3 Results

3.1 Underimmunized clusters in Virginia

According to the CDC immunization record for the 2019–20 School year, MMR vaccine coverage
among kindergartners in Virginia is around the target rate of 95% for herd immunity [Seither et al.,
2021]. In our synthetic Virginia population network, the MMR immunization rate as estimated from
various data sources, is 96.331% among children, and 91.496% for the overall population. We call the
estimated immunization vector as the base immunization. The synthetic Virginia population contact
network G(V,E) has 7, 688, 058 nodes and 371, 888, 622 edges; here, nodes are individual people. The
zip code network Gz(Vz, Ez) has 892 nodes and 2653 edges; here, a node represents a zip code. For
each zip code, we calculate population and immunization rate by aggregating contact network G.

Although the MMR coverage is fairly high, the network-based scan statistics method finds three
significant underimmunized clusters in Virginia (Figure 3). The vaccination rate in these regions varies
from 88.2% to 90.6%. The statistical significance of these three clusters is measured from Monte Carlo
Simulation: cluster 1 (log-likelihood score: 730.82, p-value: 9.99 ∗ 10−4) is the most significant one,
then cluster 2 (log-likelihood score: 141.01, p-value: 9.99 ∗ 10−4) and cluster 3 (log-likelihood score:
98.10, p-value: 9.99 ∗ 10−4).

Table 1 summarizes the geographic and network properties of the three clusters. The first cluster
C1 is located in the highly populated part in northern Virginia. Population density per square mile in
cluster 1 is 2684.2, which is over ten times the average population density per square mile in Virginia
(≈ 202.6). This cluster contains 28 zip codes and is the largest underimmunized cluster in Virginia,
with an immunization rate of 90.1%.

Thirteen zip codes in the middle peninsula of Virginia form the second cluster C2. Although
the population density in cluster 2 is only 45.43, which is less than one-fourth of Virginia’s average
population density, its immunization rate is the lowest too, at only 88.2%. The second largest cluster:
cluster 3, is located in the Richmond region of Virginia. The population density in cluster 3 is about
four times higher than in Virginia.

These three clusters are unique concerning geographic location, shape, size, underimmunization
rate, population density, and network characteristics. Even though the second cluster is the smallest
and only affects a small population compared to the other two significant clusters, it can play a crucial
role in disease spreading because of its position in the network and a low immunization rate.
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Figure 3: Critical underimmunized clusters in Virginia for MMR (measles, mumps, and rubella) vac-
cine.

Table 1: Characteristics of the three statistically significant underimmunized clusters or hotspots in
Virginia.

Characteristic Cluster 1 Cluster 2 Cluster 3

Geographic
location

northern Virginia middle peninsula of
Virginia

Richmond (capital)
region of Virginia

No. of zipcodes 28 13 9

Population Count 610464 24302 190832

Underimmunized
percentage

9.9% 11.8% 9.4%

Population density
per square mile

2684.2 45.43 799.2

Degree in G mean 47.9 mean 33.9 mean 40.8

median 42 median 28 median 36

3.2 Criticality of clusters

To calculate the criticality of a cluster C, we simulate an outbreak over the Virginia contact network
G(V,E) using our agent-based simulation framework EpiHiper. The criticality of a cluster Ci is
measured by estimating the probability of getting a large outbreak (similar to the NYC measles
outbreak in 2019) if the epidemic starts from a random node in cluster Ci. The seed is selected
randomly from the unvaccinated age group of 5–17 years old in the cluster.

We apply four different seeding scenarios: 1) seeding randomly in Virginia (rand), 2) seeding
in cluster C1, 3) seeding in cluster C2, and 4) seeding in cluster C3. The epidemic always starts
from a single seed. For each scenario, we run 300 replicates and report the aggeregated result. The
probability of a large outbreak for these four seeding scenarios is presented in Fig. 4. Our criticality
analysis shows that the first cluster is the most critical, where seeding results in a large outbreak in
30% of the instances. In contrast, a random seeding in Virginia (rand) produces a large outbreak in
less than 5% instances. Cluster 1 is the largest cluster and has the highest population density and
node degree (Table 1).

Fig. 4 shows that the criticality of cluster 2 is even lower than “rand”. The underimmunized pocket
in cluster 2 does not increase the probability of large outbreaks, even though cluster 2 has the highest
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Figure 4: Probability of a large outbreak in Virginia in the base immunization for four different seeding
scenarios: 1) random seeding in Virginia (Rand), 2) seeding in cluster C1 (Clust1), 3) seeding in cluster
C2 (Clust2), and 4) seeding in cluster C3 (Clust3).

percentage of underimmunized individuals. Cluster 3 has a higher chance of causing an outbreak than
“rand” but it is only marginally higher than “rand”, unlike cluster 1.

3.3 Risk analysis of drop in immunization rate

Due to COVID-19, routine childhood immunizations have been disrupted. To understand its impact
on the criticality of the underimmunized clusters, we study a hypothetical scenario where a random
uniform 5% drop in MMR immunization rate occurs among age group 12 years or younger in Virginia.
The 5% drop in immunization rate among children (12 years or younger) in the State reduces the
vaccine coverage in the network G by only 0.8%.

Fig. 5 presents the probability of a large outbreak for different seeding scenarios under the reduced
immunization coverage. We find that the criticality of cluster 1 in the reduced immunization scenario
crit(VC1

, r) increases by 1.45 times its original criticality in the base case crit(VC1
,b). However, the

criticality of the second cluster increases by 32.5 times of crit(VC2 ,b) and of the third cluster increases
by six times of crit(VC3 ,b). Only a 5% drop in immunization rate among kids (age 12 years or younger)
makes the two benign clusters very critical. In the base case, the majority of the epidemic stays inside
the cluster. For cluster 1, cluster 2, and cluster 3 seeding, the expected total incidence inside the
cluster in base case is 67%, 77%, and 76% respectively (Table 2). In the 5% reduced immunization,
the expected total incidence inside cluster for cluster 1, cluster 2, and cluster 3 seeding scenarios
decrease to 37%, 3.6%, and 25.4% respectively, and increases the incidence outside the cluster. This
is not surprising since many new nodes and connections are now part of the Gu network. However,
the expected number of cases outside the cluster C2 go up significantly. For C1, C2 and C3, reduced
immunization increases outside-cluster incidence by 40 times, 267 times and 131 times respectively.
To understand possible underlying factors, we examine the network properties of the clusters.

3.4 Network analysis of the unvaccinated sub-network Gu

In the base immunization case, the unvaccinated sub-network Gu has 653,811 nodes and 2,806,876
edges. The largest connected component has 525,586 nodes i.e. more than 80% of the nodes are
connected. Table 3 shows that the average degree of clusters is not very different. However, the
average eigenvector centrality in C1 is very high compared to C2 and C3, which explains why C1

has the highest criticality. Immunization drop increases the size of the unvaccinated network Gu,
connectivity, and average node degree. The average degree in C2 increases less than the other two
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Figure 5: Probability of a large outbreak in Virginia under the base case and the reduced immunization
case for the four different seeding scenarios.

Table 2: Size of the outbreak inside and outside clusters under base immunization and reduced immu-
nization rates.

Base immunization 5% reduced immunization 5% reduced immunization
Base immunization

Seeding Inside
cluster

Outside
cluster

Inside
cluster

Outside
cluster

Inside
cluster

Outside
cluster

Cluster
1

1013.67 305.03 6987.99 12106.32 6.89 39.68

Cluster
2

67.28 20.06 198.18 5357.66 2.95 267.0

Cluster
3

60.88 19.11 854.48 2511.49 14.03 131.42
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clusters, i.e. only by 5.2%. The connections from C2 to outside nodes increase by only 7.5%, which is
the lowest among all the clusters.

Although an immunization drop adds a few new connections from cluster 2 to outside network but
these new connections increase the average eigenvector centrality of C2 by 109.7%, which is significantly
more than the other two clusters. It indicates that new connections increase the criticality of the cluster
C2 by adding very important neighbors to nodes of C2.

Table 3: Network Analysis of the unvaccinated sub-network Gu in the base immunization and reduced
immunization.

Network property Base immunization Reduced
immunization

Increment

No. of nodes in Gu 653811 714164 9.2%

Largest connected
component size in Gu

525586 588019 11.88%

No. of edges in Gu 2806876 3251182 11.87%

Average degree of the nodes
in cluster C1 in Gu

5.3141 5.6964 7.1%

Average degree of the nodes
in cluster C2 in Gu

4.829 5.0814 5.2%

Average degree of the nodes
in cluster C3 in Gu

4.096 4.4328 8.3%

Connections from the nodes
in C1 to outside in Gu

152840 167809 9.8%

Connections from the nodes
in C2 to outside in Gu

4905 5271 7.5%

Connections from the nodes
in C3 to outside in Gu

44358 48882 10.2%

Average eigenvector
centrality of the nodes in

cluster C1 in Gu

5.4 ∗ 10−4 5.68 ∗ 10−4 5%

Average eigenvector
centrality of the nodes in

cluster C2 in Gu

7.73 ∗ 10−8 1.62 ∗ 10−7 109.7%

Average eigenvector
centrality of the nodes in

cluster C3 in Gu

6.43 ∗ 10−8 7.96 ∗ 10−8 23.6%

To generalize the importance of eigenvector centrality on the criticality of a set of nodes, we
investigate the SIR epidemic over the following two classes of random networks: 1) Barabási–Albert
random network and 2) Erdős–Rényi random network. Barabási–Albert network is a popular model
for designing social contact networks because of its scale-free power-law degree properties[Deville et al.,
2016, Stephen and Toubia, 2009]. For both random networks, we choose 20, 000 nodes and around
601, 494 edges. We pick this relatively smaller network system than the Virginia contact network to
experiment as they are computationally inexpensive. We consider random base vaccination coverage
around 7.5%. In the unvaccinated sub-graph Gu, we calculate degree and eigenvector centrality. We
pick two sets of unvaccinated nodes in the sub-graph Gu, with high and low eigenvector centrality but
maintain the same number of nodes and average degrees in both sets.

We calculate the criticality of these two sets by using a stochastic SIR (susceptible-infected-
recovered) compartmental epidemic model. For each set, we seed a random node and calculate the
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probability of a large outbreak. We consider an epidemic size greater than 100 to be a large outbreak
for this smaller system. Our experiments find that the probability of a large epidemic is higher in the
set with higher eigenvector centrality. Fig 6 presents experiment results from both random networks;
here, the underimmunized rate is 7.5%. In both networks, the node in Gu is around 1500, and the
average node degree is 4.5, which is close to the average degree of the unvaccinated sub-network of the
Virginia contact network. Here, each set has 20 nodes. β and recovery rate in the SIR epidemic model
is 0.3 and 1. In Fig 7, we also investigate other base underimmunized percentages and different levels
of β.
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Figure 6: Criticality of two unvaccinated sets in the Barabási–Albert and Erdős–Rényi random net-
works; here, each set has 20 nodes, underimmunized rate is 7.5%, transmission rate, β, is 0.3, and
recovery rate is 1. (A-B) probability of a large outbreak, (C-D) average eigenvector centrality, and
(E-F) average degree.
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4 Discussion

This research shows that all underimmunized clusters are not equal in terms of their risk of causing
a large outbreak. Some are significantly more critical than others where even a small disruption in
routine MMR immunization can disproportionately increase the risk of an outbreak. This can occur
despite a very high immunization rate overall [Patel et al., 2019]. We use a system science model
to find underimmunized spatial clusters in Virginia and measure their criticality. Our network-based
Kulldorff’s spatial scan statistical method finds three significant irregular-shaped underimmunized
clusters of zip codes in Virginia. These three clusters have very different geographic locations, sizes,
population densities, immunization rates, and network properties (Table 1). The first cluster C1 is
the largest one and is in a densely populated urban region. It also has a high average node degree
and high average eigenvector centrality. The second cluster C2 is in a rural region. It is the smallest;
however, it has the highest underimmunized percentage of individuals. The third cluster C3 is a large
cluster, located near Richmond with a high population density.

To understand the criticality of a cluster, we use a stochastic individual-based network epidemic
model that accounts for heterogeneous contacts and detailed immunization information. Our model
considers vaccination status and home isolation as interventions at the individual level. The simulation
results find that the criticality of underimmunized clusters are different. In the base case, the most
critical cluster is the largest cluster C1. The probability of a large outbreak from seeding in cluster C1

is more than six times higher than the random seeding in Virginia. On the other hand, the criticality of
the second significant cluster C2 is very low, even lower than the random seeding in Virginia. However,
this benign cluster becomes very critical when MMR immunization rate drops by 5% among the age
group of 12 years old or younger. Currently, this is a major concern since the COVID-19 pandemic
has disrupted the routine immunization programs globally. According to CDC, more than 61 million
doses of measles vaccine were postponed or missed because of the COVID-19 pandemic. In 2022, many
countries around the world, including India, Yemen, and Somalia suffered measles outbreaks [Global
Immunization, 2023].

We find that drop in immunization rate by 5% among children increases the criticality of all clusters
but the percentage increase in criticality is significantly different for different clusters. For example,
the criticality of the second cluster increases by 32.5 times the base immunization, after the drop.
Reduced immunization rate also changes the incidence rates inside and outside of a cluster. In the 5%
reduced immunization scenario, when C2 is seeded, the number of infections outside the C2 cluster
is about 267 times the number of infections outside the cluster in the base immunization case. In
contrast, the cases inside the cluster increase to only 2.95 times the base immunization case.

We find that the criticality of two sets of nodes can be very different if their eigenvector centrality is
different, even though their average degree is similar. Previous literature has explored the importance
of high eigenvector centrality in the context of spreading [Canright and Engø-Monsen, 2006, Griffin
and Nunn, 2012, Goltsev et al., 2012] but this paper examines the criticality of a set of nodes in the
context of vaccination and finds it to be an important characteristic in estimating the potential risk of
clusters in the network.
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7 Appendix 1

7.1 Sensitivity analysis of the random networks

We investigate the criticality of set1 and set2 in different base immunization levels (Figure 7A). Our
result is robust for a wide range of base immunization (7.5%− 20%). We also consider various disease
transmission probability β.

A B

Figure 7: Sensitivity analysis of two unvaccinated sets in the Barabási–Albert random network. Both
sets, set1 and set2 have 20 nodes and the same average degree, but set1 has higher eigenvector centrality.
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