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Abstract  

Evaluating thyroid nodules to rule out malignancy is a very common clinical task. Image-

based clinical and machine learning risk stratification schemas rely on the presence of thyroid 

nodule high-risk sonographic features. However, this approach is less suitable for diagnosing 

malignant thyroid nodules with a benign appearance on ultrasound. In this study, we developed 

thyroid cancer polygenic risk scoring (PRS) to complement deep learning analysis of ultrasound 

images. When the output of the deep learning model was combined with thyroid cancer PRS 

and genetic ancestry estimates, the area under the receiver operating characteristic curve 

(AUROC) of the benign vs. malignant thyroid nodule classifier increased from 0.83 to 0.89 

(DeLong, p-value = 0.007). The combined deep learning and genetic classifier achieved a 

clinically relevant sensitivity of 0.95, 95 CI [0.88-0.99], specificity of 0.63 [0.55-0.70], and 

positive and negative predictive values of 0.47 [0.41-0.58] and 0.97 [0.92-0.99], respectively. An 

improved AUROC was consistent in ancestry-stratified analysis in Europeans (0.83 and 0.87 for 

deep-learning and deep learning combined with PRS classifiers, respectively). An elevated PRS 

was associated with a greater risk of thyroid cancer structural disease recurrence (ordinal 

logistic regression, p-value = 0.002). This study demonstrates that augmenting ultrasound 

image analysis with PRS improves diagnostic accuracy, paving the way for developing the next 

generation of clinical risk stratification algorithms incorporating inherited risk for developing 

thyroid malignancy.  
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  Introduction 

Thyroid nodules are very common and detected by thyroid ultrasound in up to 65% of 

the general population, with prevalence increasing in women, with age, and after radiation 

exposure1,2. Excluding malignancy when evaluating thyroid nodules is important to clinicians 

and patients. Diagnostic thyroid/neck US is performed in patients with a suspected thyroid 

nodule, and fine needle aspiration biopsy (FNA) is the procedure of choice to exclude 

malignancy3. It has been estimated that >600,000 FNAs are performed in the United States 

each year4. These FNAs have a high cost to the healthcare system and are associated with mild 

but relatively frequent clinical complications5. 

 The American Thyroid Association (ATA)3 and the American College of Radiology (ACR, TI-

RADS)6 have developed algorithms that help clinicians to decide which nodules should be 

biopsied. Both systems rely on the presence of benign or suspicious sonographic features, such 

as nodule composition, echogenicity, shape, margins, presence of echogenic foci, and nodule 

size3,7,8. Due to reliance on suspicious findings on the ultrasound, clinical risk stratification 

schemas are less useful for thyroid cancer subtypes, such as follicular thyroid cancer (FTC), 

follicular variant of papillary thyroid cancer (FV-PTC), and Hurthle cell thyroid cancer (HCTC), 

that may lack classic features of papillary thyroid cancer (PTC) such as hypoechogenicity and 

microcalcifications9-11. To avoid misdiagnosing these cancers, current clinical guidelines3,6 

recommend biopsying thyroid nodules with low-risk sonographic appearance greater than 1.5-

2.5 cm despite the low probability of cancer in these lesions (5-10%). Consequentially, many 

biopsies are performed on benign nodules and are potentially avoidable. Only 7 -13% of biopsy 

results fit cytologic categories requiring thyroid surgery (Bethesda categories V and VI); 44-72% 
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produce benign results, and the remaining 9-32% are either inadequate or indeterminate 

necessitating repeat procedures or expensive molecular testing12-15. Therefore, better methods 

for risk stratification of thyroid nodules are needed.  

One path toward reducing unnecessary biopsies involves deep learning methods. Many 

groups are working on developing computer-assisted diagnosis systems (CAD) employing 

convolutional neural networks (CNN – a type of deep learning model used in image processing) 

trained on thyroid ultrasound images to help clinicians with thyroid cancer risk assessments 16-

20. Such systems perform comparably to expert radiologists for diagnosing malignant thyroid 

nodules and do not suffer from interobserver variability affecting clinical schemas21,22. 

However, similar to clinical risk stratification schemas, these CAD systems perform poorly on 

malignant thyroid nodules lacking suspicious sonographic features (23 and this study). This 

limitation indicates a need to consider other indicators of risk of malignancy independent of 

these sonographic features. 

Population-based registries suggest that thyroid cancer is highly heritable, although the 

exact genetic components are not well-defined. Genetic effects are estimated to contribute 28-

53% to the susceptibility to thyroid cancer24,25. In a study of the Swedish Family-Cancer 

Database, the tetrachoric correlation for siblings ranged from 0.34–0.51, whereas in non-

genetically related spouses, it was 0.0424. In the Icelandic Cancer Registry, the relative risk of 

thyroid cancer in first-degree relatives of an affected individual was 3.02, and it remained 

significantly elevated up to third-degree relatives. In contrast, no increased risk was observed in 

unrelated spouses26.  
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We hypothesize that taking into account an inherited risk of thyroid cancer in combination 

with ultrasound-based risk assessment will improve thyroid nodule classification. To test this 

hypothesis, we trained a deep learning convolutional neural network classifier of thyroid 

nodules (CNN classifier) using a well-curated database of ultrasound images. We estimated 

thyroid cancer polygenic risk score (PRS) for ~ 74K participants in the Colorado Center for 

Personalized Medicine (CCPM) Biobank27. We evaluated the performance of the CNN classifier 

alone and in combination with PRS, genetic ancestry, and clinical and demographic covariates. 

 

Materials and Methods 

Thyroid nodule ultrasound images.  

The electronic health records from the University of Washington (UW, training and 

validation data set) and the University of Colorado (CU, test data set) healthcare systems were 

searched for patients that met the following inclusion criteria: 1) Diagnosis of a thyroid nodule 

or thyroid cancer; 2) High-quality thyroid ultrasound images obtained with a high frequency 

(10-17 MHz) ultrasonic transducer available in the picture archiving and communication system 

(PACS). 3) Thyroid nodule diameter of ≥ 10 mm in at least one dimension; 4) A definitive 

diagnosis for the thyroid nodule established by either histopathology following thyroid surgery 

or by fine needle aspiration biopsy (FNA) cytology; 5) Genotype information available in the 

CCPM Biobank (for CU data only) 27. Each nodule was assigned an arbitrary identifier in the 

format VTBxxxx_TNxxxx and the mapping data linking these identifiers to personal identifiable 
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information was only available to the members of the research group involved in the data 

collection.  

 Raw ultrasound studies in DICOM format were copied to a secure server and processed 

with the help of a custom DICOM format parser and image cropping tool. For each nodule, 

anonymized images in transverse and longitudinal planes and transverse and longitudinal video 

clips (if available) were collected. Static images and video clips were cropped to remove 

artifacts, such as embedded text and scale marks, focusing on the region of interest containing 

the thyroid nodule. Other artifacts, such as caliper marks in a small subset of images, were 

manually removed using the GIMP software clone tool (GNU Image Manipulation, The GIMP 

Development team).  

Clinical data.  

Clinical data was abstracted from the EHR and included nodule dimensions in 3 planes, 

location within the thyroid (left, right or isthmus), diagnosis established by histopathology or 

FNA, and radiology, cytology, and surgical pathology reports (Supplementary Tables 1 and 2). 

TI-RADS points and scores were extracted from radiology reports if documented or assigned as 

described in the ACR TI-RADS white paper6, but only if the report contained sufficient 

information. Because we were interested in the performance of the TI-RADS system as used by 

clinicians in routine clinical practice, TI-RADS points and categories were neither reassigned by 

the authors nor added based on the review of US images. The recommendation to proceed 

with FNA was estimated based on the TI-RADS features/categories (as extracted from the 

clinical radiologist reports) and thyroid nodule size6, and standard performance metrics were 
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calculated. Ninety-five percent confidence intervals were estimated using a bias-corrected and 

accelerated (BCa) bootstrap procedure.  

Thyroid cancer risk of structural disease recurrence 

The risk of structural disease recurrence as defined by the ATA thyroid cancer 

guidelines3 (ATA RoR) was estimated for genotyped patients in the CCPM Biobank who 

underwent total or completion thyroidectomy. A semi-automated pipeline programmed in M 

using text mining with regular expressions was employed to extract relevant information from 

the surgical pathology reports. Missing information was curated by a manual chart review by a 

research team member specializing in thyroid cancer/endocrine surgery (MB). For cases where 

ATA RoR assignment was ambiguous (such as when the number of nodules with extranodal 

extension was not reported), the slides were requested from the clinical archive and reviewed 

by a pathologist with expertise in thyroid cyto- and histopathology (CM). Each malignant 

specimen was classified as low, intermediate, or high risk for structural disease recurrence 

(Supplementary Table 3).  

Deep learning thyroid nodule classifier. 

Thyroid nodule images collected at the UW were used for deep learning thyroid nodule 

classifier training. The nodules were split into training (80%) and validation (20%) sets, and five-

fold cross-validation was used for training and hyperparameter optimization. CNN 

implementation was done using Python 3.6 and Pytorch 1.9.0. The Big Transfer CNN model28 

pre-trained on natural images and adopted for thyroid nodule classification through the 

application of transfer learning was used. The BiT-M ResNet-50x1 CNN architecture was 
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modified to contain 3, 4, 6, and 3 PreActBottleneck units per block 1 through 4. The model 

trained on the ImageNet-21k dataset29 was loaded, and weights for blocks 3 and 4 were fine-

tuned for the binary classification task of distinguishing benign and malignant thyroid nodules. 

A categorical cross-entropy loss function and stochastic gradient descent optimizer were used. 

The learning rate was increased from zero to 5e-5 during the first 100 epochs (gradual 

warmup30), and training was continued at this learning rate for up to 600 epochs. Training was 

stopped when the model performance on the validation split did not improve in subsequent 

epochs. Sample training and validation loss curves are shown in Supplementary Figure 1. The 

AUROC was calculated for each cross-validation split and summarized using predictions for the 

held-out component of each split. The optimal scaling, image augmentation, and other 

hyperparameters were selected using a grid search across the UW training image set. The 

trained model with optimized parameters was then applied to the CU test set. GradCAM class 

activation heatmaps31  highlighting salient parts of the thyroid nodule image were generated.  

Two approaches to image scaling were used: 1) A conventional approach of scaling all 

images to 400 px regardless of the nodule size. 2) Alternatively, images were scaled based on 

the reported corresponding dimension of the nodule (100 px per centimeter up to 400 px) with 

zero padding for nodules <4 cm. Nodules that were >4 cm were scaled to 400 px. Random 

horizontal flip, scaling (0.8 to 1.2), and shearing (-3 to 3) were applied to all images during each 

training epoch for data augmentation. Other image augmentation techniques, such as rotation, 

translation and vertical flip, were tested but did not improve performance on validation set of 

images. To further augment the data, images extracted from ultrasound cine clips were used 

for training. Specifically, 2 to 8 randomly selected images from thyroid ultrasound cine clips for 
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each nodule were added to the training image set during each epoch to increase the size and 

diversity of the training data.  

Genetic data.  

Patients for the Colorado test set of thyroid nodules were randomly selected among the 

genotyped participants in the CCPM Biobank (n = 73,346)27. Genotyping was performed using 

Illumina's InfiniumExpanded Multiethnic Genotyping Array (MEGAEX) platform or custom exome 

sequencing panel in collaboration with the Regeneron Genetics Center. Rigorous quality 

control, imputation (topmed_r2 reference panel), estimation of kinship-adjusted principal 

components, genetic ancestry inference, and relationship inference were performed as 

described previously27. One-thousand thirty-five patients surgically treated for benign or 

malignant nodules were selected from CCPM Biobank participants (Supplementary Table 3). 

Thyroid cancer polygenic risk score. 

Thyroid cancer PRS was calculated as a weighted sum of 5 or 26 alleles significantly 

associated with thyroid cancer in a genome-wide association study (GWAS) meta-analysis 

performed by the Global Biobank Meta-Analysis Initiative (GBMI)32. Data from multiethnic 

thyroid cancer GWAS incorporating evidence for both sexes were used. While CCPM took part 

in the prior analysis, the summary statistics analyzed here are from GBMI data with CCPM left 

out to avoid overfitting. The variants and weights used to calculate PRS are summarized in 

Supplementary Table 4.  

Polygenic risk score phenome-wide association study (PRS PheWAS) 
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Phecodes for 1860 clinical conditions were derived from ICD-9-CM and ICD-10-CM 

billing codes for 73,346 CCPM Biobank participants using the PheWAS R package33. Phenotypes 

with at least 20 cases were included in the analysis. Phecode exclusions were used in the 

control definitions as recommended by the original authors. AUROC, p-value, and Nagelkerke r2 

for crude (unadjusted for covariates) thyroid cancer PRS were calculated for each phenotype 

(ROCR and fmsb R packages). 

Combined CNN and PRS thyroid nodule classifier.  

The probability of malignancy estimated by the CNN classifier was combined with PRS 

with or without genetic principal components (PCs, accounting for genetic ancestry), nodule 

dimensions, and demographic covariates (age and sex) using cross-validated (5-fold) logistic 

regression. Genotyping batch was also used as a covariate for all combined models to control 

for the origin of the data (array vs. augmented exome). The DeLong test was used to assess the 

significance of AUROC changes. To be of maximal clinical utility, the thyroid nodule classifier 

should have high sensitivity and negative predictive power. Therefore, we selected the classifier 

score thresholds that achieve a sensitivity of >95%, matching or exceeding that of the FNA 

biopsy34-37. The confusion matrix was calculated using these clinically relevant thresholds.  

Human subject research. 

This retrospective study was approved by the University of Washington Institutional 

Review Board and the University of Colorado Multiple Institutional Review Board. 

Code availability. 
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The computer code for this manuscript can be found on GitHub 

https://github.com/npozdey/thyroid_nodule_PRS. 

 

Results 

Database of ultrasound images and video clips of thyroid nodules.  

Ultrasound images for CNN classifier training were collected for 621 nodules (458 

benign and 163 malignant) from the University of Washington healthcare system 

(Supplementary Table 1). Five hundred fifty-nine nodules had cine clips obtained in a transverse 

plane, and 213 had cine clips obtained in a sagittal plane (a total of 32,545 images). Four 

hundred and sixty-six and 155 nodules were from females and males, respectively. The median 

age of patients at the time of diagnosis was 51 years. Thirty-seven nodules were in the thyroid 

isthmus, 326 in the right thyroid lobe, and 258 in the left thyroid lobe. Thyroid nodules ranged 

in size from 1 to 9.4 cm (median = 2.7 cm). Significantly more malignant nodules (41/163, 25%) 

than benign nodules (76/458, 17%) were taller than wide (Pearson Chi-squared test, p = 0.02).  

To approximate better the variety of nodules that clinicians encounter in clinical 

practice, all thyroid nodule types, including those that originate from non-thyroidal tissues, 

were used. Two benign nodules were diagnosed as intra-thyroidal parathyroid adenomas. One 

hundred and twelve thyroid nodules were from PTCs of classic or unspecified subtype. The 

database also included 19 FV-PTC, 15 FTC, three medullary thyroid carcinomas (MTC), three 

HCTC, two metastases from neuroendocrine tumors, two metastases from chronic lymphocytic 

leukemia, two metastases from breast carcinomas, one metastasis from colorectal carcinoma, 
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one diffuse sclerosing variant of PTC, one poorly differentiated thyroid carcinoma, one 

parathyroid carcinoma, and one thyroid lymphoma.  

Test imaging data was acquired from the medical records of patients participating in the 

CCPM Biobank (Supplementary Table 2). Among 232 nodules, there were 168 benign nodules, 

44 classic PTCs, 12 FV-PTC, 5 MTC, 2 FTC, and 1 HCTC.  

 TI-RADS has high sensitivity but low specificity when used by radiologists in routine 

clinical practice.  

To create a context for assessing CNN and PRS-based thyroid nodule risk stratification, 

we evaluated TI-RADS schema in our training set of nodules. The radiologists at the UW use TI-

RADS consistently, therefore, we were able to extract TI-RADS points and categories from 

clinical reports for most thyroid nodules (Supplementary Table 1). We argue that this method 

provides a better estimate of the real-life clinical performance of TI-RADS in contrast to a 

dedicated research study, where ultrasounds may be reanalyzed by a physician experts, and 

evaluations by multiple physicians are reconciled (e.g.38,39). Kernel density plots illustrate the 

ability of TI-RADS points and categories to discriminate between benign and malignant thyroid 

nodules (Figure 1). The nodules with ≥ 9 TI-RADS points are very likely to be malignant (Figure 

1A). However, there is a significant overlap between benign and malignant nodules, particularly 

for nodules with ≤ 7 points or category of ≤ 4. The AUROCs of TI-RADS points and TI-RADS 

categories were 0.729 (Figure 1C) and 0.707, respectively. Thyroid nodule size was considered 

to provide the recommendation to proceed with FNA or use active surveillance as 

recommended by the TI-RADS white paper6. This binary TI-RADS classifier had a sensitivity of 
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0.93, 95% CI [0.86, 0.97], a specificity of 0.19 [0.15, 0.23], and a negative predictive value (NPV) 

of 0.91 [0.83, 0.96] and a positive predictive value of 0.23 [0.19, 0.28]. 

 

Deep learning model training and performance.  

The AUROCs averaged across five cross-validation splits using various image scaling and 

augmentation techniques are listed in Table 1. When traditional scaling to 400 px (not taking 

Figure 1. The diagnostic performance of TI-RADS as reported by radiologists in routine clinical 

practice. Kernel density plots for TI-RADS points (A) and categories (B) and ROC for thyroid nodule 

classifier based on TI-RADS points (C).  
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nodule size into account) was used, the model achieved an AUROC of 0.803 (summarized across 

five independent cross-validated training runs). Scaling by nodule size significantly improved 

the AUROC to 0.848 (p=0.0001, DeLong test). Additional improvement was achieved when six 

random frames were extracted from cine clips and added to the training set during each epoch 

(AUROC 0.872, p = 0.0009 when compared to the model trained on images scaled by the nodule 

size). Supplementary Figure 2 shows the ROC curve (AUROC 0.86) from the example training 

run using both scaling of the images by the nodule size and extracting random 6 video clip 

frames per nodule during each epoch. When the probability of malignancy threshold (Pmalign ≥ 

0.07) was set to match the sensitivity of the FNA, the CNN thyroid nodule classifier showed a 

sensitivity of 0.95 [95% CI, 0.91-0.98], a specificity of 0.52 [0.48-0.57], an NPV of 0.97 [0.94-

0.98], and a positive predictive value (PPV) of 0.41 [0.36-0.46] (Table 2). When evaluated on the 

test set of 232 nodules, the AUROC was 0.833 (Table 2).  

 

Table 1. Cross-validated AUROC of CNN thyroid nodule classifier trained using various image 

scaling and augmentation methods.  

Image scaling Image augmentation AUROC P-value 

Scaled to 400 px Standard* 0.804 ± 0.007  

By nodule size Standard 0.848 ± 0.005 0.0001§ 

By nodule size Six random cine clip images 

added 

0.872 ± 0.004 0.0009§§ 
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*Standard image augmentation consists of random horizontal flip (p = 0.5), random scaling (0.8 

to 1.2) and random shear (-3, 3). §When compared to scaling to 400 px, DeLong test. §§When 

compared to scaling by nodule size. Data is shown as mean ± standard deviation. N = 5.  
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Table 2. AUROCs, diagnostic, and predictive metrics of thyroid nodule classifiers.  

 AUROC,  

p-value‡ 

Sensitivity* 

[95% CI] 

Specificity 

[95% CI] 

PPV 

[95% CI] 

NPV 

[95% CI] 

CNN, training data†  0.87 0.95 

[0.91 -0.98] 

0.52 

[0.48-0.57] 

0.41  

[0.36-0.46] 

0.97  

[0.94-0.98] 

CNN, test data 0.83 0.89  

[0.79-0.95] 

0.62 

[0.54-0.69] 

0.47 

[0.38-0.56] 

0.94 

[0.88-0.97] 

CNN + PRS† 0.87, 0.05 0.95 

[0.88-0.99] 

0.57 

[0.49-0.64] 

0.46 

[0.38-0.54] 

0.97 

[0.92-0.99] 

CNN +  PRS + PCs† 0.89, 0.007 0.95 

[0.88-0.99] 

0.63 

[0.55-0.70] 

0.47 

[0.41-0.58] 

0.97 

[0.92-0.99] 

CNN +  PRS + 

covariates† 

0.92, 2.3e-4 0.95 

[0.88-0.99] 

0.56 

[0.48-0.63] 

0.45 

[0.37-0.53] 

0.97 

[0.91-0.99] 

CNN, test data, 

Europeans only 

0.83 0.87 

[0.75-0.94] 

0.62 

[0.54-0.70] 

0.47 

[0.38-0.56] 

0.92 

[0.84-0.97] 

CNN + PRS†, 

Europeans only 

0.87, 0.03 0.96 

[0.87-1.00] 

0.58 

[0.50-0.66] 

0.50 

[0.40-0.59] 

0.97 

[0.90-1.00] 

*Binary classifier threshold was selected to achieve clinically relevant sensitivity of ~ 0.95; †5-

fold cross-validated; ‡compared to CNN model evaluated on the test set of nodules; CNN – 

convolutional neural network classifier; PRS – 5 SNP PRS; PC – genetic principal component 

 

Malignant and benign image characteristics recognized by the CNN classifier.  

To understand benign and malignant features recognized by the CNN classifier, we 

explored GradCAM class activation heatmaps highlighting salient areas of the image. Of 

particular interest were heatmaps of thyroid nodules classified as malignant or benign with high 
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confidence (Pmalign ~ 1 or 0, respectively). GradCAM heatmaps for the 16 nodules with the most 

extreme Pmalign are shown in Fig. 2). Microcalcifications were present in all eight top malignant 

nodules (#1-8) and were highlighted as a salient feature by GradCAM (Figure 2A). Benign 

features were the presence of multiple small cystic areas (#9, 10, 13, 15, 16), isoechoic nodules 

with well-defined borders (#11 and 12), and purely cystic nodule (#14, heatmap points to the 

cyst borders). Benign nodules #9, 10, 12, 13, and 15 were recommended for FNA based on the 

clinical ultrasound report and TI-RADS algorithm. Similar benign and malignant features were 

highlighted on GradCAM heatmaps generated from the test set images (Supplementary Fig. 3). 

Nodules with the highest Pmalign have classic high-risk appearance due to hypoechogenicity and 

the presence of microcalcifications (VTB5276_TN5276, VTB5093_TN5093, VTB5327_TN5327, 

Supplementary Figure 3). Nodules with the low Pmalign demonstrate spongiform architecture 

(VTB5378_TN5379, VTB5151_TN5151, VTB5375_TN5375) or are solid and isoechoic 

(VTB5110_TN5110, VTB5291_TN5291, VTB5111_TN5111).  
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Malignant thyroid nodules misclassified as benign.  

To understand the limitations of thyroid nodule risk stratification, we explored 

malignant thyroid nodules assigned low Pmalign  of <0.1 (Figure 3A). Notably, none of these 

nodules demonstrate overtly suspicious sonographic features. Many of the misclassified 

nodules belong to difficult-to-diagnose subtypes such as FTC (#17), FV-PTC (#21, 22, 26), and 

intrathyroidal hematologic malignancies (#20 and 24). PTC #19 had benign FNA cytology, yet 

surgical histopathology showed multifocal microcarcinoma (0.5 and 0.7 cm), suggesting that the 

image may not represent the malignant tumor. Nodule #25 was described as “oncocytic variant 

Figure 2. Malignant (A) and benign (B) thyroid nodules classified by CNN model with high 

cofidence. Nodule ID, the probability of malignancy estimated by the deep learning classifier, US 

image, and GradCAM activation heatmap for the corresponding class are shown. 
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of PTC“ in the histopathology report and may resemble HCTC. Among five misclassified nodules 

in a test set (Figure 3B), four showed no overt suspicious characteristics (except for HCTC # 30, 

which is hypoechoic and taller than wider). All five belonged to difficult-to-diagnose types of 

thyroid cancer: FV-PTC, FTC, and HCTC. This analysis highlights the inherent weakness of image-

based thyroid nodule risk stratification (both clinical and machine learning), i.e. the benign 

sonographic appearance of a subset of malignant lesions. This observation prompted us to seek 

an orthogonal method of risk assessment, such as leveraging the inherited risk of thyroid cancer 

by using PRS.  
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Thyroid cancer polygenic risk score.  

Initially, we derived a PRS from 26 variants significantly associated with thyroid cancer in 

a GBMI meta-analysis (26 SNP PRS) for the Colorado Center for Personalized Medicine Biobank 

participants. This score achieved an area under the receiver operating characteristic curve of 

0.65 in ~ 74K CCPM Biobank participants (Supplementary Figure 4A) and 0.70 when five genetic 

Figure 3. Malignant thyroid nodules incorrectly classified as benign by the deep learning 

model in a training (A) and test (B) sets of images. Nodule ID, histologic tumor type, and Pmalign 

are shown. For test nodules (B), standardized PRS is also shown. CLL – chronic lymphocytic 

leukemia.  
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principal components, age, sex, and genotyping batch were included as covariates). This AUROC 

is comparable to that of previously published thyroid cancer PRS40,41. To understand the 

predictive landscape of the 26 SNP PRS we performed PRS PheWAS. In addition to thyroid 

cancer, 26 SNP PRS was significantly associated with other thyroid disease phenotypes (such as 

hypothyroidism, chronic lymphocytic thyroiditis, and nontoxic nodular goiter, Supplementary 

Figure 4C, Supplementary Table 5). When restricted to individuals of European ancestry, the 

PRS showed an AUROC of 0.65, similar to the AUROC calculated in the entire CCPM Biobank 

population (Supplementary Fig. 4B).  

The association of 26 SNP PRS with benign nodular goiter is detrimental to its ability to 

discriminate between malignant and benign nodules (a clinical use case of this study). 

Therefore, we studied the association of each variant with the phenome using PheWAS 

(Supplementary Table 6) and found that some variants (i.e. chr1:218508629:G:A and 

chr8:132869226:C:T) are associated with nontoxic nodular goiter more than with thyroid 

cancer. To remove the negative effect of the variants associated with the benign nodular goiter 

on the ability of PRS to discriminate between malignant and benign thyroid nodules (and to 

avoid overfitting by selecting just the variants with the best performance in the CCPM Biobank), 

we limited PRS to the five most significant SNPs as discovered by the GBMI (5 SNP PRS, 

Supplementary Table 4). These variants replicated previous discoveries in much smaller 

GWASes 42-46 and, therefore, are less likely to be affected by an ascertainment bias.  
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The 5 SNP PRS achieved an AUROC of 0.63 (0.68 when covariates were included) (Figure 

4A). PRS PheWAS analysis demonstrated that the 5 SNP PRS retained a strong association with 

thyroid cancer phenotype but not with nontoxic nodular goiter phenotype (Figure 4B, 

Supplementary Table 7) making it suitable for the task of thyroid nodule classification.  

 

 

Figure 4. Thyroid cancer 5 SNP PRS alone and in combination with CNN thyroid nodule classifier. 

A. ROC curve of the 5 SNP PRS in CCPM Biobank participants (blue curve – crude PRS; red curve – 

PRS with covariates: 5 principal components, genotyping batch, age and sex). B. 5 SNP PRS 

PheWAS. C. CNN thyroid nodule classifier combined with 5 SNP PRS. D. CNN thyroid nodule 

classifier combined with 5 SNP PRS and 5 principal components. E. CNN thyroid nodule classifier 

combined with 5 SNP PRS, 5 principal components, nodule dimensions and age and sex. 
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PRS improves the classification of thyroid nodules as benign and malignant and is 

associated with thyroid cancer risk of recurrence.  

Combining the CNN output with 5 SNP PRS using a cross-validated logistic regression 

model increased AUROC from 0.83 to 0.87 (DeLong test, p = 0.05, Figure 4C, Table 2). Adding 

genetic PCs to the model resulted in further improvement of AUROC to 0.89 (DeLong test, p = 

0.007, Fig. 4D, Table 2). Finally, including patient demographics (age, sex) and nodule 

dimensions as covariates resulted in an AUROC of 0.92 (DeLong test, p = 2-e04, Figure 4E, Table 

2).  

To investigate the possibility that improved performance of the combined classifier is 

driven by subtle differences in PRS among individuals of different ancestries (i.e. PRS is a 

surrogate measure of ancestry and not a true estimate of thyroid cancer risk), we performed a 

subanalysis including patients of European genetic ancestry only. Similarly to the multiethnic 

analysis, PRS increased the AUROC of the thyroid nodule classifier from 0.83 to 0.87 (Table 2, 

De-Long test p = 0.03) in 181 European patients, indicating that this improved performance is 

not caused by the confounding effect of population structure.  

ATA RoR was determined for 842 CCPM Biobank participants operated for thyroid 

cancer. Clinical charts and slides from surgical histopathology were reviewed as necessary to 

assign ATA RoR per guidelines3 (611 low-risk, 152 intermediate-risk, and 79 high-risk ATA RoR, 

Supplementary Table 3). Ordinal logistic regression showed a significant positive association of 

5 SNP PRS with ATA RoR (βPRS = 0.22, 95% CI [0.08-0.36], p-value = 0.002). In addition, male sex 
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(βMale = 1.01 [0.67-1.35], p-value = 5.68e-9) and self-reported Hispanic ethnicity (βHispanic = 0.76 

[0.24-1.26], p-value = 0.003) were associated with greater risk of structural disease recurrence. 

 

Discussion 

In this study, we investigated the utility of thyroid cancer PRS for two use cases of 

clinical relevance: thyroid nodule risk stratification necessary for thyroid cancer diagnosis and 

estimating the risk of thyroid cancer structural disease recurrence, which determines the type 

of surgical treatment, need for radioactive iodine treatment and the degree of TSH suppression 

in patients with thyroid malignancy3.  

A thyroid cancer diagnosis is established with an FNA biopsy of nodules. As it is not 

feasible nor cost-effective to biopsy all thyroid nodules, the ATA and the ACR introduced clinical 

risk stratification algorithms3,6 that help to identify nodules that are more likely to be malignant 

based on the presence of suspicious sonographic characteristics such as hypoechogenicity, 

presence of microcalcifications, and others. However, not all malignant thyroid nodules 

demonstrate these suspicious features on ultrasound. In particular, FTC 11, FV-PTC 47, and 

HCTC48 frequently have benign sonographic appearances limiting the usefulness of image-based 

risk stratification schemas. To avoid missing benign-appearing thyroid malignancies, ACR and 

ATA recommend biopsying benign-looking thyroid nodules ≥ 1.5-2.5 cm in size, which leads to 

many potentially avoidable FNA of benign lesions. Consistently, our analysis of TI-RADS, as it 

was used by radiologists in routine clinical practice, showed high sensitivity but low specificity 

for detecting malignancy (Figure 1).  
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To objectively assess the risk of malignancy based on the analysis of thyroid nodule 

ultrasound images, we trained a CNN classifier using a diverse and well-annotated set of 

images. We found that preserving the size of sonographic features using image scaling based on 

the nodule size and increasing the diversity of training data by pulling a random set of cine clip 

images during each training epoch had a positive influence on model performance (Table 1). 

These techniques could be useful for a broad range of medical image analysis applications.  

The CNN classifier performed well in distinguishing benign and malignant nodules 

(AUROC 0.83-0.87), outperforming the TI-RADS risk stratification schema as it was used by 

clinicians in routine clinical practice (Figure 1, AUROC 0.71-0.73). The CNN classifier recognized 

many features known to be associated with malignancy (hypoechogenicity and 

microcalcifications) and benign nodules (spongiform appearance and isoechoic appearance,  

Figure 2). However, it misclassified nodules that do not have suspicious features on the 

ultrasound and belong to the hard-to-diagnose subtypes of thyroid cancer such as FTC, HCTC, 

and some FV-PTC.  

Inherited predisposition to developing thyroid cancer measured with PRS provides an 

attractive alternative method of measuring risk, independent and complementary to the 

imaged-based assessment. Published data on the clinical utility of thyroid cancer PRS are 

scarce. Integration of the PRS with clinical factors was shown to improve the prediction of 

subsequent thyroid cancer in childhood cancer survivors49. Individual variants were tested for 

their association with tumor size, locoregional and distant metastases, extrathyroidal 

extension, and multifocality (reviewed in 50). We demonstrated that incorporating PRS into the 

thyroid nodule risk stratification results in an improved ability to discriminate between benign 
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and malignant nodules as measured by the classifier AUROC (Table 2). In clinical practice, this 

may help to reduce the number of potentially avoidable FNAs performed for benign lesions.  

Many GWAS analyses identified germline variants associated with thyroid cancer42-46, 

culminating with the largest to-date meta-analysis performed by the GBMI32. Our PheWAS and 

PRS PheWAS analyses discovered that not all variants significantly associated with thyroid 

cancer in GWAS are suitable for differentiating benign and malignant thyroid nodules due to 

pleiotropic interaction with benign and malignant phenotypes. There are two potential sources 

of genetic associations with benign goiter in thyroid cancer GWAS. One is the true shared 

genetic basis for thyroid cancer and benign nodules. However, thyroid cancer and benign goiter 

are separate nosological entities, and benign thyroid nodules are not considered 

premalignant51. The other is ascertainment bias due to the greater prevalence of benign thyroid 

nodules in patients with thyroid cancer52 and, importantly, due to the exclusion of benign 

thyroid disease from the control group but not from the case group in GWAS (such as when 

using recommended phecode exclusions33). To reduce the effect of the ascertainment bias, we 

limited PRS to the five most significant SNPs and confirmed the association of this sparse PRS 

with thyroid cancer but not benign nodular goiter in PRS PheWAS (Figure 4). Further discovery 

of the variants specific to thyroid cancer but not benign nodular disease is needed, which can 

be achieved through the careful selection of case and control phenotypes in GWAS (such as 

incorporating patients with benign nodules into the control definition for thyroid cancer 

GWAS).  

The ATA RoR is essential for many aspects of thyroid cancer clinical management, 

including the need for completion thyroidectomy and adjuvant radioactive iodine treatment. 
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However, ATA RoR, as defined in the current guidelines3, relies on surgical histopathology and, 

therefore, is not known until after the thyroid surgery creating uncertainly in the optimal 

selection of the initial surgical treatment (lobectomy for low-risk and total thyroidectomy with 

and without central neck dissection for high-risk disease). We found a significant positive 

association between PRS and ATA RoR, which is of potential clinical relevance. In addition to 

PRS, we confirmed an association of male sex (reviewed in 53) with higher risk thyroid cancer. 

Finally, a positive association between Hispanic ethnicity and ATA RoR highlights ethnic 

disparity in thyroid cancer, which may have genetic or socioeconomic origin and warrants 

future study.  

This study has limitations. The sparse 5 SNP PRS explains a small fraction of heritable 

thyroid cancer risk, a consequence of our finite understanding of thyroid cancer genetic 

architecture. We expect that, as our knowledge of genetic variants increasing thyroid cancer 

risk grows, the performance and clinical utility of PRS will improve. Despite the participation of 

multiple Biobanks from across the globe in the GBMI32, the thyroid cancer meta-analysis was 

enriched in genetic data from participants of European ancestry. The ancestry-stratified analysis 

in Europeans confirmed a positive contribution of PRS to thyroid nodule risk assessment (Table 

2). However, the utility of this approach in non-European individuals could not be tested given 

sample size limitations and may be suboptimal54. Performing ancestry-specific thyroid GWAS, 

developing ancestry-adjusted PRS, and performing testing on patients of various races and 

ethnicities are needed to ensure equitable performance.  

In summary, we demonstrated the utility of PRS for the diagnosis of thyroid cancer and 

the association of PRS with the risk of thyroid cancer recurrence, paving the path for the clinical 
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use of thyroid cancer inherited risk assessment in combination with image analysis. The 

proposed CNN + PRS thyroid nodule classifier is deterministic and, therefore, does not suffer 

from interobserver variability. It could be particularly impactful for clinical care in 

community/rural settings with less expertise in interpreting thyroid ultrasounds and detecting 

suspicious features of thyroid nodules.  
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