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Abstract
Sepsis is a major cause of morbidity and mortality worldwide, and is caused by bacterial infection in a majority of
cases. However, fungal sepsis often carries a higher mortality rate both due to its prevalence in
immunocompromised patients as well as delayed recognition. Using chest x-rays, associated radiology reports, and
structured patient data from the MIMIC-IV clinical dataset, the authors present a machine learning methodology to
differentiate between bacterial, fungal, and viral sepsis. Model performance shows AUCs of 0.81, 0.83, 0.79 for
detecting bacterial, fungal, and viral sepsis respectively, with best performance achieved using embeddings from
image reports and structured clinical data. By improving early detection of an often missed causative septic agent,
predictive models could facilitate earlier treatment of non-bacterial sepsis with resultant associated mortality
reduction.

Introduction
Sepsis is a major cause of morbidity and mortality around the world. In the United States alone, sepsis potentially
accounts for nearly a quarter of a million excess deaths yearly1. Moreover, there are serious costs and other health
burdens associated with each sepsis related admission for both patients and health systems2.

While the majority of sepsis is caused by bacterial pathogens, there is a significant volume of sepsis caused by
fungal and viral agents. Some estimates suggest ~20% of sepsis is caused by fungi. Furthermore, these less common
classes of infective agents can often contribute to greater morbidity and mortality, with estimates for fungal sepsis
mortality ranging from 40-60%3. However, current standard culture methodologies can result in serious delays to
administration of appropriate treatment. The increased mortality from fungal sepsis thus can be potentially attributed
to both a more acutely ill patient population as well as delayed identification of the causative agent4. All together,
further efforts to more accurately and rapidly differentiate the causative microorganism class of sepsis could prove
crucial to decreasing excess associated morbidity and mortality.

Previous work has established a number of patient risk factors contributing to greater likelihood of primary fungal
sepsis most commonly including immunosuppression of various primary etiologies5. Additionally, there have been
prior efforts to classify patients into viral, bacterial, and fungal etiologies of pneumonia based on machine learning
interpretations of standard chest x-rays6. Finally, there has also been work differentiating laboratory test results
between classes of sepsis7. While these efforts have all been conducted separately, there seems to have not yet been
an effort to combine these disparate patient factors together to predict sepsis type.

As such, in this study, the authors aim to use a coordinated multi-task approach drawing from chest-xray images,
radiology reports, and clinical lab data to differentiate between bacterial, fungal, and viral sepsis in the MIMIC-IV
dataset.
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Methods
Predictive methods for differentiation of septic class were based on chest x-ray image, chest x-ray radiology report,
and structured clinical data from the MIMIC-IV database8.

(Figure 1: Graphical representation of feature extraction and embedding generation from MIMIC-IV
inpatient database)

Labels for the infection class were taken from the microbiology events data provided in the main MIMIC-IV
database. Culture results were grouped by patient and time point to develop time specific labels for bacterial, fungal,
and viral infection based on isolated organism name. As such, at any given time point it is possible for a patient to
have more than one positive infective class. Patients were labeled culture positive for one day before and seven days
after the order time for a positive culture result.

Structured data on medications, vital signs, laboratory results, demographics, and other clinical elements was
extracted directly from the MIMIC-IV database.  Any patient with a microbiology result was included.  Medications
were processed from the prescription orders and mapped to 16 distinct classes including antibiotics, antivirals,
antifungals, anticoagulants, and vasodilators.  Six distinct vital signs (temperature, heart rate, respiratory rate, O2sat,
systolic blood pressure, and systolic blood pressure) and one procedure (arterial line insertion) were extracted from
the flowsheets. The full list of clinical variables is presented in Supplemental Table 1.  All units from a patient’s
encounter were included and dynamic variables were sampled and updated at hourly intervals throughout the
encounter.  Multiple measurements within a time bin were averaged and missing values were imputed using the last
observation carried forward for 24 hours.  The changes in measurement values between successive vital-signs and
laboratory results as well as the number of hours since the last measurement were preserved as additional features.
Sepsis labels were assigned to patients admitted to the ICU using a combined sepsis definition including Sepsis-3
and Sepsis-CMS.

Patient chest x-ray images were collected from the MIMIC-CXR-JPEG9 dataset and mapped to x-ray reports and
structured patient data. Features were extracted from image data using a pre-trained CheXNet model10. CheXNet, is
a 121-layer convolutional neural network based on DenseNet-121 that inputs a chest X-ray image and outputs the
probability of pneumonia along with a heatmap localizing the areas of the image most indicative of pneumonia.
CheXNet is trained on the ChestX-ray14 dataset, which contains 112,120 frontal-view chest X-ray images
individually labeled with up to 14 different thoracic diseases, including pneumonia. Images from the
MIMIC-CXR-JPEG dataset were resized, and then fed into the pre-trained model to extract x-ray image
embeddings.
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In addition to chest x-ray images, embeddings were also extracted from radiology reports using Clinical BERT11, a
unique version of BERT pre-trained on 2 million notes from the MIMIC III database. Clinical BERT contains 12
transformer heads, and has a total of 110 million parameters. We concatenated together the text report into a single
sequence and passed it to the model. Every sequence was padded to a 128 token sequence length after appending
<CLS> and <SEP> tokens. The final transformer head of the model returned a 768 dimension embedding
corresponding to each token in the sequence.

Using the aforementioned features, a neural network was trained to classify bacterial, fungal, and viral sepsis. The
network architecture is described in Figure 3 and consists of 3 hidden layers and 3 output nodes. The network
outputs separate predictions for each category and allows for multiple labels. Two of the hidden layers are shared
between the multiple classification tasks to enable the network to learn common representations. ReLU activation is
used for all of the layers except for the output nodes which use sigmoid activation. The network was trained using
Adam optimization with a learning rate of 0.005. The cost function was the average binary cross entropy loss across
all three output nodes and training occurred for 100 epochs with early stopping. Model performance was evaluated
on a 20% test set. Three separate experiments were run using these hyperparameters. First, the performance of the
model was evaluated using only the 133 clinical features. Next, the performance was evaluated with the inclusion of
the radiology report embeddings. Finally, the model was evaluated using all of the clinical features, report
embeddings, and chest X-ray embeddings. The model was trained on the overall cohort and evaluated on septic
patients admitted to the ICU.

Figure 3: Graphical representation of neural network used to generate multi-task predictions
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Results
The final cohort used for analysis is described in Table 1. The dataset consists of 170,624 encounters, 25.6% of
which had positive bacterial cultures, 6.3% of which had positive fungal cultures, and 0.6% of which had viral
infections.

Table 1. Patient characteristics across microbiology results.

Metric Overall Dataset All Culture
Positive

Bacterial
Positive

Fungal Positive Viral Positive

Patient Count, N (%) 170,624 (100%) 48,695 (28.5%) 43,642 (25.6%) 10,725 (6.3%) 1,021 (0.6%)

Age, Median (IQR) 62 (49 - 74) 64 (51 - 76) 63 (51 - 75) 65 (53 - 76) 61 (49 - 73)

Female, N (%) 85,397 (50%) 24,305 (50%) 21,560 (49%) 5,580 (52%) 502 (49%)

Hospital Stay (Days),
Median (IQR)

4.46 (2.2 - 8.1) 7.08 (3.7 - 13.5) 6.95 (3.7 - 13.4) 12.46 (6.5 - 22.3) 7.5 (3.4 - 17.6)

Sepsis Patients, N (%)* 1,138 (100%) 683 (60.0%) 569 (50.0%) 281 (24.7%) 14 (1.2%)

* Percentages are expressed relative to the septic subpopulation and patients may appear in more than one class

Figure 4: Venn Diagram representation of overlapping septic labels showing total number of septic patients
per class.

The model performance on the septic subpopulation test set for all three experiments is presented in Table 2. The
highest performing model included the clinical features as well as the radiology report embeddings from
ClinicalBERT.
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Table 2. Results on the study septic population test set.

Bacterial AUC Viral AUC Fungal AUC

Clinical Features Only 0.71 0.76 0.82

Clinical Features +
Note Embeddings 0.81 0.79 0.83

Clinical Features +
Note Embeddings +
Image Embeddings

0.80 0.79 0.82

Discussion
In this work, the authors developed a model that achieves fair classification performance on identifying the
infectious organism class in septic patients. To the authors’ knowledge, this is the only work to-date that has
incorporated the multimodal data elements available in MIMIC IV for the purpose of infectious organism
classification. A central finding of our work is that the inclusion of unstructured clinical text from the radiology
report improves the classification performance, particularly for cases of bacterial infection. Interestingly, there was
no additional utility from the inclusion of CheXNET embeddings on the source chest X-ray images. This suggests
that under current methods, radiology reports contain the necessary information for differentiation of septic class,
highlighting the value of this data source for future efforts.

As expected, there was an increased length of stay for fungal culture positive patients. This aligns with established
data suggesting fungal infections in septic patients represent largely nosocomial origins. Additionally, there is
significant overlap between some classes of septicemia, suggesting that there are layered infectious hospital courses
for patients who develop sepsis. However, in current efforts, there were no labels specified based on culture site,
organism resistance, or if the culture was conducted after a lengthy inpatient stay. As such, it is difficult to quantify
the severity of inpatient fungal infections accurately. Future work could potentially investigate infections of
pulmonary origin alone, and include mortality data for improved label creation.

As established in previous literature, there seem to be clear clinical factors which precipitate fungal infection, such
that image data or radiology reports are not necessary to identify patients at high risk. Neutrophil count, C reactive
protein, procalcitonin, and other laboratory measures have been cited previously as being important markers of
fungal septicemia. However, this model is potentially limited by significant missingness of such measures.
Moreover, there is a risk that the presence of such measures alone helps to indicate a septic patient, leading to model
bias. Future efforts may focus on training and validation of the model on only a population of septic patients, as
opposed to a broader inpatient population.

Finally, while in this work labels were indicated positive for one day before and seven days after a positive culture
result, the true clinical reality may not align with such labeling. Specifically, it is noted that signs of sepsis are often
detectable in a highly variable time period ahead of culture positivity. Additionally, fungal septicemia often occurs in
those patients already admitted to the hospital with further associated delays due to prolonged fungal culture
timelines.
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Conclusion
Fungal and viral sepsis are underdiagnosed and often superimposed varieties of sepsis with serious associated
morbidity and mortality. While some efforts have been made to highlight clinically detectable differences between
sepsis classes to facilitate early detection of non-bacterial sepsis, none have thus far incorporated both structured
clinical data and relevant imaging. Using such a combined model, fair performance is possible on the task of sepsis
class identification, with improved performance most notable through additional information types in bacterial
sepsis detection. Such efforts could speed treatment of non-bacterial sepsis, reducing sepsis mortality. Future work
on the matter of non-bacterial sepsis detection may include greater sophistication in assigned sepsis labels,
experimentation with culture positivity allowance, and further model architecture improvements.
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Supplementary Tables

Supplementary Table 1.  Clinical variables extracted from the structured MIMIC IV data.  Missingness is
reported as the percentage of encounters without a measurement.

Clinical Variable Missingness (%)

Age 0

Gender 0

Length of Stay 0

Care Unit 0

Medications 0.1

Hematocrit 3.8

Platelet Count 5.6

Hemoglobin 5.8

MCH 5.9

MCHC 5.9

Red Blood Cells 5.9

RDW 5.9

MCV 6.1

White Blood Cells 6.2

Creatinine 7.2

Urea Nitrogen 7.9

Chloride 8.5

Bicarbonate 9.3

Magnesium 16.1

Potassium 16.5

Total Calcium 17.5

Phosphate 18.2

Sodium 20.1

Anion Gap 22.1
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PT 41.5

PTT 43.6

Alanine Aminotransferase (ALT) 56.8

Aspartate Aminotransferase (AST) 57.0

Bilirubin, Total 57.5

Alkaline Phosphatase 57.7

Basophils 60.1

Eosinophils 60.1

Monocytes 60.1

Lymphocytes 60.1

Neutrophils 60.4

pH 63.8

Albumin 68.2

Lactate Dehydrogenase (LD) 74.5

Red Blood Cell Differential 75.7

White Blood Cell Differential 75.8

Lactate 79.3

Base Excess 82.3

pCO2 82.8

pO2 84.6

Glucose 85.5

Ferritin 90.8

Transferrin 91.0

Fibrinogen 91.7

Oxygen Saturation 92.1

Bilirubin, Direct 96.4

Arterial Line Insertions 91.7

Sedimentation Rate 97.3
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C-Reactive Protein 98.0

Ammonia 99.2

D-Dimer 99.7
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