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Abstract 
Anaplastic thyroid carcinoma is arguably the most lethal human malignancy. It often co-
occurs with differentiated thyroid cancers, yet the molecular origins of its aggressivity are 
unknown. We sequenced tumor DNA from 329 regions of thyroid cancer, including 213 
from patients with primary anaplastic thyroid carcinomas and multi-region whole-genome 
sequencing. Anaplastic thyroid carcinomas have a higher burden of mutations than other 
thyroid cancers, with distinct mutational signatures and molecular subtypes. Specific 
cancer driver genes are mutated in anaplastic and differentiated thyroid carcinomas, even 
those arising in a single patient. We unambiguously demonstrate that anaplastic thyroid 
carcinomas share a genomic origin with co-occurring differentiated carcinomas, and 
emerge from a common malignant field through acquisition of characteristic clonal driver 
mutations.  

Statement of Significance 
Anaplastic Thyroid Cancer is the single most lethal human cancer. Surprisingly, it often 
evolves alongside a highly non-lethal form of differentiated thyroid cancer. demonstrate 
how these two diseases evolve from a common ancestor, leading to differential 
evolutionary trajectories and therapeutic targets. 
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Introduction 
Human malignancies range widely in their lethality. Some tumor types, like differentiated 
thyroid carcinoma  (DTC) and prostatic adenocarcinomas, are typically indolent with long 
life histories and managed with minimally-invasive therapies or even surveillance 
protocols1,2. Others, like pancreatic adenocarcinomas, progress rapidly after initial 
diagnosis and are refractory to most therapeutic interventions3. This variability between 
tumor types is mirrored within them as well, leading to the development of prognostic 
tests that predict tumor aggressivity from transcriptomic or proteomic features4-6. 

At one extreme of this spectrum of tumor lethality lies anaplastic thyroid carcinoma (ATC). 
ATC is arguably the most lethal human tumor type, with a median survival of ~12 weeks: 
some patients succumb to their disease within days of diagnosis7,8. ATC usually presents 
dramatically, with rapid onset of airway and oesophageal obstruction due to explosively 
growing neck masses7,8. Primary ATCs are frequently surgically inoperable due to 
encasement of nerves, blood vessels and the airway. Radio- and chemo-resistance are 
common, and distant metastases are near-ubiquitous7,9. ATC is a major clinical dilemma 
and a model for understanding lethal, treatment-resistant cancer. 

The aggressiveness of ATC is particularly intriguing because of its life history: ~80% of 
ATCs occur in the context of a prior history of thyroid cancer  or with a distinct co-occuring 
region of DTC (co-DTC), most frequently papillary thyroid cancer (PTC) 10-14. Thus 
intriguingly, the most lethal human malignancy frequently arises in the context of one of 
the most indolent. ATC presents with undifferentiated pathological features, suggesting 
that at least a subset may evolve via dedifferentiation of DTCs: either well- or poorly-
differentiated. There has been little molecular confirmation of progression from a well to 
poorly differentiated tumor, nor testing of the mutational field effect surrounding lethal 
ATC. Several studies have sequenced small numbers of ATCs with limited genome 
coverage, highlighting frequent TP53 mutations and a subset of tumors with multiple 
oncogene driver mutations15-23. However, the genomic landscape of ATC remains largely 
unknown, and the molecular characteristics of their evolutionary relationship to DTC 
remain elusive. 

To fill these gaps in our understanding of ATC pathobiology, we established a 15-site 
consortium called the Global Anaplastic Thyroid Cancer Initiative (GATCI). We report the 
mutational landscape of 329 thyroid carcinomas, including 179 primary ATCs and 34 co-
occurring regions of DTC within ATCs. In order to identify genomic alterations enriched 
in ATC or its co-DTC region, we sequenced 115 papillary thyroid regions without co-
occuring ATC from 112 patients. These data reveal distinct genomic subtypes of ATC, 
with elevated mutational density and signatures. ATCs harbour a distinct set of driver 
mutations from DTCs, including multiple recurrent tumor suppressor hits. ATC arising in 
the context of DTCs share a common evolutionary origin, but acquire additional specific 
driver mutations, some of which are recurrently altered only in anaplastic carcinoma 
components.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 12, 2023. ; https://doi.org/10.1101/2023.04.10.23288365doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.10.23288365


Page 5 of 32 
 

Results 
Cohort summary 
We collected 329 thyroid cancer regions from 291 patients, including 179 regions of 
primary ATC and 115 regions of PTC. A detailed breakdown of samples is available in  
Supplementary Figure 1 and Supplementary Table 1a-c. These tumor samples (and 
in most cases, a blood reference sample) were characterized for copy number aberrations 
(CNAs) by SNP microarrays. Single nucleotide variants (SNVs) were identified by exome 
(WXS) or whole-genome sequencing (WGS), along with RNA-sequencing (RNA-seq) 
when open biopsies provided sufficient material. Deep targeted sequencing was used for 
validation, and nested PCR to detect TERT promoter mutations (Supplementary Table 

1).  ATCs were sequenced to a depth of 123 ± 14x and reference samples to 116 ± 13x 
(median ± standard-deviation, SD) by WXS and 33 ± 4x or 34 ± 4x, respectively by WGS. 
Reads were aligned and somatic variant detection performed using a validated 
pipeline6,24. Recognizing that ATCs can have low tumor cellularity, we validated 1,140 
candidate mutations in 54 ATCs by deep targeted-sequencing on an orthogonal platform 
sequencing platform to with median F1 of 0.914 (Supplementary Figure 2). In contrast 
to the strong female preponderance of PTC in the Cancer Genome Atlas (TCGA) (F:M 
2.93:125), our ATC cohort was sex-balanced (F:M 1.11:1), consistent with previous 
reports17. Median age at diagnosis was ~70 years for ATCs and ~50 years for PTC within 
our cohort. Most ATC patients presented with locally advanced disease: 87% with T4b 
disease and 70% with nodal involvement. Distant metastases were common (43%), and 
median survival was 126 days from diagnosis. PTCs within the GATCI project were 
equally distributed by tumor extent (T1-4), and all tumors were surgically resected, with 
median follow-up of 10.9 years. Tumors were subjected to consensus pathology review 
and manually macro-dissected to maximize cellularity (Supplementary Table 1). 

ATCs are moderate mutation burden CNA-type cancers 
While differentiated thyroid cancers (DTCs) have fewer somatic mutations of all types 
than almost any other cancer type25, ATCs have been suggested to be highly mutated, 
particularly by CNAs17,26. 

 In this large genome-wide ATC cohort we identified 3.8 ± 1.2 SNVs/Mbp of DNA 
sequenced (Figure 1A (top) and 1C). These were accompanied by 120 ± 44 CNAs 
(mean ± 99% CI; median = 83.5; Figure 1B,D). The average CNA was 6.21 ± 1.33 Mbp 
(mean ± 99% CI; median = 4.95 Mbp). Relative to 32 tumor types27, ATCs show both 
more CNAs (Figure 1D) and more SNVs/Mbp (Figure 1C) than PTCs, but fewer than 
most other adult cancer types. Despite their clinical aggressiveness, they are not amongst 
the most highly mutated tumor types, nor did they show atypically high inter-tumor 
variability relative to other cancer types. 

Seven driver genes were affected by recurrent SNVs in ATC via SeqSig driver gene 
analysis6 (false discovery rate [FDR] < 0.01), including TP53, BRAF, NRAS and PIK3CA 
(Figure 1A, Supplementary Figure 3A). Non-functional or partially functional28 non-
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synonymous SNVs in TP53 were associated with elevated mRNA abundance (Wilcoxon 
rank sum test p = 0.0067, Supplementary Figure 3B, Supplementary Table 2). Another 
of these drivers, HMCN1, was expressed only in ATC but not in normal thyroid tissue 
(transcript per million [TPM] > 1 in more than 20% of profiled normal tissues). Several 
mutations previously described in ATC were detected at low frequency – EIF1AX 
mutations were detected in five tumors, including three with the p.A113X splice-site 
mutation reported to be exclusive to thyroid cancers17 and two missense mutations (G9R). 
These tended to co-occur with RAS mutations, consistent with previous reports 
(Supplementary Figure 4A)17. BRAFV600E and RAS mutations were mutually exclusive, 
while BRAFV600E and PIK3CA mutations co-occurred15,17 (hypergeometric test p=0.0052; 
Supplementary Figure 4A). Promoter mutations upstream of TERT were correlated with 
BRAF mutations (χ2 p = 0.008). 

We assessed germline variants in known cancer pre-disposition genes29. Ten genes with 
heterozygous germline SNVs in at least 2 patients (2.4% of ATCs), with a maximum 
recurrence of four patients (5%) for RECQL4 (Supplementary Table 3). This included 
multiple DNA damage repair genes, for example BRCA2 and FANCF. Given the lack of 
strong recurrence however, much larger cohorts will be required to understand the 
germline correlates, if any, of ATC. We therefore focused on somatic mutations. 

Individual ATCs varied significantly in their underlying mutational processes, with 
activation COSMIC signatures 1, 2, 5, 6, 13 and a rare novel signature (Figure 2A). The 
latter was characterized by G[T>G]G mutations and was strongly detected in only three 
tumors (Figure 2B). It may embody unknown sequencing artefacts or an as-yet-
undescribed mutational process. Other types of thyroid cancers have been reported to 
harbour activation of COSMIC signatures 1, 2, 5 and 1330,31, and ATC mirrors these. 
COSMIC 5 describes a diverse range of point mutations consisting of low frequency 
pyrimidine transition mutations, and COSMIC signature 13 is attributed to AID/APOBEC 
activity30, but surprisingly none of these signatures were associated with sex, age, CNA 
subtype, TERT promoter status or overall survival (ANOVA, FDR > 0.1). Thus ATC 
harbours more somatic SNVs than other thyroid cancers, but fewer than other cancer 
types, with no widely recurrent driver mutations or mutational processes. 

By contrast, ATC harboured a background of multiple recurrent chromosome-scale 
events, including loss of chromosome 13 (39% of tumors), gain of chromosome 7 (26% 
of tumors) and gain of chromosome 20 (35% of tumors). Consensus clustering revealed 
that these large-scale changes reflect five distinct CNA subtypes, denoted A-E (Figure 

1B, 2C). Each subtype is defined by characteristic genomic abnormalities, such as wide-
scale amplifications with occasional arm-level deletions for Subtype A (11% of ATCs) and 
large-scale deletions with cases of uniparental polysomy, similar to Hürthle cell thyroid 
cancers (HTC)32,33, for Subtype B (29%). Subtype C (20%) is dominated by gains of 
chromosomes 7 and 20 (similar to HTC32,33) and 1q amplifications (similar to PTC25), while 
Subtype D (15.5%) demonstrates many focal regions of CNA. Subtype E (24.5%) shows 
a quiet copy number profile, analogous to similar profiles in breast, prostate and head 
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and neck cancers34-36. These subtypes were associated with overall genomic instability 
(Figure 1D), age, and TP53 mutation status (Supplementary Table 4), but were 
independent of tumor cellularity and ploidy (Supplementary Figure 4B-H). These broad 
changes were accompanied by many highly-recurrent focal driver CNAs (Figure 2E, q < 
0.01). Loss of CDKN2A was wide-spread (42% of ATCs)17,37, as was loss of BRCA2 
(33.6% of ATCs). Other prominent drivers were loss of a 62 kbp region on 22q containing 
GSTT2 and GSTTP1, loss of regions on chromosome 13 involving FGF9, MYCBP2 and 
FLT3 and a 429 kbp gain on chromosome 3p containing VGLL3. Many of these recurrent 
CNAs were associated with mRNA changes (Supplementary Table 2, Supplementary 

Figure 4I-K). 

We next sought to identify fusion genes using RNA-sequencing data, reasoning that these 
are common in other thyroid cancers and often attractive therapeutic targets. We 
identified 84 fusion genes in primary ATC using fusioncatcher38, covering 144 total partner 
genes, and none previously reported in COSMIC (Supplementary Table 5A). The typical 
ATC harboured a median of 3 distinct fusion genes, with 25% of samples containing 6 or 
more fusions and two harbouring a maximum of 11 fusions. Only five fusion genes 
occurred in two or more patients, including LINC01133:SAMHD1, MDM4:TRA and 

KDSR:ANAPC7. Fusions involving FN1 and COL1A1 were associated with higher than 
average abundance of these genes. For FN1, this presented as 4.3x higher TPM in 
tumors with an FN1 fusion (Wilcoxon p = 0.007) and for COL1A1, fusions corresponded 
to 12x higher TPM (one sample; Supplementary Table 5B). Increased abundance of 
both genes has previously been associated with tumor cell migration and invasion in 
multiple tumor types39,40. 

 To identify co-occuring mutation processes underlying ATC pathogenesis, we analyzed 
inter-associations of mutation-density, mutation-signature and driver-gene features 
(Figure 2F). Multiple associations were detected, including a strong correlation between 
SNV mutation density (SNVs/Mbp sequenced) and COSMIC 1 signature, SYNE1 and 
LAMA5 mutations (FDR < 10-3). Trinucleotide signatures were not correlated to CNA 
subtypes (p > 0.05; one-way ANOVA; Supplementary Figure 4L), suggesting the 
processes driving CNA diversification is independent from those driving SNV patterns. 

Clinico-Genomics of ATC 
To assess the clinical relevance of these somatic mutational features, we first assessed 
the impact of clinical factors on overall survival (Supplementary Table 1). Treatment with 
radiotherapy (FDR = 1.7 x 10-5) or surgery (FDR = 0.0089) were positively associated 
with patient outcome, as previously described41. Nodal involvement (FDR = 0.009), distal 
metastasis (FDR = 0.025), leukocytosis (FDR = 0.056) and patient age (FDR = 0.08) were 
all associated with reduced survival. The use of surgery and patient age strongly stratified 
ATC survival outcomes (Supplementary Figure 3A).  

We then considered the association of individual driver features with patient outcome, 
including patient age and treatment as covariates in time-to-event analyses. No genes 
with point mutations in ≥5% of ATCs were associated with overall survival (FDR > 0.1, 
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Supplementary Table 6). Although CNA subtypes A-E were not associated with overall 
survival (p = 0.6, Supplementary Figure 3B), tumors with fewer CNAs more often 
presented with distant metastases (Wilcoxon rank sum test: FDR = 0.034; median percent 
genome altered [PGA] for patients with and without distant metastases = 8.6% and 11.6% 
respectively). PGA was not associated with overall survival (median dichotomized; HR = 
0.93 [95%CI, 0.59-1.47], p = 0.77, adjusted for patient age and surgery), unlike in several 
other tumor types35,42,43. BRCA2 deletion was surprisingly associated with better survival 
(HR = 0.48 [95%CI, 0.29-0.80], p = 0.005; Supplementary Figure 3D), but no other 
recurrent CNA was (Supplementary Table 7). 

By contrast, CNA subtypes showed distinctive clinical hallmarks: subtype A was enriched 
for older patients with better overall survival, subtype B was depleted for patients with 
nodal involvement as well as moderate enrichment for patient death, subtype C was 
enriched for younger patients, subtype D was enriched for male patients with metastatic 
disease and subtype E showed no associations with clinical variables (Supplementary 

Figure 3E). Despite limited statistical power, patients with a lower mutation rate (>10 
SNVs/Mbp) had significantly better survival (HR = 0.51, [95%CI, 0.33-0.77], p = 0.002; 
Supplementary Figure 3F). Thus the mutational features and subtypes of ATC are 
associated with divergent clinical presentation and outcome. 

ATC and DTC evolve in parallel from a mutagenic field 
It has been suggested that a subset of ATCs evolve from pre-existing DTCs11-13,23,44,45. 
Given the strong association of ATC CNAs with clinical and molecular phenotypes, we 
first focused on copy number changes. We compared SNV and CNA profiles between 
PTCs, co-DTCs  and ATCs using both newly-profiled PTC samples from this study and 
the TCGA dataset25. The two recurrent arm-level events of PTC were 1q amplification 
and 22q deletion25, both of which occurred at similar frequencies in both ATCs (Figure 

1B, 1H) and the co-occurring DTC components of ATCs (Figure 1B, 3C). All recurrent 
focal CNAs in PTC were also detected in ATC, but several CNA drivers were significantly 
more frequent in ATC (Figure 3B). Loss of CDKN2A was recurrent in both co-occurring 
DTCs (Figure 3C) and ATC, but was rare in PTCs (~5%). BRCA2 was also frequently 
deleted in ATCs (33.6%), uncommon in DTCs (13.6%) and rare in PTCs (4.5%), as was 
RB1 which is on the same chromosome arm. Several other regions showed higher rates 
of copy number change in ATCs and co-occurring DTCs, including a broad region on 
chromosome 20q harboring 328 genes was preferentially amplified in ATC relative to both 
cohorts of PTCs (proportion-test, FDR < 0.01; Supplementary Table 8). This region 
harbors several cancer driver genes, for example ARFGEF2, CHD6 and GNAS, all 
ubiquitously expressed in thyroid tissue46.  

We next compared the somatic CNA (Figure 3C) and SNV profiles (Figure 3D) of DTCs 
co-occurring with ATCs. DTCs co-occurring with ATC showed a larger fraction of their 
genome affected by CNAs than isolated DTCs (Figure 3C). Similarly, Co-occurring DTCs 
harbored more SNVs than did isolated PTCs or other thyroid cancers arising in individuals 
without an ATC diagnosis: their overall mutation density was statistically indistinguishable 
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from ATC (4.4 ± 2.8 SNVs/Mbp). Similarly, To explore somatic driver SNVs, we merged 
the current study with six previous sequencing studies of ATC, PTC and HTC17,21,23,25,32,33 
(Supplementary Table 9). BRAF was the only gene more common in differentiated 
thyroid cancers: it was mutated in 50.9% of PTC, 50.0% of co-occurring DTC and 21.3% 
of ATCs (Table 1, Figure 3E). Indeed in matched co-occurring cases, half of all 
BRAFV600E variants were detected solely in the DTC component and not in the ATC 
component. By contrast multiple other drivers were preferentially mutated in ATCs and 
co-occurring DTC, including ATM, ATR, BRCA2, PIK3CA and TP53 (Figure 3E). As an 
example, TP53 mutation frequency varied from 0.9% of PTC to 21.4% of co-occurring 
DTC and 36.8% of ATC (Supplementary Table 9). We further compared variant allele 
frequencies (VAFs) for BRAFV600E and RAS mutations, as PTC exist as separate BRAF- 
or RAS-like subtypes25. BRAFV600E mutations exhibited elevated VAF in PTC relative to 
ATC, suggesting earlier, preferentially clonal, evolutionary timing. 

These patterns of driver mutations were also mirrored for mutational processes. The two 
prominent mutational signatures activity in PTCs were COSMIC signatures 2 and 13 
(AID/APOBEC activity) and 6 (MMR deficiency; Figure 3F, Supplementary Figure 5A). 
These were uncorrelated to patient sex or age (Student’s t-test, FDR > 0.1), and were 
detected in ATC. Of the co-occurring DTCs about half showed mutational signatures 
identical to their ATC counterparts and the remainder showed either higher activity of a 
specific signature, or a mix of multiple signatures. These data are consistent with a model 
where ATCs and DTCs evolve from a common precursor, and that specific mutations 
within that common precursor increase the risk of ATC evolving. This has been proposed 
previously, based on limited panel-sequencing, but never confirmed with genome-wide 
systematic subclonal reconstruction. We therefore performed high-depth whole-genome 
sequencing of paired ATC and co-occurring DTC and used this multi-region data to infer 
the clonal hierarchy and mutation timing for each patient using a validated subclonal 
reconstruction pipeline47,48 for both SNVs (Figure 3D, Supplementary Figure 6B; 
Supplementary Table 10) and subclonal CNA status (Figure 3E; Supplementary Table 

11), and validated with high-coverage (>500x) targeted and whole-exome sequencing 
(Supplementary Figure 6D). 

As anticipated, each tumor exhibited a distinctive evolutionary history, but every single 
case shares two features. First, in every single case, co-DTC and co-occurring ATC 
shared a common clonal origin, with a common ancestor splitting to form separate 
lineages with significant subclonal diversification (Figure 3G-P). This split of the ATC and 
DTC lineages typically emerged early in tumor evolution: the common ancestor harboured 
~95% of CNAs (Table 2), but only 19.1 ± 7.9% of SNVs. Regions of co-occurring DTC 
were not restricted to a specific CNA subtype, and showed no consistent trends in PGA, 
total number of CNAs or other characteristics (Figure 3F), consistent with a lack of clonal 
interactions. 

In most cases the spatially separated ATC component contained no DTC clones, as in 
ATCWGS37 (Figure 3H) and ATCWGS34 (Figure 3C) where in each case the rapidly-
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growing ATC exhibits only a single subclone, defined as those with a CCF of less than 
80%, at our limits of detection. In several cases, we were able to clearly identify a 
mutagenic field, for example in ATCWGS34 (Figure 3C) and ATCWGS33 (Figure 3J). 
In these cases infiltrating stroma harbored common mutations in both ATC and co-
occurring DTC, providing clear evidence for a prior mutagenic field from which both tumor 
components emerge. ATCWGS33 also provides a remarkable example of the complexity 
of the subclonal interactions between the two tumor components. The tumor diverges 
from a common field into two branches (subclones 2 & 3, Figure 3J). Both the 
differentiated and anaplastic tumor regions contain clones from both branches of these 
tumors, but with significant differential evolution: compare subclone 3 (found in DTC at 
low frequency) to subclone 6 (found in ATC at high frequency). 

While several mutations show biases in evolutionary timing (Supplementary Figure 6B), 
with BRAF SNVs notably occurring in a clonal or early subclonal population. We 
compared primary to metastatic ATC for ANPT0021 (Supplementary Figure 6B , bottom 
left panel): the primary ATC exhibits a clonal or high-prevalence subclonal BRAF mutation 
(y-axis) while its cervical metastasis has nearly undetectable levels of this variant 
suggesting either allelic loss or that the metastasis derived from a low-frequency subclone 
in the primary tumor. Thus, BRAF variants are frequent in both PTCs and co-occurring 
DTCs, and rare in ATCs. Taken togerhter, these data are consistent with a model where 
ATCs and DTCs emerge from a common mutagenic field effect. More studies will be 
needed to validate these findings in tumors from other ATC patients. 
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Discussion 
The vast majority (>90%) of thyroid cancers are well-differentiated papillary and follicular 
types with extremely favorable prognoses (>90% survival at 10 years)49-52. Yet ATC is 
rare, and one of the most lethal human malignancies: it is intriguing that the same organ 
harbors both the most aggressive and some of the most indolent, manageable tumors. 
The genomic landscape of PTC has been reported to have a low mutational burden25, 
with either single activating oncogene mutations (BRAF or RAS family genes) or receptor 
tyrosine kinase gene fusions25. The genomic landscape of Hurtle cell carcinoma is 
similarly quiet, with a small number of chromosome duplications (particularly 
chromosome 7) and uniparental disomy, and few recurrent point mutations32,33. In 
contrast, the genomic landscape of ATC is complex, with significant inter-patient 
heterogeneity; individual tumors carry mutations in multiple oncogenes and tumor 
suppressors, and an overall elevated rate of copy number changes. 

ATC frequently occurs in patients with a previous history of DTC or contains co-existing 
areas of DTC11-13, leading to speculation that some ATC evolves via dedifferentiation from 
DTC. However, prior evidence has been limited to analysis of a small number of genes, 
particularly BRAF44,45. WXS and CNA profiling of the DTC and ATC components from 21 
tumors, combined with WGS profiling of paired ATC and co-occurring DTC components 
from 9 tumors, conclusively demonstrated that both components share a common genetic 
origin. High-coverage validation of a subset of cases showed that many ATC driver 
mutations are subclonal, and exclusive to the ATC component. Multiple somatic SNVs 
and CNAs are more frequently altered in ATC than DTC, and a subset of these are likely 
critical drivers of thyroid cancer progression. Functional studies are necessary to 
determine which mutations lead to the dedifferentiation and increased aggression of well-
differentiated thyroid cancer models. 

Our subclonal reconstruction analysis suggests that ATCs evolve from a DTC subclone, 
after accumulation of mostly DNA double-stranded breaks (CNAs). This clone then 
acquires characteristic additional oncogenic drivers and the majority of its single-stranded 
breaks (SNVs). The original DTC clone and other subclones in the mutagenic field can 
continue to exist within ATC as infiltrating stroma, and only the ATC clone harbors 
metastatic potential. These data suggest a model where both ATC and DTC arise from a 
non-malignant mutational field effect, where a set of cells accumulate some SNVs and 
many CNAs through some combination of environmentally-driven and replication-
associated mutational processes. Some of these cells then accumulate the characteristic 
somatic mutations of DTCs and give rise to curable tumors. A different subset 
accumulates further specific driver mutations, and eventually subclonal driver point-
mutations in genes like TP53. This model suggests that their evolutionary trajectories may 
lead to the differential aggressiveness of these related tumor types and the expansive 
subclonal architecture of ATC. ATC would then emerge from precursors within its co-
occurring DTCs by significantly increasing genomic diversity and evolve further as it 
colonizes new metastatic sites. It is unclear if this model also holds for ATCs not arising 
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in the context of DTCs – WGS of non-malignant thyroid and multi-region ATC specimens 
will be required to address this question.  

Development of the 15 institution Global Anaplastic Thyroid Cancer Initiative (GATCI) 
was critical to facilitate the characterization of this large number of ATC samples, 
pathologic review by world experts, and a platform for future collaborative studies. 
However, there are limitations to this first work, including the depth of sequencing, which 
may have resulted in lower mutation rates than reported in other studies17,19,21,23,53, such 
as the heterogeneity in platforms used, incomplete clinical data for all patients, and the 
fact that most samples were collected prior to widespread use of targeted therapy, which 
may have affected survival outcomes. We are directly addressing these issues in future 
projects. Despite this, our multi-omic platform study defined the driver landscape and 
disease subtypes, and identified a long tail of single nucleotide alterations and recurrent 
copy number variations, and frequent activation of AID/APOBEC mutational process. 
Furthermore, we delineated the evolutionary relationship between ATC and differentiated 
thyroid cancers and provided genomic evidence that these two cancer types share a 
clonal origin. Taken together, our data not only provides a major resource to the thyroid 
cancer research community, but has led to ongoing work evaluating the functional 
importance of the novel genes and mutational process that we have identified.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 12, 2023. ; https://doi.org/10.1101/2023.04.10.23288365doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.10.23288365


Page 13 of 32 
 

Methods 
Sample collection and handling 
Research Ethics Board approval was obtained at all site locations. Tumors from patients 
previously diagnosed as ATC were reviewed by at least one study pathologist at each 
site. Samples meeting the American Thyroid Association diagnostic criteria for anaplastic 
thyroid cancer9 were selected for study including both fresh frozen and formalin fixed 
paraffin embedded (FFPE) samples (Supplementary Table 1). All WXS tumors were 
from fresh frozen samples or FFPE while matched normal subjected to WXS were from 
FFPE. All tumor samples subjected to WGS were from FFPE while and matched normal 
were from blood tissue. Well-differentiated and/or poorly differentiated components were 
macro-dissected when present separately from the undifferentiated ATC components 
using 1 mm punches. Fresh tumor was prospectively collected at four institutions with 
matched blood collected in the majority of cases. DNA was extracted using Qiagen kits. 
Where available, samples were subject to centralized pathology review to estimate tumor 
purity and confirm diagnoses. PTC samples (n = 115 from 112 patients, Supplementary 

Table 1) were selected from the tissue bank at MD Anderson Cancer Center based on 
age and tumor status (organ confined, regional involvement, or regional and distant 
metastasis). DNA was isolated and processed as described previously54,55. 

Detection of Copy Number Aberrations 
Affymetrix OncoScan FFPE assays were used to evaluate a total of 157 samples 
(including 99 ATCs, 24 samples from co-occurring well (20) or poorly (4) differentiated 
regions, 1 co-occurring cervical ATC metastasis, 20 normal thyroid samples and 13 ATC-
derived cell lines) for somatic copy number aberrations (CNAs). Analysis was performed 
using .OSCHP files generated by OncoScan Console 1.1 using either build 33 of the 
NetAffx annotation (FFPE samples) or a custom reference consisting of 119 normal blood 
samples from male patients with prostate cancer, 2 normal blood samples from females 
with anaplastic thyroid cancer and 10 female HapMap cell line samples (fresh frozen 
samples and cell lines). BioDiscovery’s Nexus Express Software was used to call copy 
number aberrations using the SNP-FASST2 algorithm with default parameters, with 
manual re-centering performed as required. Nine samples (six normal tissues, one ATC 
and two well-differentiated tumor components) were removed due to poor quality and the 
remaining data evaluated for recurrence. Cellularity and ploidy of tumor samples was 
assessed using ASCAT (v2.5) package in R. LRR and BAF values were obtained from 
the .OSCHP files. Tumor ploidy and aberrant cell fraction estimates for each sample were 
obtained using either predicted germline SNPs or by leveraging matched normal arrays 
where available. 

PTC samples (113 tumors), along with an additional 13 ATCs, were processed using 
Illumina Human Omni2.5-8 or OmniExpress12v1-1 beadchips, as described 
previously54,55. Briefly, DNA was denatured, amplified, enzymatically fragmented and 
hybridized for 16-24 hours at 48°C. Beadchips were imaged using the Illumina iScan 
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system. For improved CNV analysis, B allele frequencies (BAF) were calculated and log2 
R ratios (LRR) were extracted after re-clustering the raw data using GenomeStudio 
cluster algorithms. BAF and LRR were then loaded into Nexus to identify somatic DNA 
copy number aberrations. UCSC’s command-line liftover tool (v359) was used to transfer 
resulting CNAs to GRCh38 coordinates. 

CNAs from both platforms were combined, and UCSC’s command-line liftOver tool (v359) 
was used to convert segment positions to hg38 coordinates (using the hg19-to-hg38 
chain file downloaded from UCSC). Gene level copy number aberrations for each patient 
were identified by overlapping CN segments with Ensembl annotation (Ensembl release 
84). Percentage of genome altered (PGA) was calculated for each sample by dividing the 
number of base-pairs involved in a copy number change by the total length of the genome. 
GISTIC2.0 (v2.0.22)56 was used to study the recurrence of gene level CNAs. For each 
sample, a profile was created that segmented each chromosome into regions with neutral, 
CN loss, and CN gain events. The average copy number intensity for each segment was 
obtained from the SNP array analysis. Chromosome-level events were defined as a gain 
or loss of 25% of the chromosome for each sample. 

Subtype discovery was performed on CNA calls for 110 ATCs using consensus clustering 
to determine the optimal number of clusters and class membership for each sample by 
stability evidence. Specifically, the ConsensusClusterPlus.custom (v1.8.1) package for R 
was used to evaluate a wide variety of clustering methods for distributing samples into k 
clusters (where k is every value from 2 to 10) using 1000 sub-samplings of 80% of the 
cohort. The method which produced the most stable groups used hierarchical clustering 
using a Euclidean distance similarity metric with modified Ward’s minimum variance 
method (ward.D) and 5 clusters. 

Data visualization was performed in the R statistical environment (≥ v3.2.3). Venn 
diagrams were created using the VennDiagram package (v1.6.17) and all other data 
visualizations were generated using the BPG (v5.8.8), lattice (v0.20-35) and latticeExtra 
(v0.6-28) packages. 

DNA Whole-Exome Sequencing (WXS) 
Tumor samples (and matched normal tissue where available) from 139 patients (including 
139 ATCs with 20 co-occurring regions of well or poorly differentiated tissue, 1 cervical 
ATC metastasis) and 13 ATC-derived cell lines (total = 173 tumors) obtained from eight 
centres were sequenced at one of six sequencing facilities (Supplementary Table 1). 
Raw FASTQ files were provided for a subset of samples while the remainder were 
provided in BAM format. In the latter case, read extraction was performed using the 
SamToFastq component of Picard tools (v1.121) to produce FASTQ files. Data were 
aligned to the GRCh38 human reference genome, including available ALT and decoy 
alleles using BWA-mem (v0.7.15)58. The reference files were downloaded from NCBI 
(GCA_000001405.15; release date 2013/12/17). Duplicate reads were marked using 
Picard tools (v1.121). As the exome capture kit regions were provided in hg19 
coordinates, USCS’s web-based liftover tool (https://genome.ucsc.edu/cgi-bin/hgliftover) 
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was used to convert regions to GRCh38 positions. The Genome Analysis Toolkit (GATK 
v3.5.0)59 was used for local realignment and base quality recalibration, with regions 
limited to those targeted by the applicable exome capture kit (Supplementary Table 1). 
As hg38 has not yet been widely adopted, a beta-version of the hg38bundle containing 
known variants was downloaded from the Broad 
(ftp://ftp.broadinstitute.org/bundle/hg38/hg38bundle/). 

GATK’s HaplotypeCaller (v3.5.0) was used to identify germline SNPs and indels using 
default parameters, however with --output_mode EMIT_VARIANTS_ONLY --
emitRefConfidence GVCF --standard_min_confidence_threshold_for_calling 50. 
GenotypeGVCFs and SelectVariants tools were used to format variant calls, followed by 
VariantFiltration with the following criteria: (QD < 10.0 || FS > 60.0 || MQ < 40.0 || DP < 
50 || SOR > 4.0 || ReadPosRankSum < -8.0 || MQRankSum < -12.5), (MQ0 >= 4 && 
((MQ0 / (1.0 * DP)) > 0.1). Variants were annotated using SnpEff (v4.3)60 and filtered to 
keep any position with coverage in the 1000 genome project that had a population allele 
frequency <1%. These were then filtered to keep variants in clinVar and to remove 
synonymous variants. Finally, for patients with multiple tumor components, germline 
variants present in a single component were labelled false positives and removed. 
Remaining variants were searched against a list of relevant cancer predisposition genes29 
and checked for recurrence. 

Coverage was estimated across target regions using BEDTools (v2.18.2) 
(Supplementary Figure 2a). For tumor/normal pairs, ContEst (v1.0.24530)61 was used 
to estimate cross-sample contamination, using the above generated germline SNPs. As 
the necessary population allele frequencies were not yet available using GRCh38 
coordinates, allele frequencies were obtained from HapMap (hg19) and added to the 
GRCh38 HapMap file, with variants matched across builds using rsID. Seven samples 
demonstrated contamination >3% and were removed from downstream analysis 
(Supplementary Figure 2b). 

For samples with matched normal tissue, somatic SNVs were predicted using 
SomaticSniper (v1.0.5.0)62, as described previously6. A panel of normals (PoN) consisting 
of the 83 normal thyroid samples was generated using MuTect’s (v1.1.7) artifact detection 
mode; variants detected in two or more normal samples were included in the PoN. For 
unmatched samples, SNVs were identified using MuTect (v1.1.7)63 with PoN, with dbSNP 
(build 150) and COSMIC (v74) filters; COMSIC variants present in five or more samples 
within the PON were discarded. To combine samples processed at different sequencing 
facilities, predicted somatic variants were filtered to regions appearing in all exome 
capture kits used (Supplementary Table 1). Overlapping regions across kits were 
identified using bedtools:multiIntersectBed (v2.24.0), resulting in coverage of roughly 26 
Mbp. Recurrence analysis was performed using RecSNV (v2.1.5). Briefly, all variants 
were annotated using Annovar (v2016Feb01) with comprehensive filtering performed to 
remove known germline variants using previously described datasets6; any variant 
present in COSMIC (v82) was retained, regardless of presence in other datasets. 
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Significance of recurrent non-synonymous mutations was assessed using SeqSig 
(v3.7.8)6, using a required mutation threshold of 6 samples across the cohort per gene, 
individual sample weights of -log10(x) + log10(1-x) [where x is the background mutation 
rate per sample], with p-values calculated using the exact distribution, followed by FDR 
correction for multiple testing. Genes containing variants in multiple samples were carried 
forward. Genes harbouring recurrent SNVs were visualized using lollipop plots 
(Supplementary Figure 3). For each gene, protein domain information was obtained 
from NCBI and pfam (2018-02-07), showing the most well conserved domains where 
feasible. 

PTC samples (115 tumors with matched normal and 1 metastatic lymph node) were 
processed separately, as described previously54,55. Briefly, DNA was prepared and 
processed for WXS at the Human Genome Sequencing Center (HGSC) in Baylor College 
of Medicine (BCM). Reads were aligned to GRCh37 by BWA58, duplicate reads were 
marked by Picard tools and BAMs realigned/recalibrated by GATK59. Somatic SNVs were 
identified using Atlas-SNP; filtering was applied to ensure variants had a minimum of 4 
high-quality support reads and a minimum VAF of 0.08. For comparison to the above ATC 
cohort, the resulting SNVs were transferred to GRCh38 coordinates using UCSC’s 
command-line liftOver tool (v359). 

Deep Targeted IonTorrent Sequencing 
A total of 1,140 variants were selected for validation based on recurrence within the initial 
dataset of 30 ATCs. Primer design generated an AmpliSeq-custom panel for 1125 of 
these variants (995 target regions). A subset of samples was used for targeted validation 
by IonTorrent sequencing including 30 ATCs (13 with matched normal, 3 with matched 
co-occurring DTCs and 1 cervical ATC metastatic tumor), 13 ATC-derived cell lines and 
an additional 7 ATCs without WXS data. DNA for each sample was shipped to GeneDX 
for sequencing. Raw FASTQ files were provided and reads were aligned to GRCh38, as 
described above however without marking of duplicate reads. Targeted sequences were 
converted from hg19 to GRCh38 coordinates using liftOver (UCSC). Read lengths were 
extracted from FASTQ files and visualized against target region length (Supplementary 

Figure 2c). Coverage was estimated across target regions using BEDTools64 (v2.18.2) 
(Supplementary Figure 2d). 

Base counts at target positions were assessed and used to calculate variant allele 
frequencies (Supplementary Figure 2e). Validation was performed as described 
previously65. Briefly, variant positions were used, along with either the GATK-processed 
WXS BAMs or the IonTorrent BAMs to generate a modified pileup file indicating the base 
counts at each SNV position. For T/N pairs, metrics including a χ2 test of the base-count 
distribution between tumor and normal at each position followed by Bonferroni adjustment 
of the p-values (padj < 0.25; Supplementary Figure 2f left panel), Euclidean distance 
between variant allele frequencies (> 0.15; Supplementary Figure 2f right panel), z-
score of the sample coverage across target positions (< 2 standard deviations from the 
mean for tumor and normal separately), and ternary allele proportion for normal samples 
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to quantify potential false positive variants (< 0.05) were used to classify variants as 
somatic or non-somatic. For tumor only samples, similar metrics were used, however 
comparing Deep IonTorrent  and WXS values to classify read-counts as similar or 
different between the platforms. Accuracy, sensitivity and specificity were assessed for 
each sample (Supplementary Figure 2g). Variants identified as false-positives using this 
method were excluded from WXS analyses. 

DNA Whole-Genome Sequencing (WGS) 
Whole-genome sequencing (WGS) was performed on nine ATCs, each with paired co-
occurring DTCs and matched normal. Genomic DNA was isolated from FFPE samples 
and sequenced at The Center for Applied Genomics (Hospital for Sick Children, Toronto, 
ON). FASTQ files were downloaded and processed using the methods described above. 
Somatic SNVs were identified using SomaticSniper (v1.0.5.0)62, as described above and 
SCNAs were identified using MutationSeq (v4.3.7) and TITAN (v1.20.1)66, followed by 
multi-sample subclonal reconstruction using PhyloWGS (v1.5)67. Clonal mutations are 
defined as mutations that are present in all tumour cells (CCF >= 0.8) of a tumour sample 
or biopsy. A subclones is defined as those that is a descendent of the most recent 
common ancestor of the tumour sample and with CCF < 0.8 in at least one tumour region.  

Validation of TERT promoter mutations by PCR 
To determine the mutational status of the TERT promoter, we used a nested PCR strategy 
with our FFPE patient samples. Genomic DNA in this region is 78% GC rich and it was 
necessary to use PCR additives to amplify the region. The primers were designed and 
tested in silico using PRIMER3 software. The first round PCR was performed with primers 
hTERTF x hTERTR under the following conditions: initial denaturation at 98ºC for 30 
seconds followed by 36 rounds of 98ºC denaturation for 10 s and combined annealing 
and extension at 72ºC for 25 sec. We employed the Q5 high fidelity DNA polymerase 
(New England Biolabs; NEB) and the supplied 5x PCR buffer and GC enhancer (NEB) to 
amplify a 473 bp region. The second round of PCR was initiated with 0.2 ul template taken 
directly from the first round using primers TERT5 F x TERT5 R again with the addition of 
the GC enhancer and the same conditions increased to 40 cycles. PCR reactions were 
run on a 2% TBE agarose gel and the expected 192 bp product was excised and gel 
purified using a Monarch Gel Extraction Kit (NEB) following the product protocol. The 
purified fragments were Sanger sequenced at the London Regional Genomics Facility 
with betaine (1M) added to the reaction. Chromatograms were aligned and compared 
against the TERT sequence. 

RNA Sequencing 
Total RNA was isolated from 13 ATC cell lines and 8 tumor samples using Qiagen AllPrep 
DNA/RNA kits and shipped to The Center for Applied Genomics (Hospital for Sick 
Children, Toronto, ON) for sample processing using random primers and sequenced 
using the manufacturer’s protocols. Specifically, sequences were generated using paired-
end, strand-specific methods. Data were provided in BAM format; FASTQ files were re-
generated using picard (v1.141) CleanSam and samtools (v1.4) fastq functions. A second 
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set of 16 patient tumors were processed as described previously55. Briefly, frozen tissue 
was thawed in RNAlater™-ICE Frozen Tissue Transition Solution (ThermoFisher 
Scientific) to enable easy extraction of high-quality RNA. Total RNA was prepared using 
TRIzol reagent (Life Technologies) according to the manufacturer’s instructions. Poly-A+ 
Illumina RNA-Seq libraries were prepared and paired-end sequencing performed using 
the Illumina HiSeq 2000 and HiSeq 2500 platforms at the HGSC (Baylor College of 
Medicine, Houston, TX). 

For mRNA abundance, top, level DNA sequences and gene annotations (GTF) were 
downloaded from ensemble.org (release 88) and used to generate reference files needed 
for RSEM (v1.3.0)68, using the STAR (v2.3.3a)69 alignment tool; transcripts per million 
(TPM) values are available in Supplementary Table 2. Fusion detection was performed 
using fusioncatcher (v0.99.7c)38. Detected fusions are shown in Supplementary Table 

5; these were compared against the COSMIC fusion database (2019-12-13). 

Statistical Analysis 
Non-negative matrix factorization (NMF) was used to assess the contribution of various 
trinucleotide signatures within our ATC and PTC cohorts separately. NMF was performed 
in R (v3.4.1) using the NMF package (v0.20.6) using counts of abnormal trinucleotides 
from undifferentiated tumors. Rank estimation metrics, combined with visual inspection 
of consensus clustering maps, suggested the presence of five trinucleotide signatures for 
ATC, and two for PTC. Signatures were mapped to previously described trinucleotide 
signatures from COSMIC (downloaded from COSMIC on 2017-12-08) using the 
consensus of Euclidean distance, Pearson’s or Spearman’s correlation, followed by the 
Hungarian method for linear sum assignment70 using the clue (v0.3-54) package for R. 
Spearman’s correlation did not identify any associations between these 5 signatures and 
clinical covariates or CNA clusters. 

Gene-wise mutation frequencies from the current dataset were compared to previous 
studies of thyroid cancer, including a set of 22 ATCs by WXS published by Kunstman et 

al.15, 84 PDTCs and 33 ATCs by targeted-sequencing published by Landa et al.17, 182 
PDTCs (including PTC, FTC and HTC) and 134 ATCs by targeted-sequencing published 
by Pozdeyev et al.21, 27 ATCs and 15 PDTCs from Yoo et al.23, 2 independent studies of 
32 and 56 HTCs respectively by WXS published by Gopal et al. and Ganly et al. and 496 
PTCs from TCGA (MAF downloaded from GDC on 2017-11-02)25 (Supplementary Table 

9). Where sufficient annotation was available, samples from each study were filtered to 
remove metastatic or other non-primary thyroid tumors. Variants from the TCGA PTC 
cohort were filtered to keep only those with predicted functional relevance with an 
additional coverage threshold applied to the MAF (minimum 10 reads in both tumor and 
matched normal). SNV data were collapsed to gene-level and proportion tests used to 
evaluate differences between studies (ATC or co-occurring DTC (GATCI) vs. TCGA 
PTC), followed by FDR adjustment for multiple testing. 

Similar comparisons were made for CNAs, again using TCGA PTC data (masked copy 
number segment data downloaded from GDC on 2018-01-29). TCGA data were 
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converted to ternary CN values and annotated with overlapping genes to produce a gene 
by sample matrix (primary tumor samples only). Proportion tests were again used to 
assess differences in population frequencies for each gains/losses separately, with FDR-
adjustment (Supplementary Table 11). 

Well or poorly-differentiated co-occurring tumor components were obtained from 24 
patients and a single patient provided both an ATC and metastatic tumor obtained from 
the cervical region. For CNA analysis, data were available for 20 co-occurring DTC tumor 
components as well as ATC. Hypergeometric tests were used to evaluate the CNA 
overlap across regions within each patient [P(actual overlap ≥ expected overlap)] 
(Supplementary Table 11). Similar analyses were performed for SNV overlap (16 
patients with multiple components; Supplementary Table 10). 

Clinical variables were assessed for associations with each other using χ2 independence 
tests to assess co-linearity, and with overall survival to identify which should be used as 
covariates in downstream models. Age, nodal metastases and treatment methods 
(surgery, radiotherapy and chemotherapy) were all individually associated with survival 
(FDR < 0.1). Treatment methods showed considerable overlap, as did nodal and distant 
metastases (FDR < 0.1). Therefore covariates including age, nodal metastases and 
surgery were used for survival analyses. Overall survival was evaluated using either CNA 
or SNV features. For copy number status, of 961 genes identified by GISTIC, 723 were 
CN altered in 10% of the cohort with available survival data (n = 83) and were collapsed 
to 187 genomic regions. Regions were collapsed to binary status where reasonable, such 
that the CN type with 4 or fewer cases was merged with neutral. Further, CN status of 
known driver genes, with a minimum recurrence of 10 samples, were also tested (n = 
108). Associations with survival were evaluated using either log-rank (for ternary CN 
status) or Cox proportional hazards regression model with linear adjustments for 
covariates described above (binary CN status). Binary cases which failed the 
assumptions for the Cox model were repeated using log-rank tests. FDR-adjustment of 
the p-values was applied for multiple testing correction (Supplementary Table 7). For 
point mutations, 101 patients had available survival data. Feature reduction was 
performed to remove low frequency variants (≥ 5 patients); this reduced the feature set 
from 14,543 genes to 514 recurrently altered genes. Associations with survival were using 
a Cox proportional hazards regression model with linear adjustments using covariates 
described above, or log-rank test where the Cox model failed its assumptions. FDR-
adjustment of the p-values was applied for multiple testing correction (Supplementary 

Table 6). 

In addition to gene-wise features, clinical and survival associations were also evaluated 
using PGA or SNVs/Mbp. Associations with clinical variables were performed using 
Wilcoxon rank sum tests. For survival analyses, PGA and SNVs/Mbp were median 
dichotomized and a Cox proportional hazards regression model with linear adjustments 
using covariates described above was performed. For SNV mutational density, only data 
from samples with a matched normal were used. 
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Finally, mutational features were combined and examined for overlaps. Specifically, 
pairwise comparisons were made between all combinations of CNA features (key GISTIC 
genes, numbers of CNAs/gains/losses, average CNA length, PGA and CNA subtypes) 
and SNV features (top recurrently mutated genes, SNVs/Mbp and trinucleotide signatures 
using either a χ2 test, Spearman’s correlation or non-parametric Wilcox or Kruskal-Wallis 
rank sum test with FDR adjustment of the p-values. Similar comparisons were made 
between RNA abundance (TPM) and CNA/SNV/fusion status using Wilcox rank sum 
tests. 

Data availability 
All ATC WXS, WGS and SNP array data is available in EGA under accession 
EGAS00001002234. 
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Figure Legends 
Figure 1: Somatic Mutational Landscape of Anaplastic Thyroid Cancer 
A)  Anaplastic thyroid cancers (ATCs) vary significantly in in mutation density (single 
nucleotide variants [SNVs] per million bp [Mbp] of DNA covered). B) Copy number 
aberrations (CNAs) across ATC; consensus clustering was used to identify the optimal 
method and designation for sample groupings. Each row represents the CNA profile for 
a single undifferentiated tumor along the genome (chromosome 1 on the left to 
chromosome Y on the right), ordered by percent genome altered (PGA) within each 
subtype. Metrics of mutation density for ATC, co-occurring DTC and pappilary thyroid 
cancer (PTC) were compared with 32 additional tumor types available in the PCAWG 
(Pan-Cancer Analysis of Whole Genomes) dataset: C) SNVs/Mbp and D) total PGA. Light 
purple indicates the PCAWG thyroid carcinoma cohort (primarily PTC) and similar GATCI 
PTC cohort; co-occurring DTC samples are shown in medium purple while ATC are in 
dark purple; for SNVs/Mbp, x’s indicate samples without a matched normal – these 
typically have higher than average rates. PGA for the GATCI PTC samples is similar to 
that of the PCAWG thyroid carcinoma cohort. Blue points for SNVs/Mbp indicate results 
from WGS cohort. ATC shows higher PGA than either co-occurring DTC or PTC, and a 
lower rate of point mutations than co-occurring DTC.  

Figure 2: Genomic Features of ATC and Their Associations with Clinical 
Features 
A) NMF identified five trinucleotide signatures within ATC (n = 132 tumors), four of which 
matched known COSMIC signatures and one novel signature. Within each signature, the 
percent of mutations within the cohort presenting each base change (broken down by 
trinucleotide context); B) for each patient, the proportion of SNVs that contribute to each 
signature. There are no associations between these signatures and covariates shown 
(Spearman’s correlation p-value < 0.1). C) Average CNA profiles and D) distribution of 
PGA for samples from each ATC subtype, co-occurring DTC and PTC, showing a 
significant difference between groups (one-way ANOVA, p < 0.01). E) GISTIC was used 
to identify recurrent CNAs within ATC. F) Pearson’s χ2, Spearman’s correlation, Wilcox 
or Kruskal-Wallis tests were used to assess overlap across genomic features in ATC 
(recurrently altered genes by SNV or CNAs, SNVs/Mbp, PGA, trinucleotide signatures, 
CNA metrics); shading indicates FDR-adjusted p-value. 

 

Figure 3: ATC and co-occuring DTC Share Clonal Origins, But With Distinct 
Driver Events 
 A) GISTIC was used to identify recurrent CNAs within co-occurring DTC. Copy number 
losses of CDKN2A were more frequent in ATC than co-occurring well/poorly differentiated 
samples (DTC). B) GISTIC was used to identify recurrent CNAs within co-occurring DTC. 
Copy number losses of CDKN2A were more frequent in ATC than co-occurring 
well/poorly differentiated samples (DTC). C) Twenty-one patients had CNA profiles 
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generated through copy-number arrays for multiple tumor regions. Each plot shows the 
genomic CNA profiles for a single patient, with different tumor regions as rows. Covariates 
on the right indicate ATC subtype (where available), tumor type (ATC, co-occurring 
differentiated thyroid cancer [DTC] or metastasis), patient sex, patient age at diagnosis 
and BRAF V600E status. D) 30 patients had WXS or WGS in multiple regions. Each 
subplot show the mutational profile of the most frequently mutated genes in the paired 
samples. E) Gene-wise mutation frequencies were contrasted between datasets (GATCI-
ATC, GATCI-DTC, GATCI-PTC, and TCGA-PTC) to identify candidate drivers of tumor 
progression. Genes with a statistically significant difference (proportion-test) between 
ATC and TCGA-PTC were selected and further filtered to show only known driver genes. 
False discovery rate (FDR)-adjusted p-values from proportion-tests across the three 
tumor types (PTC (combined), co-occurring DTC, ATC) are shown. Results for pairwise 
comparisons are available in Supplementary Table 3. F) Landscape of Copy number 
aberrations (CNAs) determined by whole genome sequencing (WGS) for patients with 
both ATC and paired co-occurring DTC, along with matched normal tissue; CNAs are 
colour-coded as to their origin (trunk, branch or unclear). G) Key for interpreting plots H)-
P). Left panel: changes in percent genome altered (PGA) are shown by blue lines and 
corresponds to the left axis while accumulation of SNVs is shown by gold lines and 
corresponds to the right axis. Right panel: representation of the total cancer cell fraction 
(CCF) for each distinct subclone for either the ATC (top) or co-occuring DTC (bottom) 
component. H-P) Subclonal reconstruction of the nine patients profiled using WGS, 
Interestingly,  ATCWGS-33 J) showed outgrowth of two distinct co-mixed lineages from 
a mutagenic field. 

Supplementary Figures 
Supplementary Figure 1: Sample summary 
A) Breakdown of samples processed by copy number aberrations (CNA) arrays, whole 
exome sequencing (WXS), deep targeted IonTorrent sequencing, RNA sequencing, 
WGS, before and after removal of poor quality or contaminated samples. A subset of 
tumors provided both an undifferentiated (ATC) and co-occurring differentiated 
component, metastatic (Met) tumor or matched reference sample. B) Breakdown of 
tumors with multiple components: of the 34 co-occurring DTC components available, 30 
were processed alongside a paired ATC region (numbers in brackets indicate remaining 
pairs after QC); one case of both a well-differentiated and poorly differentiated tumor 
component (no ATC); one case of co-occurring DTC alone; one case of ATC processed 
by WXS only, with paired co-occurring DTC processed by OncoScan only. C) Four 
patients with PTC had multi-regional interrogation: in three cases, two regions of the 
primary, and in the fourth the primary tumor and a lymph node metastasis were analyzed. 

Supplementary Figure 2: WXS quality metrics and IonTorrent validation 
A) Percent of target bases from the WXS used that demonstrated 50x (tumor) or 30x 
(normal) coverage. B) ContEst was used to assess cross-sample contamination (T/N 
pairs only); both sample-level (top) and lane-level (bottom) estimates were obtained 
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where possible. Samples with a contamination estimate >3% were excluded from 
downstream analyses (n = 7 samples removed). In both cases, samples are ordered from 
highest to lowest (based on the ATC component), with additional components to the 
immediate right of these for each patient. For example, in B) ANPT0165P has low 
contamination such that it near the middle, while a poorly-differentiated component from 
the same patient (ANPT0165PI, immediately to the right of ANPT0165P) demonstrated 
high contamination by ContEst and was removed from downstream analyses. C) 
Distribution of read length (grey) for each sample or target region length (orange). D) 
Percent of target bases from the AmpliSeq-custom capture design used for IonTorrent 
sequencing that demonstrated 100x (tumor) or 80x (normal) coverage. E) Comparison of 
variant allele frequencies (VAF) obtained from WXS and IonTorrent targeted sequencing 
validation for each sample. F) AUC for classification of each variant position as 
somatic/non-somatic using p-value from a Pearson’s χ2 test comparing the base counts 
between tumor and normal or IonTorrent targeted sequencing and WXS (tumor only) (left) 
or Euclidean distance (right). G) Validation metrics: (top) proportion of variants called as 
somatic in WXS that were successfully validated (total numbers appear above each bar); 
(bottom) accuracy, sensitivity and specificity for each sample; x-axis label colours indicate 
T/N (green) or T only (purple). 

Supplementary Figure 3: SNV Distribution in recurrently mutated genes 
A) The position and recurrence of point mutations across the ATC cohort within 
recurrently mutated genes. Individual non-synonymous variants found in 3 or more patient 
tumors are labelled with the predicted amino acid change. B) Non-synonymous variants 
in TP53 were associated with significantly elevated mRNA abundance by RNA-Seq 
(Wilcoxon rank sum test, p = 0.0067). 

Supplementary Figure 4: Landscape of Somatic Mutations in ATC 
A) Point mutations in EIF1AX tend to co-occur with RAS mutations, as do those in BRAF 
and PIK3CA. By contrast, somatic SNVs in BRAF and RAS genes were mutually 
exclusive. Distribution of B) total number of copy number aberrations (CNAs), C) number 
of gains, D) aberrant cell fraction (purity), E) number of losses, F) estimated ploidy, or G) 
average CNA length for patients within each subtype; p-values from one-way ANOVAs. 
H) ATC samples evaluated on CNA arrays to generate a number of metrics for each 
patient, including CNA count (gains/losses), percent genome altered (PGA), ploidy and 
purity estimates. Samples are ordered by PGA within each subtype. RNA-sequencing of 
primary ATC tumors was used to evaluate mRNA abundance of genes identified by 
GISTIC as being significantly affected by copy number deletions. Wilcoxon rank sum tests 
were used to contrast mRNA abundance (TPM) between tumors with a CN deletion to 
those with neutral/gain, followed by FDR adjustment of the p-values. Three genes were 
found to have significantly different mRNA abundance between groups: I) MYCBP2 (in 
Figure 1J part of GISTIC segment labeled KLF5), J) SPATA13 (part of the BRCA2 
segment) and K) OMG (part of GISTIC segment labeled NF1). L) One-way ANOVAs were 
used to assess the relationship between each trinucleotide signature and CNA subtypes; 
no associations were detected. 
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Supplementary Figure 5: Additional survival analysis 
A) Age and surgery were associated with overall survival. B) ATC CNA subtypes were 
not associated overall patient survival, howvever copy number deletions of BRCA2 were 
associated with superior patient survival (log-rank and Cox proportional hazards tests, 
D).  C) Overall survival of PTC cases by CNA subtypes E) Enrichment of patients with 
various clinical variables within each ATC-associated can  subtype; dot size indicates 
fold-change (log2[overlapactual / overlapexpected]) within a cluster (x-axis labels) with the 
specified variable classification (y-axis labels), with orange indicating over-enrichment 
and blue indicating under-enrichment, while background shading indicates p-value from 
the hypergeometric test (looking at over- or under-enrichment as defined by dot colour), 
after accounting for missing data. For example, Subtype E includes patients with 
increased age and tumor aggressiveness (higher rate of T4b relative to T4a disease, 
nodal metastases, distant metastasis and leukocytosis). Subtype C has younger patients 
with fewer T4b than expected by chance alone. Pearson’s χ2 test did not identify any 
difference in distribution of any of these variables across subtypes.  F) Low ATC SNV 
mutational density (SNVs/Mbp) was associated with better survival (Cox proportional 
hazards test); SNVs/Mbp defined as greater than 10SNVs/Mbp. PTC tumors all had low 
mutational density and experienced superior survival to ATC patients. 

 

Supplementary Figure 6: Mutational Timing and Evolution of ATC 
A) NMF identified two trinucleotide signatures within 112 papillary thyroid cancers (PTCs). 
Within each signature, the percent of mutations within the cohort presenting each base 
change (broken ddown by trinucleotide context). B) Variants with ≥10x coverage were 
selected in patients with WGS for both ATC and paired co-occurring differentiated thyroid 
cancer (DTC).Cancer cell fraction [CCF] were compared to assess tumor evolution. 
Purple indicates clonal variants (similar CCF), while pink and orange represent co-
occuring DTC and ATC subclonal regions respectively. Black points indicate known driver 
genes.  
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Tables 
Table 1: Cross-study comparison of common mutations. TP53 and BRAF are among 
the most frequently mutated genes in ATC and these frequencies show clear trends in 
relation to degree of differentiation. Numbers indicate mutation frequency (percent of 
samples) in each cohort; values in brackets indicate median variant allele frequency 
across all samples in that cohort). ATC: anaplatic thyroid cancer; DTC: differentiated 
thyroid cancer; PTC: papillary thyroid cancer; HTC: Hurthle cell carcinoma. 

 Study ATC DTC PTC/HTC 

TP53 GATCI 37% 21% 1% 

TCGA N/A N/A 0% 

Landa 70% 9% N/A 

Pozdeyev 48% 8% N/A 

Yoo 44% 20% N/A 

Ganly N/A N/A 7% 

Gopal N/A N/A 13% 

BRAF GATCI 21% (11.4%) 50% (23.6%) 51% (30.0%) 

TCGA N/A N/A 59% (35.3%) 

Landa 45% 36% N/A 

Pozdeyev 37% 59% N/A 

Yoo 41% 27% N/A 

Ganly N/A N/A 0% 

Gopal N/A N/A 3% 

 

Table 2: Summary of phylogenetic reconstruction. Multi-sample subclonal 
reconstruction was performed on nine samples with paired regions of ATC and co-
occurring DTC tumor. C = Common; PGA: percent genome altered; CAN: copy number 
aberrations; ATC: anaplastic thyroid cancer; DTC: differentiated thyroid cancer 

 

SNVs PGA CNAs 

Trunk C ATC DTC Trunk C ATC DTC Trunk C ATC DTC 

ATCWGS.33 3 51 148 104 0.00 12.35 0.06 0.00 0 241 4 0 

ATCWGS.34 350 26 857 871 0.00 32.40 0.00 0.00 0 437 1 0 

ATCWGS.35 1686 0 1420 1575 92.64 0.00 0.05 0.32 604 0 14 37 

ATCWGS.36 364 0 262 2347 40.10 0.00 0.20 1.45 731 0 49 4 

ATCWGS.37 517 0 316 1486 70.75 0.00 0.60 1.27 1207 0 6 3 

ATCWGS.38 302 0 852 2245 13.87 0.00 71.38 0.00 150 0 360 0 

ATCWGS.39 166 58 376 380 0.00 46.30 0.02 0.00 0 1194 14 1 

ATCWGS.40 250 0 1237 309 22.13 0.00 0.00 0.00 238 0 0 0 

ATCWGS.41 437 0 979 703 42.04 0.00 0.00 1.25 917 0 3 123 
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Supplementary Tables 
Supplementary Table 1: Sample Characteristics 
a) Clinical characteristics and summary findings of thyroid tumors and cell lines. b) 
Breakdown of paired ATC and co-occurring differentiated thyroid cancer (DTC) 
components. 

Supplementary Table 2: RNA abundance in ATC tumors and cell lines 
RNA-sequencing was performed on 24 primary ATC tumors and 13 ATC cell lines; data 
were normalized and expression values (transcripts per million, TPM) calculated using 
RSEM and STAR. 

Supplementary Table 3: Germline SNVs in cancer predisposition genes 
Germline SNVs were identified in ATC tumors with match normal only. Results were 
filtered to remove common variants (<1% in 1000G); SNVs identified in known driver 
genes are shown. 

Supplementary Table 4: CNA subtype associations with clinicalgenomic 
characteristics 
Copy number aberrations (CNA) subtypes in ATC were evaluated for associations with 
patient clinicogenomic characteristics. 

Supplementary Table 5: RNA fusions in ATC 
a) RNA-sequencing was performed on 24 primary ATC tumors and 13 ATC cell lines. 
Fusioncatcher was used to identify gene fusions; results were filtered to remove fusions 
with low evidence (required at least two reads). b) Fusions involving known driver genes 
with corresponding RNA abundance (TPM) for affected genes. 

Supplementary Table 6: SNV associations with overall survival in ATC 
Genes identified as recurrently altered in ATC were evaluated for associations with overall 
patient survival using time-to-event modeling. 

Supplementary Table 7: CNA associations with overall survival in ATC 
Copy number aberrations (CNA) segments identified by GISTIC as being significant in 
ATC were evaluated for associations with overall patient survival using time-to-event 
modeling. 

Supplementary Table 8: Cross-study analysis of gene-wise CNA frequencies 
Gene-wise copy number aberrations (CNA) frequencies were calculated for 111 ATC, 24 
co-occurring differentiated thyroid cancer (DTC) and 112 papillary thyroid cancer (PTC) 
primary tumors. These were contrasted to mutation frequencies obtained from TCGA 
(PTC, n = 505). 

Supplementary Table 9: Cross-study analysis of gene-wise SNV frequencies 
Gene-wise SNV frequencies were calculated  for 132 ATC, 19 co-occurring differentiated 
thyroid cancer (DTC) and 112 papillary thyroid cancer (PTC) primary tumors. These were 
contrasted to mutation frequencies obtained from TCGA (PTC, n = 481), Kunstman et al. 
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(ATC, n = 22), Landa et al. (ATC, n = 33; pooly differentiated thyroid cancer [PDTC], n = 
78), Pozdeyev et al. (ATC, n = 134; PDTC, n = 182), Ganly et al. (Hurthle cell thyroid 
cancer [HTC], n = 56), Gopal et al. (HTC, n = 32) and Yoo et al. (ATC, n = 27; PDTC, n = 
15). 

Supplementary Table 10: Overlap of somatic SNVs across tumor 
components 
Twenty-eight patients (19 by whole exome sequencing [WXS], 9 by whole genome 
sequencing [WGS]) had SNV calls for multiple tumor regions (ATC, co-occurring 
differentiated thyroid cancer [DTC], metastasis or recurrent tumor); hypergeometric tests 
were used to determine whether there was more overlap than expected by chance alone 
across regions. A single pair (primary ATC and cervical metastasis) demonstrated no 
overlap in SNV profile. 

Supplementary Table 11: Overlap of CNAs across tumor components 
Twenty-one patients had copy number aberrations (CNA) calls for multiple tumor regions 
(ATC, co-occurring DTC, metastasis or recurrent tumor) based on CNA arrays; 
hypergeometric tests were used to determine whether there was more overlap than 
expected by chance alone across regions. There was frequently less overlap than 
expected. 
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Log rank test P-value: 0.4

SubtypeE vs. non-subtypeE hazard ratio: 1.60, P: 0.441 
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Log rank test P-value: 0.004

Log rank test P: 0.6
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Loss vs. neutral hazard ratio: 0.48, P: 0.005 

Log rank test P-value: 2 x 10-16

ATC low vs. ATC high hazard ratio: 0.51, P: 0.002 
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