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Abstract 
Major depressive disorder (MDD) is a leading cause of morbidity and disability 

worldwide, with approximately twice as many women reported to have a lifetime occurrence of 
MDD than men. MDD is a polygenic trait, wherein hundreds to thousands of common genetic 
variants with small effect sizes contribute to risk of disease. This study investigated sex 
differences in the risk factor comorbidity and genetic architecture of MDD in over 16,000 people 
aged 45-85 from the Canadian Longitudinal Study on Aging (CLSA), with 21% of females 
(n=1,741) and 12% of males (n=1,055) coded with MDD. Polygenic risk scores (PRS) for 
individuals were made using sex-stratified and non-sex-specific (“both-sexes”) UK Biobank 
genome-wide association study summary statistics data. Odds of MDD for the sex-specific PRSs, 
socioeconomic, lifestyle and clinical risk factors associated with cardiovascular disease risk were 
assessed using a multivariable logistic regression model for each sex. Significant sex-specific 
risk factor associations with odds of MDD were found in females (history of ischemic heart 
disease (OR 1.52 (1.14-2.01), hypothyroidism (OR 1.42 (1.25-1.63), not being partnered (OR 
1.34 (1.17-1.52)), having diabetes (OR 1.30 (1.11-1.52)), and higher female sex-specific 
autosomal PRS (OR 1.10 (1.04-1.16))) and males (high blood pressure, OR 1.35 (1.04-1.47)). 
Significant differences were observed in the proportion of variables that contributed to the most 
to each model, evaluated by relative pseudo-R2 values. Age contributed the most to the model for 
both sexes (46.9% for females, 32.5% for males), wherein younger age was associated with 
higher odds of MDD.  These results underscore the relevance for sex-disaggregating analyses of 
complex traits, like MDD, and the incorporation of clinical variables into models of MDD, in 
applications such as early detection and primary prevention.  
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Introduction 
Major Depressive Disorder (MDD) is a leading cause of morbidity and disability 

worldwide. An estimated 322 million people are affected by MDD annually, accounting for 

approximately 50 million years lived with disability (World Health Organization, 2017). A 

recent survey by Statistics Canada indicated that one in four (25%) Canadians aged 18 or over 

screened positive for depression, anxiety, or posttraumatic stress disorder, up from pre-pandemic 

estimates of population prevalence of 20% (Statistics Canada, 2021).  

 

Mental illness does not exist in isolation from the body’s other systems. When the brain 

perceives stress, the hypothalamic-pituitary-adrenal (HPA) axis activates, and a cascade of 

biological processes ensues, affecting everything from digestion to cardiovascular output in a 

“fight-or-flight” response. In 2021, the American Heart Association provided a scientific 

statement on the “mind-heart-body” interconnections, providing an up-to-date overview of 

research describing how negative psychological health has causal influences on cardiovascular 

health and associated comorbidities like diabetes, dyslipidemia, hypertension, and obesity 

(Levine et al., 2021). The theory of “immunometabolic depression” describes the common 

mechanisms by which dysregulated homeostatic pathways in depressed patients can manifest as 

cardiometabolic traits, such as the effects of chronic low-grade inflammation and disrupted 

energy-regulating neuroendocrine signalling (Milaneschi et al., 2020).  

 

MDD is a complex trait, whereby pathophysiology is influenced by both genetics and 

environment. Family and twin studies have provided evidence of moderate genetic heritability of 

MDD, with estimates ranging between 30-40% since these studies began in the 1980s (Coleman 

et al., 2020; Sullivan et al., 2000). However, single-gene candidates with high effect sizes 

associated with MDD in monogenic disease patterns were not found. Instead, to detect the 

multitude of genetic variants (single nucleotide polymorphisms, SNPs) contributing risk to 

MDD, genome-wide association study (GWAS) designs investigate thousands of people in a 

case-control or quantitative trait paradigm to detect SNPs with small-to-moderate effect sizes 

cumulatively contributing to probability of having the trait. The largest MDD GWAS meta-

analysis to date (Howard et al., 2019) pooled GWAS data from the 2018 Psychiatric Genetics 

Consortium (PGC) MDD mega-analysis (Wray et al., 2018), 23andMe and the UK Biobank, 
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with a total sample size of 807,533 individuals (246,363 MDD cases and 561,190 controls). This 

analysis yielded 102 variants significantly associated with MDD in 101 independent loci. Of 

note, significant positive genetic correlations were found between MDD and cardiometabolic 

traits like coronary artery disease, triglycerides, and waist-to-hip ratio, implying some shared 

genetic architecture of SNPs associated with MDD with these traits. The authors also found 

significant enrichment of SNP heritability of MDD in tissue-specific gene expression analyses 

within the anterior cingulate cortex (ACC) and frontal cortex, both of which are important 

regions for higher-order cognitive functions. The ACC has been implicated in autonomic system 

regulation of blood pressure and heart rate, and has a “top-down” emotional-regulation 

projection to both the amygdala and prefrontal cortex in response to emotional stimuli (Stevens 

et al., 2011). A dysregulated fronto-limbic network has been associated with MDD, with 

hyperactivation of regions like the ACC leading to increased attention towards and processing of 

emotional stimuli, with tendencies to focus more on negative stimuli (Sliz & Hayley, 2012). 

What is lacking from many of these large-scale analyses, however, are analyses of sex and 

gender differences in the shared associations between cardiometabolic dysregulation and MDD. 

 

There are consistent gender differences in the reported prevalence of MDD in Canada 

and around the world, with MDD being twice as prevalent in women as it is men (Bromet et al., 

2011). A study by Kendler et al. (2006) in the Swedish Twin Registry reported sex differences in 

heritability, with estimates of 42% in females and 29% in males, underscoring the signal of 

biological (sex) genetic differences (not to be conflated with gender, a social construct (CIHR, 

2021)). However, few studies have been designed to be able to elucidate mechanisms of the sex 

and/or gender differences. We reviewed all MDD GWASs to date published in the GWAS 

catalog and found that only 12 (17%) of the 72 studies published conducted sex-stratified 

analyses (Lewis et al., 2010; Aragam et al., 2011; Shyn et al., 2011; Shi et al., 2011; Power et al., 

2012; Wray et al., 2012; Ripke et al., 2013; Hyde et al., 2016; Hall et al., 2018; Zhou et al., 2018; 

Dunn et al., 2018; Blokland et al., 2022). In 2022, Blokland et al. conducted a sex-stratified 

GWAS meta-analysis of MDD in the PGC with another European regional cohort (iPSYCH) and 

described a SNP-heritability estimate of MDD in females almost twice (14.6%) that of males 

(6.6%). These authors describe a range of sex-specific genetic effects and pathways associated 

with MDD, primarily implicating neuronal inhibitory and excitatory regulation of brain 
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development, but also immune and vascular pathways. The authors highlighted that the only 

significantly enriched pathways in the MDD gene-by-sex (G x S) gene set enrichment were in 

the vascular endothelial growth factor signalling pathways, a molecule which signals 

angiogenesis across tissue types and is also involved with vasodilation (Pandey et al., 2018).  

 

There are many theories of how sex differences appear (Bangasser & Cuarenta, 2021), 

with two main overarching paradigms describing how sex differences may mechanistically arise 

across complex traits like MDD. There is the effect of sex hormones secreted by the gonads (ie. 

estrogen, progesterone, testosterone) that exert their effects on gene expression either indirectly 

as signal transduction molecules, or directly on the genome as transcription factors (Davey & 

Grossmann, 2016; Fuentes & Silveyra, 2019). Second, there are a differing number of copies of 

the sex chromosomes, wherein females typically have a pair of X-chromosomes, and males have 

an X and Y chromosome. While most genes on one of the two X chromosomes are inactivated in 

XX cells, higher expression of genes can occur at genes that escape X chromosome inactivation. 

In addition to cis-acting regulation, emerging evidence is showing how 3-D organization of the 

chromosomes influences gene expression and co-regulation through trans-acting mechanisms 

(Fleck et al., 2022), implicating autosomal regulation of genes on the X, and vice versa. 

However, despite the growing evidence of the importance of genes on the sex chromosomes for 

many diseases, the X chromosome is routinely excluded from GWAS and other genetic analyses.  

 

A promising clinical application of GWAS is to create polygenic risk scores (PRS) to aid 

in primary prevention of common complex traits. For example, in population screening for 

common complex diseases, individuals may be identified as “high genetic risk” from their 

individualized PRS and receive further clinical screening and follow-up accordingly (Lewis & 

Vassos, 2020). Most clinical applications of PRSs have been focused on common diseases such 

as coronary artery disease (Klarin & Natarajan, 2022) and breast cancer (Yanes et al., 2020), and 

clinical trials in such areas are already underway to assess the utility of PRSs in primary 

prevention in addition to standard clinical risk factors. There is still much scrutiny regarding the 

relative economic and clinical utility of incorporating PRSs into clinical care, thus the 

importance of conducting analyses of group (i.e. sex) similarities and differences to inform 

research and clinical decisions must be emphasized and explored. 
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The purpose of this study is twofold: First, to investigate sex differences in the 

associations between MDD PRSs using sex-stratified GWAS data with MDD (and including the 

oft-excluded X-chromosome), and second, to compare sex differences in the relative effect sizes 

of MDD PRSs compared with other socioeconomic and clinical risk factors in a multivariable 

model of MDD. This study is unique through its use of a sex-stratified PRS methodology applied 

to Canadian population sample and combining genetic risk scores and cardiometabolic risk 

factors not commonly studied in epidemiological studies of MDD. We hypothesized that there 

would be genetic sex differences in the relative associations of sex-specific PRSs with MDD, 

and that there would be sex differences in the relative associations of the various shared 

sociodemographic, lifestyle and cardiometabolic risk factors associated with MDD.  

Methods 
Target Cohort Data Variable Selection: The Canadian Longitudinal Study on Aging 

 

The Canadian Longitudinal Study on Aging (CLSA) is a longitudinal cohort study whose 

primary goals are to investigate the health and needs of the aging Canadian population (Raina et 

al., 2009). The study was designed to help understand the intersectionality of factors involved in 

adult development and aging, by investigating contributions of lifestyle and behaviour; 

psychological, biological, and clinical, healthcare services; health outcomes; and social measures 

(Raina et al., 2019). Since 2010, just over 51,000 Canadians aged 45 to 85 at baseline have been 

recruited to be followed until 2030 (or death). The CLSA is divided into the Tracking (n=21,241) 

and Comprehensive (n=30,097) cohorts, which vary in the type and method of data collected. 

Notably, only the Comprehensive cohort collected genetic data of interest to this study for 

26,622 individuals.  

  

The primary outcome variable of interest was MDD, which was encoded as a binary 

variable answering the question: “Has a doctor ever told you that you suffer from clinical 

depression?”). Sociodemographic and lifestyle covariates were chosen a priori because of their 

frequent inclusion as covariates in other epidemiological studies that investigate depression as 

the primary outcome variable, such as other CLSA studies (Liu et al., 2019; Shea et al., 2020; 
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Stinchcombe et al., 2021). Self-reported sex was collected as a binary variable (male or female), 

total annual household income was self-reported by intervals by thousand (k) Canadian dollars in 

increments of <20k, 20-50k, 50-100k, >100k, and (tobacco) smoking status was collected by 

self-reports of never-smoker, former-smoker, or current-smoker.  Three variables (alcohol 

consumption, highest education achieved, and partnered status) between the sociodemographic 

and lifestyle categories were recoded into fewer options, to provide sufficient power in 

downstream logistic regression analyses. Alcohol consumption frequency was recoded from 8 

options to 2: “never” remained “never”; and all other options to “ever”. Highest education 

achieved was recoded from 6 options to 3 in accordance with Stinchome et al. (2021): The 

options of Bachelor’s degree or university degree or certificate above bachelor’s degree were 

combined as “Bachelor’s or higher”; university certificate below bachelor’s level,  non-

university certificate or diploma from a community college, and trade certificate from a 

vocational school or apprenticeship were combined to “Under a bachelor’s”; and no-post-

secondary degree, certificate or diploma remained the third option “No post-secondary 

education”. Lastly, in accordance with Liu et al., (2019), partnered status was recoded into a 

binary response from five options of single, widowed, divorced, or separated to “non partnered” 

and married or living with a partner in a common-law relationship to “partnered”. 

 

Clinical variables commonly studied in metabolic syndromes and/or those that exhibit 

notable sex differences were included as covariates. Waist-to-hip ratio (WHR) was a physical 

measurement ascertained in the study home visit. WHR was included in lieu of BMI, as BMI is 

an imprecise measure that does not account for muscle mass and/or distribution of mass, 

specifically regarding higher risk of metabolic disease in association with higher visceral fat 

(abdominal core area) compared to other areas of lower relative risk (ie. breasts and hips) (Lotta 

et al., 2018). Second, since there was no dyslipidemia field captured, this study aggregated data 

from the extensively detailed baseline medication data collected by the CLSA investigators 

during home visits to produce a composite yes/no binary variable “on lipid-lowering therapy?” if 

they were on any of the following cholesterol-lowering medications: Atorvastatin, rosuvastatin, 

simvastatin, lovastatin, cerivastatin, fluvastatin, pitavastatin, pravastatin alirocumab, 

evolocumab, ezetimibe (Dennis et al., 2021). Additionally, the binary composite variable 

“ischemic heart disease outcome” (IHD) was assigned to participants who self-reported having 
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had a myocardial infarction (MI) and/or angina. The rest of the self-reported binary (yes or no) 

variables included were high blood pressure, diabetes, and hypothyroidism. 

 

Chi-squared tests of independence were conducted to assess if there were significant 

differences by MDD status in the frequencies of the options for each categorical variable. For the 

numeric variables, means and standard deviations were calculated and statistical significance 

between MDD and no-MDD (within-sex) means were assessed via two-sample t-tests. 

Correlation matrices with associated p-values were generated using the corrplot package (Wei, 

2021), with covariates mapped against each other. Additionally, covariates were retained that did 

not have high correlation (Pearson r >> 0.5) with other covariates.  

 

CLSA: Quality Control and Filtering of Genetic Samples 
 

Genome-wide genotyping data were collected from DNA extracted from the buffy coat of 

blood samples and genotyped using the 820K UK Biobank Axiom Array (Affymetrix), 

consisting of 795,409 genotyped SNPs for each of 26,622 genotyped individuals, and were 

received in Plink 1.9 format (Chang et al., 2015). Quality control (QC) tests were conducted 

following thresholds described in an accompanying Genome-wide Genetic Data Release 

documentation (Forgetta et al., 2022).  

 

Samples were excluded based on four criteria: i) Having at least one relative of 3rd degree 

or closer among the set of genotyped individuals (n = 1637), wherein relatedness was determined 

using KING software program version 2.1.3 (Manichaikul et al., 2010), which assesses 

relatedness by first computing kinship coefficients, then analyzing the proportion of identity-by-

descent (IBD) to the coefficient. ii) Extreme outliers in sample-wise heterozygosity were 

excluded, wherein extreme values suggest low quality genotyping or cross-contamination of 

biological samples (n = 15 removed). Outliers were determined using Plink’s “het” flag that 

generated a threshold value related to the proportion of the homozygous and heterozygous 

frequencies. iii) Sex-mismatched samples (n = 33) and samples with missing sex chromosomal 

data (n = 15) were removed. These values were determined by when the self-reported gender did 

not match the Plink-determined chromosomal sex, or if Plink could not assess sex and the sample 
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was thus labeled as “ambiguous”. iv) Participants were filtered by genetic ancestry to retain 

European-ancestry individuals only. These individuals had been assigned “PCA cluster ID 4” in 

the sample QC text file by Forgetta et al. (2022) and filtered accordingly (n = 1963 non-

European samples removed). To obtain these cluster ID values, the CLSA data analysts 

conducted population structure analyses via principal component analyses (PCA) by comparing 

the CLSA participants to 414 individuals across 4 superpopulations (Western European, Han 

Chinese, Japanese and Yoruban) from the 1000 Genomes phase 3 reference population using k-

means clustering. The top 10 principal components (PCs) for the CLSA European ancestry 

subset were provided and integrated in downstream analyses.   

 

The SNP QC was conducted on the genotyped markers on the European-ancestry subset, 

as described by Forgetta et al. (2022). The retained markers met four main criteria within this 

subset and were flagged accordingly in the accompanying SNP QC text file.  

Markers were flagged by CLSA analysts under the following conditions: i) Extreme discordance 

from expected genotype frequency between batches (p < 3.15*10-10) (n = 14,753); ii) Deviation 

from Hardy-Weinberg Equilibrium (p<10-6) for diploid regions of the genome (autosomal and 

pseudo-autosomal regions (PARs) of the X/Y chromosomes) (n = 7,790); iii) <0.99 Discordance 

between the sample and 4 control replicates on each genotyping plate(n = 27,937). iv) Genotype 

frequency discordance stratified between chromosomal sexes (female 46, XX and male 46, XY) 

below Fisher’s p < 3.15*10-10 (n = 248). This statistic was calculated using Fisher’s exact test on 

the 2x3 table of genotype counts, or 2x2 table of allele counts for the sex-specific, non-PAR 

region of the X chromosome. v) insertions and deletions (“indels”) (n = 15,616), so as only 

single-character allele codes of A, C, G or T were retained. vi) low frequency SNPs of MAF < 

0.01 (n = 95,363). Slight differences in the final number of SNPs between males, females and 

both-sexes in the autosomes and X-chromosomes are negligible, and most likely due to sampling 

artefact and not reflective of true sex differences.  

 

Base MDD GWAS: UK Biobank Summary Statistics 
 

The UK Biobank (UKB) is a prospective health study of over 500,000 individuals from 

the UK, recruited between ages 40 and 69 at recruitment (2006-2010) (Bycroft et al., 2018). Like 
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the CLSA, this is a “representative” population cohort, such that there isn’t a particular bias or 

enrichment by a particular trait or disease. The most reported ethnicity was British (88.26%), 

which maps to ancestral superclusters of European genetic ancestry when compared to the 1000 

Genomes phase III (Bycroft et al., 2018). MDD was encoded from self-reported history of past 

or present (clinical) depression through the question “has a doctor ever told you that you have 

depression” (phenotype code 20002_1286). The genotyping array created by the UKB, the UK 

Biobank Axiom® (ThermoFisher Scientific, 2014), was the same array used by the CLSA cohort 

in genotyping their participants.  

 

For UKB self-reported history of clinical MDD, three sets of summary statistics from 

GWASs of sex-stratified and non-stratified analyses were downloaded from the Neale Lab 

Website (Neale Laba, 2018). The non-stratified (“both-sexes”) GWAS had a combined sample 

size of 361,141, the female GWAS had a sample size of 194,121, and males had 167,020 (all 

included data for 13,791,467 SNPs). The Neale Lab reported 20,648 cases and 340,493 controls 

retained in their overall (both-sexes) analyses, with a trait prevalence for self-reported depression 

of 5.72% (Neale Labb, 2019). The number of cases and controls for their sex-stratified analyses 

are not publicly provided on the Neale Lab website.  

 

Each of the both-sexes, female-only and male-only UKB MDD GWAS summary 

statistics data were processed through a publicly-accessible quality control pipeline developed 

in-house (Belikau, 2021). This QC excluded SNPs that did not have a p-value within (0,1), didn’t 

have a valid SNP rs-id, the chromosome value didn’t match human, the base pair wasn’t an 

integer, one of the alleles was not a single nucleotide variant (ie. an insertion), if the SNP was 

palindromic, and if the SNP wasn’t biallelic. Duplicated rows were identified and removed in R 

v4.0.2 (R Core Team, 2017). In sum, 11,937,067 SNPs remained post-QC (86.6% of input) for 

the both-sexes GWAS, 11,935,604 SNPs (86.5%) for the female-only GWAS, and 11,934,922 

SNPs (86.5%) for the male-only GWAS.  

 

SNP heritability (h2SNP) estimates and genetic correlation analyses were conducted using 

linkage disequilibrium score regression software LDSC (Bulik-Sullivan et al., 2015). The outputs 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 17, 2023. ; https://doi.org/10.1101/2023.04.10.23288267doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.10.23288267
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

of this software are the estimates of MDD h2SNP of the input GWAS summary statistics, as well as 

the genetic correlation (rg) between the female- and male-only GWASs. 

 

Polygenic Risk Scores 
 

Polygenic risk scores for the CLSA data were constructed using the software PRSice-2 

(Choi & O’Reilly, 2019), in which a clumping and thresholding (C+T) method was applied on 

SNP summary statistics from base UKB GWAS data. Clumping (“C”) refers to the iterative 

selection of the most significant SNP of a group in linkage disequilibrium. Thresholding refers to 

the removal of SNPs with trait-associated p-values above a certain significance threshold (“T”). 

For the remaining SNPs after C+T, PRSice-2 calculates a PRS for each individual (j) with the 

equation below, in which S is the effect estimate for the effect allele (i), and G is the dosage of 

the effect allele (0, 1 or 2).   

𝑃𝑅𝑆! = ∑ (𝑆" 	× 	𝐺"!)"   

 

PRSice-2 does not currently permit sex-chromosome input as chromosome 23. As such, 

X-chromosome SNP-genotyped data were extracted separately from the autosomal data and 

provided a new chromosomal label “22” so as to be recognized by PRSice-2. This did not 

compromise or change the encoding within the original CLSA .bed file wherein the X-SNPs 

were already encoded as 0/1/2 for females and 0/2 for males. PRSice-2 was run on these data 

under additive model assumptions for both sexes, resulting in X-PRSs to be assessed separately 

from the autosomal-PRSs. Autosomal PRSs for each sex were created from the sex-specific 

(male or female) GWAS, and a PRS from the sex-specific X-chromosome data. Each PRS had 

the same C+T parameters set to p-value threshold of p<0.01, LD-clumping distance of 250 

kilobases (kb), and clump-r2 of 0.1.  

 

CLSA participants were sex-stratified into female- and male-only groups, to which PRSs 

created from base GWAS data that were either sex-stratified (hereafter “female-only” and “male-

only”) or data from both sexes were pooled (hereafter “both-sexes”). If there are indeed 

differences, ie. of a PRS made from male-only MDD GWAS data tested on females shows no 

associations with female MDD, and vice versa, then this implies there may be sex-specific 
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genetic associations missed when sex is regressed out as a covariate in the GWAS analyses. The 

purposes of these analyses were thus to test this if the sex-specific and both-sexes PRSs were 

transferable between the subsetted samples.   

 

Individuals were labeled by decile in which their score fit relative to the rest of their sex-

specific group. A univariable logistic model was performed between the PRS deciles and MDD, 

with the first (0-10) decile label being the referent value, and estimates converted to odds ratios 

using the broom package (Robinson et al., 2022) in R v4.0.2. 

 

Multivariable Model 
 

A multivariable logistic model was fit for genetic, sociodemographic, lifestyle and 

clinical variable associations with an MDD outcome, using the glm function in R 4.0.2. Using 

the broom package (Robinson et al., 2022), multivariable model output estimates were 

exponentiated into odds ratios and 95% confidence intervals. There were two main goals of this 

modelling: first, to investigate which variable(s) had significant effect sizes (converted to odds) 

with MDD in the multivariable model, and second, to investigate the relative proportion of how 

much each variable contributed to the model. As such, the model was as follows: 

 
MDD ~ Sex-specific Autosomal PRS + Sex-specific X-PRS + Age + Partnered Status + Annual 

Income + Highest Education + Smoking Status + Frequency of Alcohol Consumption + LLT + 

WHR + High blood pressure + Diabetes + Hypothyroidism + IHD 

Prior to input, all numeric variables (PRSs, age, waist-to-hip ratio) were scaled to a mean 

of zero and standard deviation of 1. Logistic regression models were then conducted to 

investigate the relative proportion of each variable and variable category’s pseudo-R2 

contribution to the association with MDD by comparing pseudo-R2 values using the rms package 

(Harrell, 2021) in R v.4.0.2. There were two sets of analyses: the first goal was to compare the 

relative contribution of each covariate category to the total model of associations with MDD, the 

second being the individual covariates alone.  
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Results 

Base MDD GWAS: UK Biobank Results  
 

Manhattan plots for the three UKB summary statistics data post-QC were made in R 

v4.0.2 using the gwaRs package (Nkambule, 2021), with SNPs that passed genome-wide 

significance of p < 1*10-8 depicted in red, shown in Figure 1. Corresponding quantile-quantile 

(Q-Q) plots were made with the fastman R package (Hwang, 2019), representing the distribution 

pattern of SNP p-values. As the genomic inflation factors (λ) for all plots were under 1.1, there is 

not likely to be structural bias (e.g., population structure) within each of the GWAS to cause 

inflation. However, as there are a lot of deviations of the expected versus observed p-values as 

shown in the Q-Q plots, this is strongly indicative of trait polygenicity. The UKB SNP-

heritability results were female h2
SNP = 0.02 (se = 0.0026), male h2

SNP = 0.013 (se = 0.0028), and 

their genetic correlation was rg = 1.072 (se = 0.167, p = 1.34e-10).  

 

Sex Differences in PRS Associations with MDD 
 

Results in Figure 2 demonstrate odds of having MDD per PRS decile with 95% 

confidence intervals for the autosomes for all three groups (females, males, both-sexes). PRSs 

were made for the X-chromosome with dosage differences accounted for with males encoded as 

0/2 and females 0/1/2, however results in decile comparisons were not significant. Exact values 

of these autosomal and X-chromosome associations are reported in Supplementary Table 1. 

Within the female-only data (Figure 2A), the PRS made from female-specific GWAS 

outperformed the PRS made from the both-sexes data, with higher odds across all deciles. Within 

the male-only data (Figure 2B), however, the male sex-specific PRS did not perform better than 

the both-sexes data. 

 

CLSA: Exploratory Data Analyses 
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Following genetic analyses, other non-genetic variables were investigated under a sex-

stratified framework to elucidate independent and relative associations with MDD to each other. 

Filtering of samples with NAs in any of these categories, summarized in supplementary Table 2, 

removed 6,097 samples further from the 22,974 from sample QC. The final model post-filtering 

resulted in 8,207 females (6,471 without MDD (79%) and 1,741 with MDD (21%)) and 8,670 

males (7,615 without MDD (88%) and 1,055 with MDD (12%)) for a total of 16,877 participants 

remaining. Table 1 outlines sex-stratified covariate summary statistics for individuals with a 

history of self-reported clinical MDD compared to those without MDD. 

 

 Correlations between covariates were assessed to determine exclusion of variables and 

identify relationships between covariates that exhibited sex-specific trends compared to pooled 

both-sexes data. Correlation heatmaps are shown in Figure 3. Despite several variables indicated 

with asterisks (*) that had significant correlations, Pearson’s r coefficients were < 0.5 and were 

thus justified in their retention in the model per a priori hypotheses. Corresponding correlation 

values (-1 to 1) and p-values matrices are in Supplementary Tables 3-8.   

 

Overall, most covariates were not significantly correlated with each other. Few covariates 

were significant in both sexes in the sex-stratified matrices (Figure 3A and B), such as high 

blood pressure with lipid-lowering therapy (LLT) (males’ r = 0.25, p = 0.037 and females’ r = 

0.24, p = 0.043))). There were some observed sex differences in some variables that were 

significantly correlated in one sex but not the other (ie. age and high blood pressure; males’ r = 

0.23, p = 0.071 vs. females’ r = 0.27, p = 0.032). More variables in the male correlation matrix 

significantly correlated with LLT (age, HBP, diabetes, IHD) than in females (HBP only).  

 

Multivariable Modelling  

 

Multivariable logistic modelling results are visualized in forest plots in Figure 4. Males and 

females overall were very similar and often showed significant associations with similar 

direction of increased or decreased odds of MDD in sociodemographic variables. 
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Age had the highest effect size and significance in associations with MDD among all 

variables included in the multivariable models, with younger age associated with higher odds of 

MDD for both sexes (females OR = 0.64 (0.60-0.69), males OR = 0.69 (0.64-0.75)). Next most 

significantly of all variables, lower annual income associated with higher relative odds of MDD 

for both sexes (female OR = 2.97 (2.26-3.89) and male OR = 2.78 (1.95-3.94)). A sex-specific 

association with partnered status was observed, with being unpartnered associated with higher 

odds of MDD, but only in females (OR = 1.34 (1.17-1.52)). Current or former smoking status 

was associated with higher odds of MDD for females, but just current smoking status for males. 

However, there was a higher relative effect size for current males (OR = 1.78 (1.42-2.21)) than 

females (OR = 1.38 (1.12-1.69)), although not significant, male and females if they were former 

smokers (OR = 1.24 (1.10-1.39). For both sexes, people who reported never drinking alcohol had 

higher odds of MDD than people who ever drank alcohol, with a larger effect observed in males 

(OR = 0.53 (0.44-0.65)) than females (OR = 0.73 (0.62-0.87)).  

For the clinical variables, there were sex differences in almost every variable that was 

significant. The only variable that was significant for both sexes was waist-to-hip ratio (WHR), 

in which higher odds of MDD was associated with an increase in each scaled unit (female OR = 

1.11 (1.05-1.18), male OR = 1.16 (1.09-1.24)). Having high blood pressure was associated with 

higher odds of MDD in males (OR = 1.38 (1.19-1.60)), but not females. For females only, they 

had higher odds of having MDD if they have diabetes (OR = 1.30 (1.11-1.52)), hypothyroidism 

(OR = 1.42 (1.25-1.63) and/or a history of IHD (OR = 1.52 (1.14-2.01).  

Being on lipid-lowering therapy did not pass significance in the multivariable model of 

MDD for either sex. When comparing LLT and IHD frequency in this “healthy” cohort, between 

2-3 times more participants were on LLT (female n = 1,984, male n = 3,382) than participants 

with a IHD outcome (female n = 594, male n = 1379). However, of the 1,984 females and 3,382 

males taking LLT, the majority did not have a history of IHD (female n = 1,674 (84%), male n = 

2,469 (73%). This may interpreted such that these participants could be on preventive medical 

management against cardiovascular disease outcomes, which is unsurprising given the age range 

of this cohort (45-85 years).  
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These results of covariates contributing significantly to the odds to MDD paint a complex 

picture of MDD that supports the hypothesis that there is a cardiometabolic component to MDD, 

and that there are some sex differences in which systems and dysfunctions associate more (or 

less) with MDD. 

 Variable Contributions to MDD: Pseudo-R2 

The relative proportions of the pseudo-R2 for all covariate categories (Figure 5A) and 

individual covariates that contribute to the female and male MDD models (Figure 5B) show sex 

differences in relative contributions of different variables and variable categories to MDD. 

Pearson’s chi-squared test (conducted in R v4.0.2) confirms significant differences between the 

sexes when examining these trends across variable categories (p = 0.002) or individual variables 

(p = 0.005). These data are summarized in Supplementary Table 9 for both the variables and 

variable categories. The total pseudo-R2 for the female model for MDD was 0.070, which was 

slightly higher than the male model (pseudo-R2 = 0.058).  

 

As shown in Figure 5A, variables in the sociodemographic category contribute the 

majority to both the female model and to a lesser extent, the male model. The distribution of the 

rest of the variables’ contributions to model are quite different between categories, with more of 

the male model of MDD represented by the genetic, lifestyle and clinical categories compared to 

females. This begets the question: which variables within each of these categories are explaining 

the majority of variance in this model, and are there sex differences? Figure 5B addresses this 

question, with visibly different proportions of each covariate’s contributions to the MDD model 

for each sex. The five covariates contributing the highest proportion towards the variance of the 

model for females were age (46.9%), annual income (19.1%), hypothyroidism (6.8%), partnered 

status (4.9%), and smoking status (4.5%), totalling 82.2% of the full female model. For males, 

the top five were age (32.5%), frequency of alcohol consumption (13.0%), annual income 

(17.8%), smoking status (8.4%) and waist-to-hip ratio (7.1%), totalling 78.9% of the full male 

model. Lastly, there are stark sex differences in the magnitude of the autosomal and X-PRSs’ 

contributions, despite contributing relatively little to the overall models. In females, the female-

specific autosomal PRS contributed 3.0% of the category’s total 3.02%, with the X-PRS 
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contributing close to 0 (0.02%). In contrast, the male-specific autosomal and X-PRSs each 

contributed half (1.59% and 1.55%, respectively) to its category’s total (3.14%) in males.  

 

Altogether, these analyses suggest that MDD PRSs are not covariates that contribute 

large effect sizes to models of MDD inclusive of other epidemiological covariates. However, 

these models do suggest that including cardiometabolic risk factors (ie. high blood pressure, 

waist-to-hip ratio, diabetes, hypothyroidism) not traditionally included in studies of MDD may 

be of utility in future studies of MDD with available clinical data.   

Discussion 
In sum, there are both genetic and epidemiological sex differences of risk factors 

associated with higher odds of MDD in the CLSA. The sex-specific polygenic risk scores for 

MDD contributed a negligible effect size to MDD risk in the multivariable model compared to 

sociodemographic (ie. age) and cardiometabolic risk factors. These results underscore the need 

for increased attention to study design and analysis paradigms that allow for sex and gender 

differences to be elucidated in associations with complex traits such as MDD.  

 

A motivation for investigations into PRSs is their potential clinical utility, as the 

mechanistic insights gained from GWAS studies can inform risk stratification and prevention for 

complex diseases. Many have expressed concern over the generalizability and accuracy of these 

PRSs between diverse groups of people, be it genetic ancestries, age, sex and/or genders, such 

that these scores have questionable utility in clinical practice (Wand et al., 2021; Wray et al., 

2021). Therefore, despite the progress in psychiatric genetics in improving PRS prediction 

methods within and across traits, a common sentiment is that there is much to be improved 

before these genetic risk scores can be integrated into routine care (Murray et al., 2020). 

Regarding biological sex, the results of this study suggest that the female-specific MDD PRS 

captures more of the genetic risk of MDD in females than the male MDD PRS does in males. 

One interpretation of this could be phenotyping gender bias in the UKB and/or CLSA, meaning 

males may not have been as accurately phenotyped as females. A second interpretation could be 

that there is a slightly higher genetic contribution of the SNPs in the female PRS towards odds of 

MDD than the SNPs in the male PRS towards male MDD.  
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The lack of GWASs including the X-chromosome to account for X-chromosome 

inactivation and dosage differences by sex is a major limitation in the field to understanding a 

portion of sex differences due to the chromosomal complement, despite the availability of 

statistical methods (König et al., 2014; Wise et al., 2013) and software (Chang et al., 2014; Gao 

et al., 2015) to do so. X-PRSs were made with the UKB X-chromosome GWAS data, which 

included a genome-wide-significant peak on the X chromosome in males, but not in females. In 

this study, the lack of significant differences between X-PRS-derived risk deciles does not rule 

out the importance of including the X-chromosome in future GWASs and downstream analyses, 

such as gene-gene (G x G) and gene-by-environment (G x E) analyses: investigating the genes 

on the X-chromosome in conjunction with the autosomes (the other “genes”) and comorbid 

metabolic syndromes or socioeconomic situations that may be stressors (the “environment”) 

could still lead to vital insights in future studies. Additionally, studies that exclude the X are 

forgoing important genes encoded on this chromosome with well-established roles in endocrine 

and immunometabolic processes, such as the androgen receptor (AR), the angiotensin-converting 

enzyme 2 (ACE2) in blood pressure regulation, and toll-like receptors (TLR) 7 and 8 with roles 

in innate immune system function.  

 

Sex-specific MDD risk was observed in association with different cardiometabolic 

variables, and a much larger portion of variance in the model was driven by age in females than 

in males. The results of the multivariable model underscoring age as the majority contributor to 

the model’s variance for women – in this cohort where baseline age was 45 – suggests that there 

may be a pre- or peri-menopausal effect driving the association with higher odds of MDD in the 

younger cohort. Future studies warrant inclusion of female-specific variables (ie. menopause 

status, hormone therapy use, etc.) in sex-specific analyses to disentangle a hormonal association 

with MDD and potential interaction with the PRSs. 

 

The complex intersection of shared behavioural and metabolic adaptions to chronic stress 

does not imply a shared pathway, but rather a complex, interconnected network of biological 

liability between the traits with chronic inflammation and homeostatic dysregulation (Harshfield 

et al., 2020; Khawaja et al., 2009; Tobaldini et al., 2020). In particular, consequences of 
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maladaptive responses to stress (ie. smoking, poor diet and exercise) have complex interactions 

with biological systems, which in turn influence risk of MDD and IHD through chronic 

activation and resulting consequences of the HPA and HPG axes (Tobaldini et al., 2020). There 

are sex differences in how the inflammatory response to stress is modulated, particularly via 

interactions of the magnitude and ratio of circulating sex hormones (specifically, estradiol to 

testosterone). For example, in the brain, activated estrogen-receptor alpha (ERα) results in 

inhibition of intracellular transport of signaling molecules induced by inflammatory stimuli 

(Vegeto et al., 2008). Estrogens have immuno-enhancive effects; in contrast, testosterones have 

immunosuppressive effects, via interactions within B- and T-cell maturation (Taneja, 2018). For 

example, estrogens have been shown to have anti-hypertensive effects through interactions with 

key effector molecules (angiotensinogen and renin) in the vasoconstrictor/vasodilator system of 

blood vessels (Medina et al., 2020). This underscores the need to consider the effect of sex 

hormones and relative concentrations over the life cycle in future sex-disaggregated studies.  

 

Although decreased estrogens post-menopause may be associated with lower risk of 

MDD compared to pre-menopausal levels, if women experience myocardial infarction (MI), they 

are significantly more likely than men to experience depression and anxiety post-MI (Liblik et 

al., 2021). Recent evidence suggests that MDD precedes CAD risk more than CAD precedes 

MDD risk for both sexes, although MDD has been shown to associate more with CAD in women 

than men (Honigberg et al., 2022). Higher genetic risk for MDD in women has recently been 

shown to associate with higher risk for cardiovascular disease in women compared to men (Jiang 

et al., 2022). This literature supports results from this study showing females’ increased risk for 

MDD with comorbid diabetes, hypothyroidism and/or a previous IHD diagnosis, without the 

same trends observed in males.  

Limitations  
MDD phenotype ascertainment is an ongoing challenge in the literature when comparing 

and contrasting cohort profiles. The CLSA is a “representative” Canadian population cohort who 

were older (over 45) at recruitment. As detailed psychiatric assessments of MDD were not 

integrated in the study design, there are limitations in the reliability (ie. stringency of depression, 

MDD phenotype) of the phenotype ascertainment. Future analyses requiring MDD phenotyping 
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of large biobank cohorts may benefit from integrating multiple depression measures available to 

more accurately assess MDD status, rather than choosing a single measure, as demonstrated by 

Glanville et al (2021). Moreover, this study limited analysis to people of European genetic 

ancestry in the CLSA. Base GWAS data, when composed of a homogenous population (ie. 

European ancestry), yields higher prediction accuracy in target populations of the same (or near-

same) ancestry-derived population (Wang et al., 2020) when designing polygenic risk scores. 

This limits the extent to which these findings can be applied to younger or more ancestrally 

diverse cohorts. However, it may be such that, across ages and ancestries, metabolic HPA-axis-

mediated immunometabolic dysregulation causes shared disease-processes due to the common 

biology within the sexes. The design and application of genetic (SNP) contributions designed 

from one ancestry remains limited in applications on other ancestries that may have differing 

frequency and penetrance of those SNPs. However, if future studies analyze MDD by sex and 

investigate cardiometabolic risk factors as covariates, more robust inferences on any shared 

characteristics within-sex between ancestries and/or within-sex across age groups may be 

uncovered and replicated.    

 

Additionally, diverse sex and gender information should be considered in future 

investigations of MDD. For example, individuals with chromosomal sexes other than 46,XX or 

46,XY, and/or individuals for whom their identified gender does not match their sex assigned at 

birth, may have differing socioeconomic correlates and/or biological considerations. This is 

especially true if these individuals are taking hormone therapies that may impact their 

neurological and cardiovascular risk. In discussing the pathophysiology of MDD, social 

(gendered) causes and resulting behaviours in response to stressors has been proven to show 

strong influences on MDD risk and prevalence estimates (Shi et al., 2021). Socioeconomic 

factors such as age, partnered status, access to a stable social network and intimate social support 

(ie. with a partner, family, close friends), income, and education/vocation all have well-

established epidemiological associations with risk of depression and IHD (Connelly et al., 2020). 

However, dissecting the causes and effects of these gendered risk factors was beyond the scope 

of this study. 
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Tables and Figures 

 
 

 

 
 
 
Figure 1: Manhattan plots (post-QC) of the UK Biobank self-reported depression (phenotype code 
20002_1286) with their associated QQ plots. Red line in Manhattan plots represents genome-wide 
significance (p < 1*10-8),  and the red line in the QQ plot demonstrates y=x. λ represents the calculated 
genomic inflation factor. A) Both-sexes data (not stratified), n=361,141; B) Female-only, n=194,121; C) 
Male-only, n=167,020. 
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Figure 2: Odds ratios with 95% CI of MDD with each increase in PRS decile across target data. Asterisks 
(*) denote significant difference in odds of MDD by PRS decile compared to the the referent (lowest) decile 
(p<0.05). Colours represent different UKB base GWAS data used to make each PRS: green was the both-sexes 
GWAS, magenta the female-only GWAS, and blue the male-only GWAS. A) PRSs applied on target autosomal 
data of females in the CLSA. B) PRSs applied on target autosomal data of males in the CLSA. 
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Figure 3: Correlation heatmap of covariates within the CLSA. Asterisks denote significance of p<0.001 (***), 
p<0.01(**) and p<0.05(*) between variables within sex-stratified or non-stratified data. A: Female correlation 
matrix; B: Male correlation matrix; C: Both-sexes correlation matrix. 
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Figure 4: Odds of MDD (95% CI) for sociodemographic, lifestyle and clinical covariates, stratified by sex. Sex-specific autosomal base data were 
used for generating the autosomal and X-PRSs. Asterisks (*) represents significance after adjusting for multiple testing (p<0.05/14) compared to the 
referent (REF) value. 
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Figure 5: Sex differences in relative proportions of variables’ contributions to MDD logistic model’s 
pseudo-R2. Autosomal and X-PRS were both made with sex-specific GWAS base data. Bars represent a relative 
proportion (%) of Pseudo-R2 contributed to the model. Pearson’s Chi-squared tests were conducted to evaluate 
significant differences between the sexes across all: A) variable categories (p=0.002), or B) individual variables 
(p=0.005). 
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Variable Label 
Females (n=8,207) Males (n=8,670) 

Without MDD 
(n=6,471) 

With MDD 
(n=1,736) p Without MDD 

(n=7,615) 
With MDD 
(n=1,055) p 

So
ci

od
em

og
ra

ph
ic

 
 

Age (mean, SD)  61.9 (10) 59.9 (8.7) 3.00E-15 62.7 (10.1) 60.7 (8.7) 2.52E-09 

Partnered status (count, %) 
Partnered  4202 (65) 923 (53) 

< 2.2E-16 
6167 (81) 766 (73) 

1.87E-10 
Not partnered 2269 (35) 813 (47) 1448 (19) 289 (27) 

Annual income (count, %) 

>$100k 2491 (38) 518 (30) 

< 2.2E-16 

3720 (49) 422 (40) 

< 2.2E-16 
$50-100k 2377 (37) 601 (35) 2715 (36) 369 (35) 

$20-50k 1388 (21) 470 (27) 1026 (13) 202 (19) 

<$20k 215 (3) 147 (8) 154 (2) 62 (6) 

Highest education (count, 
%) 

Bachelors or higher 3236 (50) 852 (49) 

6.05E-01 

4432 (58) 607 (58) 

8.81E-01 

Some post-
secondary 
education under a 
bachelor's 

2651 (41) 715 (41) 2555 (34) 357 (34) 

No post-secondary 
education 584 (9) 169 (10) 628 (8) 91 (9) 

Li
fe

st
yl

e 
 

Smoking status (count, %) 

Never smoker 3429 (53) 803 (46) 

3.98E-10 

3583 (47) 436 (41) 

1.80E-10 Former smoker 2632 (41) 756 (44) 3427 (45) 472 (45) 

Current smoker 410 (6) 177 (10) 605 (8) 147 (14) 

Frequency of alcohol 
consumption (count, %) 

Never 611 (9) 235 (14) 
6.29E-07 

595 (8) 157 (15) 
2.10E-14 

Ever 5860 (91) 1501 (86) 7020 (92) 898 (85) 

C
lin

ic
al

 
 Lipid-lowering therapy 

(LLT) (count, %) 

Not on LLT 5694 (88) 1471 (85) 
2.95E-04 

5809 (76) 790 (75) 
3.17E-01 

On LLT 777 (12) 265 (15) 1806 (24) 265 (25) 
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Waist-to-hip ratio (mean, 
SD)  0.83 (0.07) 0.84 (0.07) 1.40E-08 0.97 (0.06) 0.98 (0.07) 3.37E-10 

High blood pressure (HBP) 
(count, %) 

No HBP 4450 (69) 1159 (67) 
1.11E-01 

4810 (63) 593 (56) 
1.24E-05 

HBP 2021 (31) 577 (33) 2805 (37) 462 (44) 

Diabetes (count, %) 
No diabetes 5639 (87) 1412 (81) 

6.61E-10 
6336 (83) 818 (78)% 

5.55E-06 
Diabetes 832 (13) 324 (19) 1279 (17) 237 (22) 

Hypothyroidism (count, %) 
No hypothyroidism 5291 (82) 1323 (76) 

2.03E-07 
7139 (94) 974 (92) 

7.65E-02 
Hypothyroidism 1180 (18) 413 (24) 476 (6) 81 (8) 

Ischemic Heart Disease 
(IHD) Outcome (count, %) 

No IHD 6264 (97) 1651 (95) 
6.98E-04 

6958 (91) 938 (89) 
8.57E-03 

IHD 207 (3) 85 (5) 657 (9) 117 (11) 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Final counts and summary statistics of all categorical (frequency/%) and numerical (mean/SD) variables. These counts reflect participants who were 
retained after PRS QC steps and covariate QC that are reflected in multivariable analysis (figure 4.8). For categorical variables, chi-squared tests of independence for 
p-values between MDD vs. non-MDD groups were calculated (within-sex comparisons), and for numerical variables, p-values were calculated using 2-sample t-tests.   
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Supplementary Table 1: Odds ratios for MDD of participants in each decile relative to the lowest decile (referent) for each combination of input 
CLSA target data (females vs males) with base data (both-sexes GWAS or sex-specific GWAS).  
 

Sex of target 
CLSA data 

Sex of base 
GWAS data Chromosome Quantile Odds Ratio 95% CI (low) 95% CI (high) P-value 

Females Both-sexes Autosomes 

(0-10] REF REF REF REF 
(10-20] 1.164 0.910 1.489 0.23 
(20-30] 1.128 0.882 1.443 0.34 
(30-40] 1.121 0.875 1.437 0.37 
(40-50] 1.133 0.884 1.453 0.33 
(50-60] 1.242 0.973 1.588 0.08 
(60-70] 1.188 0.928 1.521 0.17 
(70-80] 1.286 1.007 1.643 0.044 
(80-90] 1.247 0.978 1.594 0.076 
(90-99] 1.441 1.132 1.837 0.0031 

Females Females Autosomes 

(0-10] REF REF REF REF 
(10-20] 1.339 1.047 1.714 0.020 
(20-30] 1.268 0.989 1.629 0.062 
(30-40] 1.255 0.978 1.613 0.075 
(40-50] 1.188 0.922 1.531 0.18 
(50-60] 1.300 1.015 1.668 0.038 
(60-70] 1.290 1.006 1.656 0.045 
(70-80] 1.419 1.109 1.818 0.005 
(80-90] 1.334 1.040 1.715 0.024 
(90-99] 1.676 1.318 2.136 0.000028 

Females Males Autosomes 

(0-10] REF REF REF REF 
(10-20] 1.109 0.870 1.415 0.40 
(20-30] 1.080 0.845 1.381 0.54 
(30-40] 1.084 0.849 1.386 0.52 
(40-50] 1.164 0.914 1.484 0.22 
(50-60] 0.950 0.741 1.217 0.68 
(60-70] 1.052 0.822 1.348 0.69 
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(70-80] 1.162 0.911 1.483 0.23 
(80-90] 1.169 0.920 1.487 0.20 
(90-99] 1.165 0.915 1.485 0.21 

Females Females X 

(0-10] REF REF REF REF 
(10-20] 0.887 0.697 1.129 0.33 
(20-30] 1.004 0.794 1.269 0.98 
(30-40] 0.949 0.746 1.207 0.67 
(40-50] 0.912 0.718 1.159 0.45 
(50-60] 0.830 0.649 1.060 0.14 
(60-70] 0.871 0.685 1.108 0.26 
(70-80] 1.088 0.862 1.373 0.48 
(80-90] 1.176 0.935 1.480 0.17 
(90-99] 0.933 0.734 1.185 0.57 

Males Both-sexes Autosomes 

(0-10] REF REF REF REF 
(10-20] 1.455 1.056 2.016 0.023 
(20-30] 1.523 1.107 2.105 0.010 
(30-40] 1.470 1.067 2.035 0.019 
(40-50] 1.372 0.991 1.906 0.058 
(50-60] 1.609 1.173 2.218 0.0034 
(60-70] 1.470 1.067 2.035 0.019 
(70-80] 1.506 1.094 2.083 0.012 
(80-90] 1.909 1.404 2.614 0.000044 
(90-99] 1.521 1.106 2.102 0.010 

Males Females Autosomes 

(0-10] REF REF REF REF 
(10-20] 0.934 0.691 1.260 0.653 
(20-30] 0.967 0.718 1.303 0.827 
(30-40] 1.092 0.817 1.461 0.553 
(40-50] 0.911 0.674 1.231 0.545 
(50-60] 0.856 0.630 1.161 0.317 
(60-70] 1.000 0.744 1.344 1.000 
(70-80] 0.990 0.736 1.332 0.947 
(80-90] 1.128 0.845 1.508 0.413 
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(90-99] 1.080 0.807 1.447 0.60 

Males Males Autosomes 

(0-10] REF REF REF REF 
(10-20] 1.227 0.906 1.666 0.187 
(20-30] 0.950 0.690 1.307 0.751 
(30-40] 1.105 0.811 1.507 0.528 
(40-50] 1.120 0.822 1.527 0.473 
(50-60] 1.296 0.960 1.754 0.0918 
(60-70] 1.158 0.852 1.576 0.349 
(70-80] 1.106 0.812 1.509 0.522 
(80-90] 1.421 1.058 1.916 0.020 
(90-99] 1.434 1.068 1.932 0.017 

Males Males X 

(0-10] REF REF REF REF 
(10-20] 0.990 0.737 1.330 0.947 
(20-30] 1.210 0.911 1.610 0.190 
(30-40] 1.011 0.754 1.357 0.940 
(40-50] 1.093 0.818 1.461 0.549 
(50-60] 0.945 0.702 1.273 0.711 
(60-70] 0.978 0.727 1.314 0.880 
(70-80] 1.070 0.800 1.431 0.650 
(80-90] 0.803 0.589 1.092 0.163 
(90-99] 0.760 0.556 1.037 0.085 
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Supplementary Table 2: Summary of the number of missing data in each of the finalized covariates prior to sample QC filtering out samples with 
missing values in any covariates.  
 

Variable Labels (if categorical) 
Original labels in 
CLSA (prior to 

recoding) 

Females (n=13, 221) Males (n=13, 280) 

Count of NAs Total (%) Count of NAs Total (%) 

MDD 

Don't Know/No answer 8 43 

58 (0.4) 

33 

63 (0.5) Refused  9 2 3 

NA NA 13 27 

Sex   0 0 0 0 

Age  # 0 0 0 0 

Partnered Status 

Don't Know/No answer 8 2 

693 (5.2) 

3 

762 (5.7) 
Refused  9 1 3 

Missing - Technical difficulties  -8 168 206 

NA NA 522 550 

Annual Income 

Don't Know/No answer 8 471 

1027 (7.8) 

214 

623 (4.7) Refused 9 556 409 

Missing - Technical difficulties 7 0 0 

Highest 
Education 

Other 97 17 

2199 (16.6) 

16 

1786 (13.4) 
Don't Know/No answer 98 1 2 

Refused 99 0 0 

NA NA 2181 1768 

Smoking Status Missing -8 0 0 0 0 

Frequency of 
alcohol 
consumption 

Don't Know/No answer 98 4 

390 (2.9) 

4 

233 (1.8) Refused 99 1 1 

Missing 77 0 0 
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NA NA 385 228 

High Blood 
Pressure 

Don't Know/No answer 8 34 
34 (0.3) 

63 
63 (0.5) 

Refused 9 0 0 

Diabetes 
Don't Know/No answer 8 18 

18 (0.1) 
24 

24 (0.2) 
Refused 9 0 0 

Hypothyroidism 
Don't Know/No answer 8 160 

160 (1.2) 
118 

118 (0.9) 
Refused 9 0 0 

Waist-to-hip ratio  999.7 27 27 (0.2) 27 43 (0.3) 

Angina 
Don't Know/No answer 8 45 

45 (0.3) 
44 

44 (0.3) 
Refused 9 0 0 

MI 
Don't Know/No answer 8 19 

19 (0.1) 
44 

44 (0.3) 
Refused 9 0 0 
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Supplementary Table 3: Correlation matrix of covariates for females. 

 Age 
Partner

ed 
Status 

Annual 
Income 

Highest 
Educati

on 

Smokin
g Status 

Alcohol 
Frequen

cy 

High 
Blood 
Pressur

e 

Diabete
s 

Hypoth
yroidis

m 
WHR LLT IHD MDD 

Age 1 0.24 0.36 0.13 -0.01 -0.06 0.27 0.08 0.11 0.16 0.22 0.16 -0.09 

Partner
ed 

Status 
0.24 1 0.51 0.06 0.09 -0.05 0.09 0.06 0.06 0.1 0.09 0.06 0.1 

Annual 
Income 0.36 0.51 1 0.25 0.1 -0.13 0.15 0.11 0.08 0.14 0.14 0.1 0.11 

Highest 
Educati

on 
0.13 0.06 0.25 1 0.15 -0.06 0.09 0.09 0.02 0.11 0.08 0.06 0.01 

Smokin
g Status -0.01 0.09 0.1 0.15 1 0.01 0.02 0.03 -0.02 0.08 0.03 0.05 0.07 

Alcohol 
Frequen

cy 
-0.06 -0.05 -0.13 -0.06 0.01 1 -0.04 -0.08 0 -0.02 -0.05 -0.05 -0.05 

High 
Blood 
Pressur

e 

0.27 0.09 0.15 0.09 0.02 -0.04 1 0.22 0.03 0.23 0.24 0.12 0.02 

Diabete
s 0.08 0.06 0.11 0.09 0.03 -0.08 0.22 1 0.04 0.23 0.22 0.07 0.07 

Hypoth
yroidis

m 
0.11 0.06 0.08 0.02 -0.02 0 0.03 0.04 1 0.06 0.05 0.03 0.06 

WHR 0.16 0.1 0.14 0.11 0.08 -0.02 0.23 0.23 0.06 1 0.19 0.08 0.06 

LLT 0.22 0.09 0.14 0.08 0.03 -0.05 0.24 0.22 0.05 0.19 1 0.23 0.04 

IHD 0.16 0.06 0.1 0.06 0.05 -0.05 0.12 0.07 0.03 0.08 0.23 1 0.04 
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MDD -0.09 0.1 0.11 0.01 0.07 -0.05 0.02 0.07 0.06 0.06 0.04 0.04 1 
 
Supplementary Table 4: P-values of correlation matrix of covariates for females. 

 Age 
Partner

ed 
Status 

Annual 
Income 

Highest 
Educati

on 

Smokin
g Status 

Alcohol 
Frequen

cy 

High 
Blood 
Pressur

e 

Diabete
s 

Hypoth
yroidis

m 
WHR LLT IHD MDD 

Age 0.00 0.33 0.11 0.85 0.38 0.29 0.29 0.88 0.99 0.79 0.47 0.72 0.18 

Partner
ed 

Status 
0.33 0.00 0.01 0.89 0.90 0.34 0.84 0.68 0.79 0.83 0.79 0.73 1.00 

Annual 
Income 0.11 0.01 0.00 0.43 0.86 0.11 0.91 0.85 0.79 0.97 0.99 0.86 0.90 

Highest 
Educati

on 
0.85 0.89 0.43 0.00 0.70 0.38 0.88 0.91 0.60 0.96 0.80 0.78 0.59 

Smokin
g Status 0.38 0.90 0.86 0.70 0.00 0.81 0.47 0.60 0.45 0.76 0.50 0.71 0.98 

Alcohol 
Frequen

cy 
0.29 0.34 0.11 0.38 0.81 0.00 0.38 0.31 0.77 0.46 0.34 0.44 0.56 

High 
Blood 
Pressur

e 

0.29 0.84 0.91 0.88 0.47 0.38 0.00 0.41 0.60 0.41 0.34 0.89 0.49 

Diabete
s 0.88 0.68 0.85 0.91 0.60 0.31 0.41 0.00 0.67 0.38 0.43 0.87 0.86 

Hypoth
yroidis

m 
0.99 0.79 0.79 0.60 0.45 0.77 0.60 0.67 0.00 0.70 0.66 0.66 0.90 

WHR 0.79 0.83 0.97 0.96 0.76 0.46 0.41 0.38 0.70 0.00 0.61 0.83 0.71 
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LLT 0.47 0.79 0.99 0.80 0.50 0.34 0.34 0.43 0.66 0.61 0.00 0.39 0.59 

IHD 0.72 0.73 0.86 0.78 0.71 0.44 0.89 0.87 0.66 0.83 0.39 0.00 0.70 

MDD 0.18 1.00 0.90 0.59 0.98 0.56 0.49 0.86 0.90 0.71 0.59 0.70 0.00 
 
 
Supplementary Table 5: Correlation matrix of covariates for males. 

 Age 
Partner

ed 
Status 

Annual 
Income 

Highest 
Educati

on 

Smokin
g Status 

Alcohol 
Frequen

cy 

High 
Blood 
Pressur

e 

Diabete
s 

Hypoth
yroidis

m 
WHR LLT IHD MDD 

Age 1 0.04 0.27 0.01 0.1 -0.04 0.23 0.13 0.1 0.08 0.26 0.2 -0.06 

Partner
ed 

Status 
0.04 1 0.39 0.07 0.08 -0.06 0.02 0.03 0.02 0.04 -0.01 0.02 0.07 

Annual 
Income 0.27 0.39 1 0.23 0.14 -0.14 0.09 0.11 0.05 0.07 0.09 0.09 0.09 

Highest 
Educati

on 
0.01 0.07 0.23 1 0.17 -0.07 0.05 0.09 0.01 0.1 0.05 0.05 0.01 

Smokin
g Status 0.1 0.08 0.14 0.17 1 -0.01 0.08 0.08 0 0.12 0.07 0.06 0.06 

Alcohol 
Frequen

cy 
-0.04 -0.06 -0.14 -0.07 -0.01 1 -0.01 -0.05 -0.01 -0.04 -0.01 -0.02 -0.08 

High 
Blood 
Pressur

e 

0.23 0.02 0.09 0.05 0.08 -0.01 1 0.21 0.05 0.19 0.25 0.14 0.05 

Diabete
s 0.13 0.03 0.11 0.09 0.08 -0.05 0.21 1 0.03 0.18 0.25 0.12 0.05 
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Hypoth
yroidis

m 
0.1 0.02 0.05 0.01 0 -0.01 0.05 0.03 1 0.02 0.07 0.04 0.02 

WHR 0.08 0.04 0.07 0.1 0.12 -0.04 0.19 0.18 0.02 1 0.12 0.08 0.07 

LLT 0.26 -0.01 0.09 0.05 0.07 -0.01 0.25 0.25 0.07 0.12 1 0.3 0.01 

IHD 0.2 0.02 0.09 0.05 0.06 -0.02 0.14 0.12 0.04 0.08 0.3 1 0.03 

MDD -0.06 0.07 0.09 0.01 0.06 -0.08 0.05 0.05 0.02 0.07 0.01 0.03 1 
 
Supplementary Table 6: P-values of correlation matrix of covariates for males. 

 Age 
Partner

ed 
Status 

Annual 
Income 

Highest 
Educati

on 

Smokin
g Status 

Alcohol 
Frequen

cy 

High 
Blood 
Pressur

e 

Diabete
s 

Hypoth
yroidis

m 
WHR LLT IHD MDD 

Age 0.00 0.73 0.42 0.56 0.88 0.45 0.41 0.83 0.98 0.83 0.28 0.47 0.28 

Partner
ed 

Status 
0.73 0.00 0.05 0.93 0.96 0.40 0.47 0.57 0.68 0.65 0.34 0.52 0.96 

Annual 
Income 0.42 0.05 0.00 0.42 0.85 0.12 0.71 0.85 0.69 0.70 0.69 0.78 0.94 

Highest 
Educati

on 
0.56 0.93 0.42 0.00 0.58 0.38 0.64 0.91 0.59 0.99 0.61 0.68 0.71 

Smokin
g Status 0.88 0.96 0.85 0.58 0.00 0.60 0.75 0.81 0.50 0.93 0.67 0.69 0.87 

Alcohol 
Frequen

cy 
0.45 0.40 0.12 0.38 0.60 0.00 0.57 0.42 0.76 0.48 0.58 0.58 0.43 

High 
Blood 
Pressur

e 

0.41 0.47 0.71 0.64 0.75 0.57 0.00 0.45 0.73 0.58 0.31 0.76 0.69 
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Diabete
s 0.83 0.57 0.85 0.91 0.81 0.42 0.45 0.00 0.64 0.59 0.33 0.86 0.76 

Hypoth
yroidis

m 
0.98 0.68 0.69 0.59 0.50 0.76 0.73 0.64 0.00 0.60 0.83 0.74 0.73 

WHR 0.83 0.65 0.70 0.99 0.93 0.48 0.58 0.59 0.60 0.00 0.95 0.86 0.92 

LLT 0.28 0.34 0.69 0.61 0.67 0.58 0.31 0.33 0.83 0.95 0.00 0.17 0.48 

IHD 0.47 0.52 0.78 0.68 0.69 0.58 0.76 0.86 0.74 0.86 0.17 0.00 0.63 

MDD 0.28 0.96 0.94 0.71 0.87 0.43 0.69 0.76 0.73 0.92 0.48 0.63 0.00 
 
Supplementary Table 7: Correlation matrix of covariates of pooled “both-sexes” data. 

 Age 
Partner

ed 
Status 

Annual 
Income 

Highest 
Educati

on 

Smokin
g Status 

Alcohol 
Frequen

cy 

High 
Blood 
Pressur

e 

Diabete
s 

Hypoth
yroidis

m 
WHR LLT IHD MDD 

Age 1 0.13 0.3 0.07 0.05 -0.05 0.25 0.11 0.09 0.12 0.25 0.18 -0.08 

Partner
ed 

Status 
0.13 1 0.47 0.08 0.07 -0.06 0.04 0.03 0.08 -0.1 0 0.01 0.11 

Annual 
Income 0.3 0.47 1 0.25 0.11 -0.14 0.11 0.1 0.09 -0.03 0.09 0.07 0.12 

Highest 
Educati

on 
0.07 0.08 0.25 1 0.16 -0.07 0.06 0.09 0.03 0.02 0.05 0.04 0.02 

Smokin
g Status 0.05 0.07 0.11 0.16 1 0 0.05 0.06 -0.02 0.11 0.06 0.06 0.06 

Alcohol 
Frequen

cy 
-0.05 -0.06 -0.14 -0.07 0 1 -0.02 -0.07 -0.01 0 -0.03 -0.03 -0.07 
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High 
Blood 
Pressur

e 

0.25 0.04 0.11 0.06 0.05 -0.02 1 0.22 0.03 0.19 0.25 0.14 0.02 

Diabete
s 0.11 0.03 0.1 0.09 0.06 -0.07 0.22 1 0.03 0.17 0.24 0.11 0.05 

Hypoth
yroidis

m 
0.09 0.08 0.09 0.03 -0.02 -0.01 0.03 0.03 1 -0.11 0.03 0.01 0.07 

WHR 0.12 -0.1 -0.03 0.02 0.11 0 0.19 0.17 -0.11 1 0.21 0.13 -0.05 

LLT 0.25 0 0.09 0.05 0.06 -0.03 0.25 0.24 0.03 0.21 1 0.29 0.01 

IHD 0.18 0.01 0.07 0.04 0.06 -0.03 0.14 0.11 0.01 0.13 0.29 1 0.02 

MDD -0.08 0.11 0.12 0.02 0.06 -0.07 0.02 0.05 0.07 -0.05 0.01 0.02 1 
 
Supplementary Table 8: P-values of correlation matrix of pooled “both-sexes” data. 

 Age 
Partner

ed 
Status 

Annual 
Income 

Highest 
Educati

on 

Smokin
g Status 

Alcohol 
Frequen

cy 

High 
Blood 
Pressur

e 

Diabete
s 

Hypoth
yroidis

m 
WHR LLT IHD MDD 

Age 0.00 0.81 0.30 0.85 0.63 0.36 0.34 0.93 0.93 0.85 0.34 0.58 0.23 

Partner
ed 

Status 
0.81 0.00 0.01 0.86 0.88 0.38 0.55 0.55 0.87 0.14 0.35 0.47 0.72 

Annual 
Income 0.30 0.01 0.00 0.35 0.96 0.12 0.81 0.79 0.96 0.26 0.64 0.65 0.85 

Highest 
Educati

on 
0.85 0.86 0.35 0.00 0.62 0.37 0.69 0.90 0.76 0.62 0.61 0.65 0.77 

Smokin
g Status 0.63 0.88 0.96 0.62 0.00 0.71 0.63 0.74 0.46 0.91 0.66 0.74 0.90 
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Alcohol 
Frequen

cy 
0.36 0.38 0.12 0.37 0.71 0.00 0.51 0.35 0.74 0.80 0.48 0.55 0.48 

High 
Blood 
Pressur

e 

0.34 0.55 0.81 0.69 0.63 0.51 0.00 0.40 0.59 0.43 0.28 0.71 0.51 

Diabete
s 0.93 0.55 0.79 0.90 0.74 0.35 0.40 0.00 0.62 0.51 0.34 0.86 0.74 

Hypoth
yroidis

m 
0.93 0.87 0.96 0.76 0.46 0.74 0.59 0.62 0.00 0.18 0.55 0.56 0.91 

WHR 0.85 0.14 0.26 0.62 0.91 0.80 0.43 0.51 0.18 0.00 0.34 0.64 0.34 

LLT 0.34 0.35 0.64 0.61 0.66 0.48 0.28 0.34 0.55 0.34 0.00 0.18 0.44 

IHD 0.58 0.47 0.65 0.65 0.74 0.55 0.71 0.86 0.56 0.64 0.18 0.00 0.58 

MDD 0.23 0.72 0.85 0.77 0.90 0.48 0.51 0.74 0.91 0.34 0.44 0.58 0.00 
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Supplementary Table 9: Pseudo-R2 for each variable reported as a percent (%) of MDD explained, as well as a relative % to the other categories 
to the total.  
 

Category Variable 
Females Males 

Pseudo-R2 % of total Pseudo-R2 % of total 

Genetic 

Sex-specific autosomal PRS 0.002 3.0% 0.001 1.6% 

Sex-specific X-PRS 0.00001 0.02% 0.001 1.6% 

Total 0.002 3.0% 0.002 3.1% 

Sociodemographic 

Age 0.033 46.9% 0.019 32.5% 

Partnered status 0.003 4.9% 0.001 1.1% 

Annual income 0.013 19.1% 0.010 17.8% 

Highest education 0.002 2.2% 0.003 5.6% 

Total 0.051 73.1% 0.033 57.0% 

Lifestyle 

Smoking status 0.003 4.5% 0.005 8.4% 

Frequency of alcohol consumption 0.002 3.2% 0.008 13.0% 

Total 0.005 7.6% 0.013 21.5% 

Clinical 

Lipid-lowering therapy (LLT) 0.001 1.1% 0.000 0.01% 

Waist-to-hip ratio 0.002 3.3% 0.004 7.1% 

High blood pressure (HBP) 0.0001 0.2% 0.004 6.0% 

Diabetes 0.002 2.7% 0.001 2.1% 

Hypothyroidism 0.005 6.8% 0.001 1.3% 

IHD 0.001 2.1% 0.001 1.9% 

Total 0.011 16.3% 0.011 18.4% 

 Full model total  0.070  0.058  
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 17, 2023. ; https://doi.org/10.1101/2023.04.10.23288267doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.10.23288267
http://creativecommons.org/licenses/by-nc-nd/4.0/

