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Abstract  1 

Background: Cooking and heating in households contribute importantly to air pollution 2 

exposure worldwide. However, there is insufficient investigation of measured fine 3 

particulate matter (PM2.5) exposure levels, variability, seasonality, and inter-spatial 4 

dynamics associated with these behaviours.  5 

Methods: We undertook parallel measurements of personal, household (kitchen and living 6 

room), and community PM2.5 in summer (May-September 2017) and winter (November 7 

2017-Janauary 2018) in ~480 participants from one urban and two rural communities in 8 

China. These recorded ~61,000-81,000 person-hours of processed data per 9 

microenvironment. Age- and sex-adjusted geometric means of PM2.5 were calculated by 10 

key participant characteristics, overall and by season. Spearman correlation coefficients 11 

between PM2.5 levels across different microenvironments were computed. 12 

Findings: Overall, 25.1% reported use of solid fuel for both cooking and heating. Solid fuel 13 

users had ~90% higher personal and kitchen 24-hour average PM2.5 exposure than clean 14 

fuel users. Similarly, they also had a greater increase (~75% vs ~20%) in personal and 15 

household PM2.5 from summer to winter, whereas community levels of PM2.5 were 2-3 16 

times higher in winter regardless of fuel use. Compared with clean fuel users, solid fuel 17 

users had markedly higher weighted annual average PM2.5 exposure at personal (77.8 18 

[95% CI 71.1-85.2] vs ~40 µg/m3), kitchen (103.7 [91.5-117.6] vs ~50 µg/m3) and living 19 

room (62.0 [57.1-67.4] vs ~40 µg/m3) microenvironments. There was a remarkable diurnal 20 

variability in PM2.5 exposure among the participants, with 5-minute moving average 700-21 

1,200µg/m3 in typical meal times. Personal PM2.5 was moderately correlated with living 22 

room (Spearman r: 0.64-0.66) and kitchen (0.52-0.59) levels, but only weakly correlated 23 

with community levels, especially in summer (0.15-0.34) and among solid fuel users (0.11-24 

0.31).  25 

Conclusion: Solid fuel use for cooking and heating was associated with substantially 26 

higher personal and household PM2.5 exposure than clean fuel users. Household PM2.5 27 

appeared a better proxy of personal exposure than community PM2.5 in this setting. 28 

 29 

  30 
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1. Introduction 1 

The growing population and energy demand from rapid urbanisation, coupled with 2 

continued reliance of fossil fuels, have aggravated the ambient air pollution in many low- 3 

and middle-income countries (LMICs). On the other hand, about 3 billion individuals are 4 

still relying on solid fuels (e.g. coal, wood) for cooking and heating, which can result in 5 

intensive household air pollution.1,2 Fine particulate matter (PM2.5) from domestic use of 6 

solid fuels and ambient sources together constitute the top environmental risk factor of 7 

disease burden globally, estimated to account for more than 6 million premature deaths in 8 

2019.1 Despite the global health significance,3,4 there remains substantial uncertainties in 9 

the exposure-disease relationships and thus disease burden estimation, as most existing 10 

epidemiological studies relied on exposure proxies, namely modelled ambient air pollution 11 

levels around residential addresses and self-reported fuel use for indoor or household air 12 

pollution exposure.3,5  13 

Until recently, directly measured air pollution exposure data are rarely available in large 14 

population-based epidemiological studies. Most measurement studies had relatively small 15 

sample sizes, assessed primarily kitchen PM2.5 levels, and were limited to one or a few 16 

rural communities, with limited repeated measurements across seasons.6-14 The largest 17 

relevant study to date (PURE-Air) collected 48-hour aggregated kitchen and personal 18 

PM2.5 data in ~2400 households and ~900 individuals, respectively, in rural areas from 19 

eight LMICs.6 They found substantial variability in kitchen and personal PM2.5 levels by 20 

cooking fuel types and across countries, with solid fuel users tend to show significantly 21 

higher exposure. However, the short measurement window, limited repeated seasonal 22 

measurements, and inadequate coverage of heating season exposure leave ambiguity to 23 

both within-week and seasonal exposure variability within and between individuals. There 24 

is also a need of time-resolved data and parallel assessment of not only personal and 25 

kitchen PM2.5 but also living room and ambient levels to better understand the spatial-26 
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temporal dynamics of PM2.5 exposure. Data from urban areas will also offer additional 1 

insight into the urban-rural contrast in PM2.5 exposure patterns.  2 

We report detailed analyses of questionnaire data on personal characteristics, fuel use, 3 

and time-resolved PM2.5 exposure data at personal, household, and community levels in 4 

~480 participants from one urban and two rural areas in the China Kadoorie Biobank 5 

(CKB), repeatedly in the warm and cool seasons.15 The present report aims to  i) examine 6 

both aggregated and time-resolved PM2.5 levels by fuel use and other key characteristics; 7 

and ii) clarify personal-household-community gradient of PM2.5 exposure.  8 

2. Materials and Methods 9 

2.1 Study design and sample 10 

CKB is an ongoing prospective cohort study of ~512,000 adults aged 30-79 years 11 

recruited from ten diverse areas of China during 2004-2008.16,17 The CKB-Air study was 12 

nested within CKB, and details of the design, data collection procedures, data cleaning 13 

and processing, and participant characteristics have been published previously.15 Briefly, 14 

488 participants (mean age 58 years, 72% women) were recruited from two rural (Gansu, 15 

Henan) and one urban (Suzhou) CKB study sites (eFigure 1), selected to capture a 16 

diverse range of fuel use patterns.18 The study involved repeated assessment of air 17 

pollution and time-activity in the warm (May–September 2017; hereafter referred to as 18 

‘summer’) and cool (November 2017–January 2018; ‘winter’) seasons, with a household 19 

questionnaire on participant characteristics and usual fuel use patterns administered in 20 

winter. Subsequently, 451 individuals participated in the summer assessment, of whom 37 21 

were not available in winter and were replaced by other eligible CKB participants in the 22 

same community. The participants included in the two seasons were similar in their socio-23 

demographics and lifestyle characteristics documented in 2004-2008 during the baseline 24 

assessment.15  25 
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The study was approved by the Oxford University Tropical Research Ethics Committee, 1 

Oxford, UK (Ref: 5109-17) and the institutional review board of Fuwai Hospital, Chinese 2 

Academy of Medical Sciences, Beijing, China (Ref: 2018-1038). All participants provided 3 

written informed consent upon recruitment.  4 

2.2 Questionnaire data 5 

Trained health workers administered a laptop-based household questionnaire in the cool 6 

season, to assess personal characteristics (age, sex, household income, occupation, 7 

smoking, environmental tobacco smoke exposure) and exposure to household air pollution 8 

(cooking and heating patterns and all fuel types used) (Text S2). For those who reported 9 

different cooking patterns or fuel use in summer, additional questions on exposure during 10 

summer were asked. While many previous studies focused on a single primary cooking or 11 

heating fuels, we attempted to capture the increasingly recognised ‘fuel stacking’ 12 

phenomenon by assessing all fuel types used.18 Cooking fuel combinations were derived 13 

based on all fuel types reported to be ‘used in most meals’ or ‘sometimes’. A similar 14 

approach was undertaken to derive ‘heating fuel combination’ based on the duration of 15 

heating fuel use during winter. Clean fuels include gas, electricity, solar, and city-wide 16 

district heating (for heating only); solid fuels include coal (smoky/smokeless), coal 17 

briquette, charcoal, wood, and crop residue. The electronic questionnaire have built-in 18 

error and logic checks to minimise missing data and human errors.  19 

2.3 Air pollution data 20 

2.3.1 Air pollution monitors 21 

The study involved ~120 consecutive hours of measurements (at 1-minute resolution) of 22 

fine particulate matter (PM2.5; µg/m3) levels, temperature, and relative humidity (%) in three 23 

different microenvironments (personal, kitchen, and living room) for each participant, both 24 

in summer and winter except for those who only participated in one season (n=74). The 25 
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measurements were taken using PATS (Particle and Temperature Sensor; Berkeley Air 1 

Monitoring Group, CA, USA), an internationally validated low-cost nephelometer-based 2 

device (R2 range: 0.90-0.99 with reference to both with well-established time-resolved 3 

instruments [e.g. TSI DustTrak] and gravimetric measurements) developed for high 4 

household air pollution settings (PM2.5 detection range: 10-30,000 µg/m3).19 At each study 5 

site, community air pollution (PM1, PM2.5, PM10, carbon monoxide, ozone, and nitrogen 6 

oxides) was measured on the roof top of a building in a central location away from any 7 

proximal sources of pollution, using two tailor-made research instruments (NAS-AF100; 8 

Sapiens Environmental Technology, Hong Kong, China).  9 

Details of quality control and device calibration have been described previously.15 In brief, 10 

all devices were factory-calibrated against wood smoke by the manufacturers, and further 11 

calibrated using filter-based personal and static samplers for PM measurements. 12 

Randomly selected PATS (n=15) were also tested for consistency through co-location 13 

comparison tests in controlled settings for 24 hours, with good agreement demonstrated 14 

(correlation coefficients: 0.85-0.99). Before and after each deployment, the PATS devices 15 

were calibrated against HEPA-filtered air for 10 minutes, following the manufacturer’s 16 

standardised procedures.  17 

2.3.2 Data cleaning and processing 18 

Participants with corrupted data files due to human or device error were excluded from the 19 

PM2.5 analyses (eFigure 2). Twenty-nine and 115 participants in the warm and cool 20 

seasons, respectively, had no community air pollution data from NAS-F100 due to delays 21 

in deployment or other logistical challenges (eFigure 2). The time-resolved PM2.5 data 22 

from each PATS were then inspected and processed by i) downsizing to 5-minute moving 23 

averages time-series to facilitate computation, ii) applying 20-minute moving median 24 

smoothing to replace sporadic extreme spikes, and iii) adjusting data points at persistently 25 

high or low (i.e. at the lower limit of detection of 10µg/m3) levels by cross-device 26 
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calibration. Specifically, potentially erroneous data from one device were replaced by 1 

imputed data based on levels recorded in the other devices using generalised linear 2 

regression. The persistently high levels were likely caused by particles lodged inside the 3 

nephelometer or sustained direct light impact; whereas the persistently low levels, most of 4 

which were found in the personal PATS data during winter, are likely due to an obstructed 5 

air inlet (e.g. covered by clothing) or that the PATS was placed inside an enclosed 6 

environment (e.g. in a drawer when participants took it off during bathing or sleep). 7 

Overall, only <5% of the PM2.5 data recorded were flagged as persistently high or low, 8 

indicating generally high data quality (eTable 1).  9 

We first removed data from the first and last hour of the measurement period when 10 

participants’ exposure was likely affected by the study procedures. We then removed 11 

participants with <24 hours of effective data, which could happen due to battery failure. 12 

Subsequently, each of the remaining participants had at least 24 hours’ worth of data per 13 

PATS per season (mediansummer [Q1-Q3]: 117 [105-119] hours, medianwinter [Q1-Q3]: 113 14 

[94-117] hours) (eTable 2). To further enhance the quality of the analytical dataset, we 15 

undertook a conservative approach to remove participants (n=36) with >50% data flagged 16 

as persistently high or low in any one PATS (regardless of the quality of the other two 17 

device), thereby restricting the analyses to participants with data of satisfactory quality 18 

across all three PATSs (nsummer=419 [92.7%]; nwinter=365 [81.1%]). Thirty-five participants 19 

in summer who did not provide household questionnaire data were further excluded.  20 

The numbers of participants excluded at each stage of data analysis are shown in eFigure 21 

2. After data cleaning, the primary analyses on PM2.5 included 384 participants, with a total 22 

of 80,980 person-hours of PM2.5 data each at the personal, kitchen, and living room, and 23 

67,326 person-hours of data at the community level (eTable 2). 24 

2.4 Data analysis 25 
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Using linear regression, we estimated age- and sex-adjusted (where appropriate) 1 

geometric means and 95% confidence intervals (CI) of personal and household (kitchen 2 

and living room) PM2.5 concentrations levels, by demographic characteristics (age, sex, 3 

study area, education, occupation, smoking, household size) and household air pollution-4 

related exposures (cooking frequency, self-reported ‘smoky home’ while cooking or 5 

heating, and cooking and heating fuel combinations), stratified by season. We also 6 

averaged the time-resolved data to produce season-specific 24-hour PM2.5 time-series at 7 

personal, household, and community levels, according to different cooking and heating 8 

fuel combinations.  9 

We obtained regional temperature data during 2005-2017 (corresponding to the follow-up 10 

period of the CKB cohort up till the commencement of CKB-Air) from local meteorological 11 

offices and calculated the proportion of months with an average temperature <10°C in 12 

each region (0.25 for Suzhou, 0.42 for Gansu, 0.33 for Henan), which was used as a 13 

weighting coefficient to approximate heating fuel usage. We then estimated 14 

microenvironment-specific annual PM2.5 exposure levels as a weighted average of 15 

exposure levels across summer and winter, by cooking and heating fuel combinations: 16 

𝑎𝑛𝑛𝑢𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑖𝑗 = 𝑤𝑖𝑗 ∗ (1 − 𝑝𝑘) + 𝑐𝑖𝑗 ∗ 𝑝𝑘, where wij is the summer average and cij the 17 

winter average for microenvironment i (personal, kitchen, living room, or community) 18 

among participants in category j of cooking and heating fuel combination (no cooking or 19 

heating, clean fuels only, any solid fuels), and pk is a region-specific weighting coefficient 20 

of heating fuel usage described above.     21 

As a preliminary investigation to understand the relationships between PM2.5 levels across 22 

microenvironments and by season, we have examined the season-specific Spearman 23 

correlation of log-transformed PM2.5 levels across the four microenvironments overall and 24 

by cooking and heating fuel combinations.  25 
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Role of the funding source 1 

The study funders had no role in study design, data collection, analysis, interpretation, or 2 

writing of the report. KHC, XX, KH, KBHL, and ZC had access to all data and had final 3 

responsibility for the decision to submit for publication.  4 

3. Results 5 

3.1 Basic characteristics and PM2.5 levels 6 

Of the 384 participants included in the main analyses, the mean age was 58.2 [SD 6.6] 7 

years, 74.7% were women, and 32.0% and 52.2% used solid fuels for cooking and 8 

heating, respectively. In particular, those who used solid fuels for cooking were more likely 9 

to be women, from rural areas, less educated, agricultural workers or home-makers, and 10 

to use solid fuel for heating (eTable 3). Moreover, substantially more solid fuel users 11 

reported observing a smoky home while cooking or heating compared to clean fuel users.  12 

Overall, levels of exposure to PM2.5 were generally higher in younger (<65 years) 13 

participants, women, and those with lower education, with markedly higher levels in winter 14 

than in summer (Table 1). Agricultural workers, active smokers, and participants who 15 

reported a smoky home while cooking had particularly high PM2.5 exposure, most notably 16 

at personal and kitchen levels, both in summer and winter. For example, average kitchen 17 

PM2.5 in summer for those observing smoky home while cooking was 53.7 [95% CI 49.7-18 

58.0] compared to 40.9 [38.5-43.5] for those without such observation, and in winter 119.5 19 

[107.7-132.5] µg/m3 compared to 61.8 [56.6-67.6] µg/m3. Participants who reported smoky 20 

home while heating had somewhat lower personal and living room PM2.5 levels in summer, 21 

but significantly higher personal (82.0 [74.9-89.7] vs 55.3 [51.2-59.8] µg/m3), kitchen 22 

(127.9 [114.8-142.4] vs 72.6 [66.2-79.6] µg/m3), and living room (72.5 [66.4-79.2] vs 54.2 23 

[50.2-58.4] µg/m3) levels in winter. There was no clear pattern by household size.  24 

3.2 PM2.5 levels by fuel use patterns 25 
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Compared across primary cooking and heating fuel combinations, solid fuel users had 1 

~90% higher personal and kitchen PM2.5 levels than those who used clean fuels or did not 2 

cook or heat (Figure 1A). Personal and household PM2.5 levels were significantly (~75%) 3 

higher in winter among solid fuel users, but less so for other participants (~20%), whilst 4 

community levels were 2-3 times higher across different fuel combinations. Broadly similar 5 

patterns were observed when examining cooking and heating fuel combinations separately 6 

(Figures 1B and 1C), but there was a more obvious gradient of exposure at personal and 7 

kitchen levels across cooking fuel combinations (as opposed to heating fuel), from the 8 

lowest in non-cooking households (winter: ~50 µg/m3) to the highest in solid fuel users 9 

(~115µg/m3). A sensitivity analysis restricted to participants who personally cooked 10 

regularly showed similar patterns (eFigure 3). Consistently, participants who had used 11 

solid fuels for cooking or heating had the highest weighted average annual PM2.5 exposure 12 

at the personal (77.8 [71.1-85.2] µg/m3; ~90% higher), kitchen (103.7 [91.5-117.6] µg/m3; 13 

~130% higher), and living room (62.0 [57.1-67.4] µg/m3; ~65% higher) levels, compared to 14 

those who reported using clean fuels or not cooking or heating (Table 2). There was no 15 

material difference in annual community PM2.5 levels by these groups. Similar patterns 16 

were observed when examining by cooking and heating fuel combinations separately.  17 

When examining the aggregated diurnal PM2.5 patterns by cooking fuel combinations, we 18 

observed major peaks at around noon and evening time for both solid fuel and clean fuel 19 

users (less so for non-cooking households), and these peaks were substantially higher in 20 

solid fuel users, up to ~600 and ~1200µg/m3 in summer and winter, respectively (Figure 21 

2A-C). A small morning peak (~08:00) was also found in the kitchen in winter (Figure 2B). 22 

Interestingly, personal, kitchen, and living room PM2.5 levels were considerably higher 23 

most of the time among clean fuel users than non-cooking households. Solid fuel users 24 

appeared to have the lowest community PM2.5 exposure in summer, but highest in winter, 25 

with broadly concordant diurnal variations for all three fuel use categories (Figure 2D). 26 
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The differences in diurnal exposure levels by heating fuel combinations were largely 1 

similar to those by cooking fuels in summer, but in winter the exposure levels in individuals 2 

who did not have heating were just slightly lower than the solid fuel users but much higher 3 

than clean fuel users (Figure 3).  4 

3.3 PM2.5 exposure models and inter-spatial correlation 5 

We found moderate correlation between measured PM2.5 at personal, living room (r: 0.64-6 

0.66), and kitchen (0.52-0.59) levels, whilst the correlation of personal and household 7 

levels with community levels was weaker, especially in summer (rrange_summer: 0.15-0.34; 8 

rrange_winter: 0.41-0.55) (Figure 4). Stratified by cooking and heating fuel combinations, we 9 

found the highest correlation of personal and household with community levels among 10 

those reporting no cooking or heating (rrange_summer: 0.52-0.65; rrange_winter: 0.55-0.62), and 11 

weakest among those who used solid fuels (rrange_summer: 0.11-0.31; rrange_winter: 0.29-0.52) 12 

(eFigures 4A-C).  13 

4. Discussion 14 

We reported integrated and time-resolved PM2.5 levels at personal, household (kitchen and 15 

living room), and community environments by cooking and heating fuel combinations and 16 

other key characteristics in ~360 adults from one urban and two rural areas of China. Solid 17 

fuel use for cooking and heating was associated with significantly higher estimated annual 18 

PM2.5 exposure at both personal and household levels, with personal PM2.5 exposure at ~3 19 

times and 5 times the World Health Organization 24-hour Air Quality Guidelines (WHO 20 

AQG) level (15µg/m3) in summer and winter, respectively, and an estimated annual 21 

personal exposure at over 15 times of the WHO annual AQG level (5µg/m3)20. The PM2.5 22 

levels across all microenvironments were higher in winter than summer, with ~2-3 times 23 

higher community levels regardless of fuel use. Time-resolved data showed vast inter- and 24 

intra-personal variability in PM2.5 exposure within and across seasons, with remarkably 25 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 17, 2023. ; https://doi.org/10.1101/2023.04.10.23288228doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.10.23288228
http://creativecommons.org/licenses/by/4.0/


 

high exposure (5-min moving-average up to 1200µg/m3) recorded in typical cooking times 1 

(~2-4 hours per day), most notably in the kitchen but also personal monitors among solid 2 

fuel users.  3 

Previous studies assessing exposures to air pollution were highly heterogeneous in 4 

settings, sample size, prevalent fuel types, and recorded PM2.5 levels,6-14 but there has 5 

been broadly consistent evidence that solid fuel use for cooking was associated with 6 

higher personal and kitchen PM2.5 levels as reported in our study. For logistical and 7 

technical reasons, most previous studies primarily measured kitchen PM2.5,6-14,21 while 8 

some had parallel measurements of personal6,7,14 or ambient10,14,21 exposure, with most 9 

personal measurements done in a subset of participants. Notably, the largest single 10 

sample (n=998; ~48,000 person-hours) of personal PM2.5 measurements (alongside 11 

kitchen measurements in 2,541 households) came from the PURE-Air study focussing on 12 

cooking fuel in rural areas across eight countries.6 With 48-hour integrated PM2.5 13 

measurements, they found lower PM2.5 levels by cooking fuel types moving up the 14 

traditional ‘energy ladder’ (i.e. from heavily polluting biomass to coal, then to gas and 15 

electricity),22 but they also found substantial heterogeneity within each solid fuel category 16 

and between countries (e.g. kitchen PM2.5 for primary wood use was 50 [45-55] µg/m3 in 17 

China and 105 [96-116] µg/m3 in India), possibly due to varying fuel use behaviour or 18 

infrastructure, chemical constituents of fuels, and different climate conditions. With the 19 

parallel and repeated time-resolved assessment of personal, kitchen, living room (~81,000 20 

person-hours for each measure), and community (~67,000 person-hours) level PM2.5 in 21 

summer and winter, we provided further insight into the complex relationships between 22 

fuel use behaviour and PM2.5 levels across the personal-household-community exposure 23 

spectrum. 24 

Consistent with the few existing studies that ascertained multiple fuel use,6,10,14 we showed 25 

that fuel stacking was common in rural China, and mixed use of solid and clean fuels was 26 
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associated with substantially elevated PM2.5 exposure, especially in winter. As fuel 1 

stacking is increasingly common in many developing economies, this highlights the 2 

importance of capturing usage information beyond a single, primary fuel type, in order to 3 

more accurately assess household air pollution exposure and the associated disease 4 

burden. On the other hand, until recently, both researchers and policymakers have largely 5 

overlooked heating as a major contributor of air pollution.18,23-25 Our findings add to the 6 

previous field measurement studies,26-28 showing solid fuels for heating to be associated 7 

with 76-125% higher PM2.5 exposure at personal and household levels in winter. It may 8 

seem counterintuitive to observe a higher level in the kitchen than in the living room, but 9 

previous studies have noted poorer ventilation in winter and that solid fuel users may stay 10 

in the kitchen longer to get warmth from the cookstove to save fuel.22 In line with a slower 11 

rate of modernisation of heating (versus cooking) fuel in China (as in many other 12 

LMICs),18,24 about 50% of CKB-Air participants who had used clean fuels for cooking still 13 

relied on solid fuels for heating. Adding to the complexity, the lack of heating in rural China 14 

was associated with a lower socioeconomic status and greater likelihood of using solid 15 

fuels for cooking compared to clean fuel users.18 This, together with the likely reduced 16 

ventilation (to keep warm) in winter time, may explain the considerably (~30%) higher 17 

personal and household PM2.5 levels (in both seasons) among our participants who 18 

reported ‘no heating’, compared with the clean heating fuel users.  19 

While the community PM2.5 level was markedly higher in winter regardless of fuel use 20 

categories, there was an interesting contrast that solid fuel users had the lowest 21 

community PM2.5 in summer, but the highest in winter. The ‘winter smog’ phenomenon in 22 

densely populated (often urban) areas of China is well-documented, as increased energy 23 

consumption, reliance on coal-fired power plants, and meteorological factors (e.g. 24 

temperature inversion) drive heightened regional ambient air pollution.29 On the other 25 

hand, most solid fuel users resided in rural areas with lower population and vehicle 26 
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density, which tend to be associated with lower ambient air pollution. In winter, however, 1 

the intensive use of solid fuels for heating (most participants reported heating throughout 2 

the day) could result in major rise of neighbourhood PM2.5 in addition to regional ambient 3 

air pollution, as supported by previous studies.14,30 It is also worth noting that the increase 4 

in personal and household levels was much higher in solid fuel users than in other 5 

participants, whose personal and household levels were less than 50% of the community 6 

levels.  7 

As in many previous studies14,21 we observed relatively weak correlation between personal 8 

and community PM2.5 levels, which poses challenges to the previous disease burden 9 

estimates for ambient air pollution in LMICs based mainly on epidemiological studies using 10 

modelled ambient levels without accounting for inter-spatial variability and people’s time 11 

spent indoors (typically 70-80%).31 This may be less problematic in HICs with relatively low 12 

exposure from non-ambient sources, although the re-emergence of wood-fire heating may 13 

raise concern.32 The relatively strong correlation (0.52-0.66) between personal and 14 

household measurements is consistent with previous evidence (e.g. PURE-Air: person-to-15 

kitchen correlation = 0.69). Our evidence adds further support for more granular household 16 

measurements along with housing characteristics questionnaires, simple personal GPS 17 

trackers, and advanced ambient air pollution modelling approaches33,34 to better 18 

approximate personal exposure in large-scale epidemiological studies. More in-depth 19 

modelling analysis on our data will generate further insight for better exposure 20 

approximation in future studies.   21 

Our time-resolved data also illustrated the remarkable short-term intra- and inter-personal 22 

variability in PM2.5 exposure even within each fuel use category. The diurnal patterns of 23 

kitchen PM2.5 appeared consistent with the previously reported time-activity patterns in 24 

CKB-Air,15 such as the exposure peaks (averaged twice in summer; 3 times in winter) at 25 

typical meal times. Furthermore, we observed stronger and longer-lasting evening peaks 26 
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of personal and household levels among individuals who used solid fuels in winter, which 1 

is consistent with typical space heating practices with reduced ventilation at night. The vast 2 

diurnal variations, with personal PM2.5 exposure as high as 400µg/m3 and as low as 3 

10µg/m3, lead to the question of whether and how long-term average exposure could 4 

compare to an accumulation of repeated bursts of extreme exposure in relation to disease 5 

development risk.35 The mystery might be solved by the increasing availability of more 6 

refined air pollution data, the use of chamber studies, and the emerging multi-omics 7 

technologies that facilitate a better understanding of the toxicology and pathophysiology.  8 

CKB-Air offers one of the most detailed parallel and repeated seasonal assessments of 9 

personal, household, and community level PM2.5 with one of the largest time-resolved 10 

datasets (up to ~80,000 person-hours per microenvironment). Moreover, we assessed not 11 

only the role of parallel fuel use for cooking but also for heating on both average and time-12 

resolved PM2.5 exposure, shedding light on the complexity of fuel use behaviour and PM2.5 13 

exposure. However, several limitations warrant discussion. First, despite the relatively 14 

large amount of data captured, the number of participants representing each fuel use 15 

combination beyond the aggregated categories on solid versus clean fuels was small. 16 

Also, the large inter-and intra-personal variability means that we could not reliably estimate 17 

PM2.5 levels by >10 different fuel combinations captured. Second, unlike some previous 18 

studies that used gold-standard gravimetric samplers in measuring integrated PM2.5 19 

exposure,6 we used a nephelometer in order to obtain detailed time-resolved data. Despite 20 

the field- and lab-based validation and calibration, our instruments inevitably entailed 21 

measurement error, but this should not result in major biases that would affect the 22 

applicability in epidemiological studies. Third, we assessed community PM2.5 at a single 23 

location, and we lacked pairwise data of street and regional levels. Fourth, the study 24 

sample was recruited via convenient sampling from three purposively selected areas in 25 
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China, so the estimated exposure levels would not be generalisable to China or other 1 

populations.  2 

5. Conclusions 3 

This study has demonstrated the feasibility and value of collecting detailed air pollution 4 

exposure measurement data to capture intra- and inter-personal variations over short 5 

(weekly) and medium (seasonal) term, in rural and urban China. Most notably, the 6 

individuals who used solid fuels for cooking or heating were found to have annual personal 7 

PM2.5 exposure over 15 times higher than the latest WHO AQG. The relatively weak 8 

correlation of personal with community PM2.5, in contrast to the stronger correlation 9 

between personal and household levels, supports the use of reliable, low-cost household 10 

static monitors in improving personal air pollution exposure assessment in large-scale 11 

epidemiological studies. Our findings underscores the complexity of air pollution exposure 12 

and the need for cross-disciplinary investigation involving exposure science, toxicology, 13 

epidemiology and statistics.   14 

  15 
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Figure Legend 1 

Figure 1. Age- and sex-adjusted geometric mean PM2.5 concentrations (μg/m3) 2 

recorded in the personal, kitchen, living room, and community monitors by season 3 

and the combination of primary cooking and heating fuels 4 

Each vertical bar represents adjusted geometric means of each microenvironment by 5 

exposure groups, with vertical black lines showing the corresponding 95% confidence 6 

intervals (CIs). Non-overlapping CIs between bars indicate statistically significant 7 

difference. From left to right the four bars in each group are personal, kitchen, living room, 8 

and community PM2.5 levels. Participants reporting using unspecified “other” fuels for 9 

heating were excluded due to small sample size (Nsummer = 1; Nwinter = 2). 10 

Figure 2. 24-hour average time-series plots for PM2.5 concentrations (μg/m3) 11 

recorded in the personal, kitchen, living room, and community monitors by season 12 

and primary cooking fuel combinations 13 

There were 123 (13761 person-hour), 167 (18663 person-hour) and 94 (10607 person-14 

hour) subjects for the “Solid fuels included”, “Clean fuels” and “No cooking” group in 15 

summer, respectively; There were 126 (13174 person-hour), 173 (17956 person-hour) and 16 

65 (6819 person-hour) subjects for the “Solid fuels included”, “Clean fuels” and “No 17 

cooking” group in winter, respectively. Smaller plots nested within panels are “zoom-in” 18 

version of the corresponding plot, as the use of a universal y-axis limit up to 1200 with 19 

reference to the kitchen exposure levels impaired the readability of those plots.  20 

Figure 3. 24-hour average time-series plots for PM2.5 concentrations (μg/m3) 21 

recorded in the personal, kitchen, living room, and community monitors by season 22 

and primary heating fuel combinations 23 

There were 200 (22539 person-hours), 47 (5226 person-hours) and 136 (15147 person-24 

hours) subjects for the “Solid fuels included”, “Clean only” and “No heating” group in 25 
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summer, respectively; There were 207 (21772 person-hours), 43 (4261 person-hours) and 1 

112 (11701 person-hours) subjects for the “Solid fuels included”, “Clean only” and “No 2 

heating” group in winter, respectively. Smaller plots nested within panels are “zoom-in” 3 

version of the corresponding plot, as the use of a universal y-axis limit up to 1200 with 4 

reference to the kitchen exposure levels impaired the readability of those plots. 5 

Figure 4. The correlation matrix between the log-transformed concentrations of 6 

PM2.5 at personal, kitchen, living room and community levels 7 

Red area under curves and dots are summer data; blue area under curves and dots are 8 

winter data; black numbers in boxes are overall Spearman correlation coefficient; red and 9 

blue numbers are summer- and winter-specific correlation.10 
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* Number of subjects.                 † Only adjusted for sex.                       ‡ Only adjusted for age. 1 

 2 

 3 

Table 1. Age- and sex-adjusted geometric mean (95% CI) PM2.5 concentrations (μg/m3) recorded in the personal, kitchen, and living room monitors by season and key 
characteristics. 

Characteristics 
Summer Winter 

N* Personal Kitchen Living room N* Personal Kitchen Living room 

Personal characteristics         

 Age†         

< 65 years 323 42.0 (40.2-43.9) 43.9 (41.8-46.2) 33.5 (32.1-34.9) 305 59.5 (56.2-63.1) 82.8 (77.2-88.8) 56.1 (52.9-59.4) 

≥ 65 years 61 33.5 (30.7-36.5) 43.0 (39.0-47.5) 31.9 (29.4-34.6) 59 48.9 (43.6-54.9) 62.9 (54.7-72.2) 49.2 (43.9-55.1) 

 Sex‡         

Female 287 40.9 (39.3-42.6) 44.4 (42.4-46.5) 32.7 (31.4-33.9) 267 66.1 (62.6-69.8) 87.6 (82.1-93.5) 61.1 (57.9-64.5) 

Male 97 39.8 (37.2-42.7) 43.3 (40.1-46.9) 33.7 (31.6-36.0) 97 50.2 (45.8-55.0) 72.0 (64.5-80.4) 49.4 (45.1-54.1) 

 Education         

No formal education 97 48.9 (45.1-53.1) 52.3 (47.6-57.5) 38.2 (35.3-41.3) 92 75.8 (67.9-84.7) 112.6 (98.7-128.5) 70.2 (62.9-78.3) 
Primary & middle school 133 38.8 (36.5-41.4) 42.8 (39.8-46.0) 30.4 (28.7-32.3) 125 58.5 (53.8-63.5) 84.0 (76.1-92.8) 58.4 (53.8-63.4) 

High school or above 154 38.4 (36.3-40.7) 41.6 (39.0-44.4) 33.3 (31.5-35.1) 147 50.9 (47.1-55.0) 66.0 (60.2-72.4) 47.4 (44.0-51.2) 

 Occupation         

Agricultural worker 140 53.2 (50.3-56.3) 59.9 (56.2-63.9) 38.0 (36.0-40.2) 138 74.6 (69.2-80.4) 120.0 (109.6-131.3) 69.0 (63.9-74.4) 

Factory worker 20 34.4 (29.7-39.9) 39.1 (33.0-46.2) 31.7 (27.4-36.6) 18 59.0 (47.9-72.7) 59.2 (46.0-76.1) 36.9 (29.9-45.5) 

Home-maker 106 40.1 (37.3-43.2) 43.2 (39.7-47.0) 32.9 (30.6-35.4) 109 68.6 (62.3-75.5) 88.4 (78.8-99.2) 65.3 (59.3-72.0) 

Non-manual labour 9 33.4 (27.0-41.4) 29.0 (22.7-37.0) 26.2 (21.2-32.4) 10 62.0 (47.1-81.8) 46.0 (33.0-64.2) 45.2 (34.2-59.7) 

Self/ un-employed or other 109 29.1 (27.2-31.1) 30.7 (28.4-33.1) 28.5 (26.7-30.5) 89 31.6 (28.7-34.8) 43.7 (39.0-49.1) 37.4 (33.9-41.2) 

 Smoking now         

No 328 38.6 (36.5-40.8) 44.7 (42.0-47.6) 29.2 (27.7-30.8) 303 52.1 (48.2-56.3) 75.0 (68.3-82.3) 49.1 (45.5-53.0) 

Yes 56 45.1 (40.7-50.1) 41.9 (37.2-47.2) 45.6 (41.3-50.3) 61 71.9 (62.7-82.4) 90.2 (76.5-106.3) 70.5 (61.6-80.7) 

Household air pollution-related factors        

 Household size         

≤ 4 persons 196 39.6 (37.7-41.7) 42.6 (40.2-45.2) 34.2 (32.6-35.9) 190 55.5 (51.8-59.5) 78.9 (72.6-85.8) 55.9 (52.2-59.9) 

    > 4 persons 188 41.2 (39.0-43.5) 45.3 (42.6-48.1) 32.0 (30.5-33.7) 174 60.0 (55.8-64.5) 79.9 (73.3-87.2) 53.8 (50.1-57.8) 

Cooking frequency         

Daily 301 41.4 (39.1-43.8) 43.7 (41.0-46.6) 34.4 (32.7-36.3) 280 59.1 (54.6-64.0) 82.4 (74.9-90.6) 55.3 (51.1-59.8) 

    Daily but not personal/ infrequent 83 38.6 (35.7-41.8) 44.2 (40.3-48.3) 31.1 (28.8-33.5) 84 55.2 (49.5-61.5) 74.9 (65.7-85.3) 54.4 (48.8-60.6) 

 Smoky home while cooking         

No 222 37.2 (35.2-39.2) 40.9 (38.5-43.5) 32.4 (30.8-34.1) 196 45.7 (42.4-49.1) 61.8 (56.6-67.6) 46.8 (43.4-50.3) 

Yes 120 46.1 (43.0-49.3) 53.7 (49.7-58.0) 35.1 (32.9-37.4) 127 74.9 (68.7-81.6) 119.5 (107.7-132.5) 67.7 (62.1-73.8) 

 Smoky home while heating         

No 163 44.3 (41.8-47.0) 44.1 (41.3-47.2) 34.0 (32.1-35.9) 151 55.3 (51.2-59.8) 72.6 (66.2-79.6) 54.2 (50.2-58.4) 

Yes   85 39.9 (36.8-43.1) 51.4 (46.9-56.4) 29.5 (27.4-31.8) 101 82.0 (74.9-89.7) 127.9 (114.8-142.4) 72.5 (66.4-79.2) 
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* Annual mean level was estimated using the regional temperature data from 2005-2017, the number of months with average temperature <10 degrees are 9 
3/12 in Suzhou, 5/12 in Gansu, 4/12 in Henan. Using the same data, the proportion of days with ≤10 degrees daily average temperature are 1233/4717 10 
(26.1%) in Suzhou, 1921/4717 (40.7%) in Gansu, 1524/4717 (32.7%) in Henan.  11 

Table 2. Age- and sex-adjusted estimated annual mean PM2·5 exposure levels (μg/m3) for the personal, kitchen, living room, and 

community environments by cooking and heating fuel category * 

Cooking and heating fuel category Personal Kitchen Living room Community 

Primary cooking fuel combination     

  No cooking (n=71) 45.2 (39.3-52.1) 60.6 (49.9-73.6) 42.6 (37.7-48.3) 55.0 (49.7-60.9) 

  Clean fuels only (n=135) 57.8 (52.3-63.9) 69.5 (60.5-79.9) 49.9 (45.7-54.6) 56.3 (52.1-60.8) 

  Solid fuels included (n=101) 86.7 (76.5-98.3) 121.6 (102.3-144.6) 68.9 (61.7-76.9) 63.1 (57.1-69.8) 

Primary heating fuel combination     

  No heating (n=98) 50.2 (44.4-56.8) 65.9 (55.7-77.9) 47.2 (42.4-52.7) 56.3 (51.8-61.2) 

  Clean fuels only (n=39) 43.4 (36.1-52.2) 44.5 (34.6-57.2) 39.3 (33.4-46.3) 53.7 (47.7-60.6) 

  Solid fuels included (n=169) 76.3 (69.2-84.2) 103.5 (90.6-118.3) 61.3 (56.3-66.9) 61.4 (56.3-66.9) 

Primary cooking and heating fuel combination     

  No cooking or heating (n=29) 38.4 (31.0-47.6) 50.1 (37.2-67.6) 41.1 (33.8-50.1) 60.0 (51.2-70.3) 

  Clean fuels only (n=37) 40.9 (34.2-48.9) 43.5 (33.9-55.8) 37.9 (32.1-44.7) 53.2 (46.7-60.7) 

  Solid fuels included (n=189) 77.8 (71.1-85.2) 103.7 (91.5-117.6) 62.0 (57.1-67.4) 61.7 (56.4-67.6) 
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Figure 1. Age- and sex-adjusted geometric mean PM2.5 concentrations (μg/m3) recorded in the personal, kitchen, 1 
living room, and community monitors by season and the combination of primary cooking and heating fuels  2 
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Figure 2. 24-hour average time-series plots for PM2·5 concentrations (μg/m3) recorded in the personal, kitchen, 1 
living room, and community monitors by season and primary cooking fuel combinations  2 
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Figure 3. 24-hour average time-series plots for PM2·5 concentrations (μg/m3) recorded in the personal, kitchen, 1 
living room, and community monitors by season and primary heating fuel combinations 2 
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Figure 4. The correlation matrix between the log-transformed concentrations of PM for personal, kitchen, living 1 
room and community levels 2 
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