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Abstract 27 

Indoor home dust microbial communities, important contributors to human health outcomes, are 28 
shaped by environmental factors, including farm-related exposures. Detection and characterization of 29 
microbiota are influenced by sequencing methodology; however, it is unknown if advanced 30 
metagenomic whole genome shotgun sequencing (WGS) can detect novel associations between 31 
environmental exposures and the indoor built-environment dust microbiome, compared to 32 
conventional 16S rRNA amplicon sequencing (16S). This study aimed to better depict indoor dust 33 
microbial communities using WGS to investigate novel associations with environmental risk factors 34 
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from the homes of 781 farmers and farm spouses enrolled in the Agricultural Lung Health Study. We 35 
examined various farm-related exposures, including living on a farm, crop versus animal production, 36 
and type of animal production, as well as non-farm exposures, including home cleanliness and indoor 37 
pets. We assessed the association of the exposures on within-sample alpha diversity and between-38 
sample beta diversity, and the differential abundance of specific microbes by exposure. Results were 39 
compared to previous findings using 16S. We found most farm exposures were significantly 40 
positively associated with both alpha and beta diversity. Many microbes exhibited differential 41 
abundance related to farm exposures, mainly in the phyla Actinobacteria, Bacteroidetes, Firmicutes, 42 
and Proteobacteria. The identification of novel differential taxa associated with farming at the genera 43 
level, including Rhodococcus, Bifidobacterium, Corynebacterium, and Pseudomonas, was a benefit 44 
of WGS compared to 16S. Our findings indicate that characterization of dust microbiota, an 45 
important component of the indoor environment relevant to human health, is heavily influenced by 46 
sequencing techniques. WGS is a powerful tool to survey the microbial community that provides 47 
novel insights on the impact of environmental exposures on indoor dust microbiota, and should be an 48 
important consideration in designing future studies in environmental health. 49 

1 Introduction 50 

Humans spend 90% of their lives indoors (1), with much of this time spent in the home, where they 51 
both contribute to and are exposed to environmental microbiota. Home dust microbiota are 52 
commonly captured by vacuuming living spaces, including bedrooms. Exposure to bacterial and 53 
fungal communities inside the home has been associated with allergic, atopic, and respiratory 54 
conditions in children and adults (2-5). These associations could reflect the direct impacts of 55 
environmental microbial exposure on inhabitants’ health, as well as through indirect effects of dust 56 
microbiota on the human gut, skin, oral, and respiratory microbiomes (6-8). Housing characteristics 57 
and other environmental exposures have been shown to influence indoor microbial communities, 58 
including farm-related exposures (8-11). Living in or near a farm environment entails unique 59 
microbial exposures and subsequent health concerns. Farm exposures have been associated with 60 
altered microbial composition in home dust, which in turn have been associated with allergic 61 
outcomes in adults and children (4, 12-14). Identifying environmental factors that influence home 62 
dust microbiota is a critical first step in determining exposure pathways relevant to health outcomes. 63 

The emergence and optimization of high-throughput sequencing have enabled new approaches to 64 
assessing the composition of bacterial communities present in home dust samples, which have a 65 
complex matrix and low microbial biomass compared to host-associated microbiome samples such as 66 
stool. 16S rRNA amplicon sequencing (16S) is a traditional next-generation technique in which all 67 
amplified products are sequenced from a single gene (i.e., the 16S rRNA gene). The technique is 68 
limited, however, because annotation is based on putative associations of the 16S rRNA gene with 69 
bacterial taxa defined computationally as operational taxonomic units (OTUs). Thus, specific 70 
bacterial entities are not directly sequenced, but rather predicted based on OTUs, and consequently 71 
have more uncertainty at the lower taxonomy ranks of genus and species (15-18). Metagenomic 72 
whole genome shotgun sequencing (WGS), in which random fragments of the genome are 73 
sequenced, is an alternative approach and offers a major advantage in that taxa can be more 74 
accurately defined at the genus/species level (16, 19). However, WGS is more expensive and requires 75 
more extensive data processing and analysis (15, 20). Most of the published data on associations of 76 
home dust microbiota with environmental exposures or health outcomes have relied on the older 16S 77 
methodology.  78 
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Higher taxonomic classification resolution with WGS provides a more comprehensive description of 79 
the microbial community, and may improve the ability to detect novel associations with 80 
environmental risk factors, which is important when considering environmental health pathways. In 81 
human microbial communities, especially the gut microbiome, WGS generally identifies a larger 82 
number of unique phyla and higher overall microbial diversity within samples compared to 16S (16, 83 
19-26). However, results are mixed for environmental samples in water and soil (27, 28). At present, 84 
no research has evaluated sequencing methodology on microbial community characterization in 85 
indoor home dust samples, and how this will impact the upstream associations with farm and non-86 
farm environmental exposures.  87 

In the present study, we analyzed samples from 781 participant homes in the Agricultural Lung 88 
Health Study (ALHS), a study of farmers and their spouses in North Carolina and Iowa, using 89 
advanced WGS methods, and evaluated associations with farm and nonfarm exposures found to be 90 
important in previous work based on 16S, in this cohort and others (4, 8, 29). We considered both 91 
microbial community diversity levels and specific bacterial taxa, in order to determine whether WGS 92 
can provide novel insights into farming environmental exposure pathways, the results of which are 93 
relevant to the design of future research integrating environmental health and microbiology.   94 

2 Materials and methods 95 

2.1 Study population and design 96 

ALHS is a case-control study of adult asthma study nested within the Agricultural Health Study 97 
(AHS), a prospective cohort of licensed pesticide applicators, mostly farmers and their spouses, 98 
enrolled between 1993 and 1997 (30). ALHS participants were selected from among AHS 99 
participants who were either farmers or farm spouses in North Carolina (NC) and Iowa (IA) and 100 
completed an AHS telephone follow-up conducted from 2005-2010. ALHS enrolled individuals with 101 
asthma diagnosis and current asthma symptoms or medication use along with individuals with 102 
symptoms and medication use suggesting likely asthma (n = 1,223). The comparison group was a 103 
random sample of AHS participants without these criteria (n = 2,078). The Supplemental Methods 104 
further details study population selection and inclusion criteria. The Institutional Review Board at the 105 
National Institute of Environmental Health Sciences approved the study. Written informed consent 106 
was obtained from all participants. 107 

2.2 Dust sample and environmental exposure data collection 108 

Of the 3,301 ALHS participants, 2,871 received a home visit and had adequate levels of collected 109 
dust from the bedroom (Figure 1), as described in Carnes et al. (31).  A trained field technician 110 
vacuumed two 1-yd2 (0.84-m2) areas—one on participants’ sleeping surface and one on the floor next 111 
to the bed— for 2 min each with a DUSTREAM Collector (Indoor Biotechnologies Inc.). The 112 
samples were divided into aliquots of 50 mg and stored at −20°C until DNA processing. 113 

During the home visit, information was obtained on environmental factors, including current (past 12 114 
months) farming activities (living on a farm, working with crops, and working with animals), type of 115 
animals raised on the farm (beef or dairy cattle, swine, or poultry) and the presence of indoor pets 116 
(cats and dogs). Field technicians noted the presence of carpeting in the bedroom and ranked overall 117 
home cleanliness on a standardized five-point scale (32). For our analysis, we created a binary 118 
variable comprising poor/lower (score of 1 or 2) or good/higher (score of 3–5) home condition. We 119 
categorized season of dust collection based on the date of the home visit: March 21–June 20 for 120 
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spring, June 21–September 20 for summer, September 21–December 20 for fall, and December 21–121 
March 20 for winter. 122 

2.3 DNA extraction 123 

A random selection (n=879, including 333 asthma cases) of dust samples were sent for WGS analysis 124 
(Figure 1). DNA extraction in described elsewhere (4). Briefly, DNA was isolated using a MoBio 96 125 
well plate PowerSoil DNA extraction kit (QIAGEN Inc.), as recommended by the manufacturer, with 126 
the modification of loading 0.3-0.5g per dust sample into each well and incubated in PowerSoil bead 127 
solution and C1 buffer at 70°C for 20 min before the beating step to aid in lysis of spores. We 128 
quantified using the NanoDrop (A260) (Thermo Fisher Scientific Inc.) and normalized to 5 ng/L 129 
DNA. 130 

2.4 Metagenomic whole genome shotgun sequencing and preprocessing  131 

The University of California San Diego IGM Genomics Center performed library preparation, 132 
multiplexing, and whole genome shotgun sequencing using standard techniques (33). Extracted DNA 133 
was quantified via QubitTM dsDNA HS Assay (ThermoFisher Scientific). The library size was 134 
selected for fragments between 300 and 700 bp using the Sage Science PippinHT and sequenced as a 135 
paired-end 150-cycle run using an Illumina HiSeq2500 v2 in Rapid Run mode. 136 

We performed several quality control steps, which are summarized in Supplementary Figure S1. We 137 
first trimmed low-quality reads, duplicates, and adapters based on FastQC results (v0.11.5) (34). We 138 
then identified and removed reads not from microbial genomes, as potential contaminant host 139 
genomic sources (human, PhiX, cow, pig, chicken, turkey, horse, goat, sheep, dog, cat, and dust mite 140 
genomes) (Supplementary Table S1) using Bowtie2 (35) and KneadData (v0.7.10) (36). We further 141 
assessed the taxonomic classification of sequences using Kraken2 (v2.1.1) (37) and obtained accurate 142 
estimations of abundance using Bracken (v2.5.0) (38) with pre-compiled data comprising RefSeq 143 
genomes for bacteria, archaea, eukaryotes, fungi, viruses, and plasmids and NCBI taxonomy 144 
information. Supplementary Tables S2 and S3 summarize the overall read sequence statistics and 145 
proportion of host genome contaminants across samples. Additionally, we accounted for the potential 146 
introduction of contaminant DNA sequences during sample collection or laboratory processing by 147 
incorporating negative ‘blank’ sequencing controls of sterile water, with contaminants identified and 148 
removed with the decontam R package (v1.10.0) (39). A total of 168 taxa were filtered out 149 
(Supplementary Table S4). Because dust samples have low microbial biomass (fewer microbes), we 150 
performed two sequencing runs, each with separate quality control processes, and then performed 151 
abundance pooling across the two runs. At the sample level, we excluded low-quality samples 152 
defined by sequencing depths less than 1000 (Supplementary Figure S2). Rare taxa were filtered out 153 
if they did not appear in at least 10 samples (Supplementary Figure S2). This quality control pipeline 154 
left 781 samples and 6,528 taxa for downstream analysis. A taxonomy chart was created that 155 
assigned all taxa to a taxonomic classification across the seven phylogenetic levels - kingdom, 156 
phylum, class, order, family, genus, and species. The Supplemental Methods provides details of the 157 
bioinformatic procedures. 158 

2.5 Statistical analysis 159 

We performed all statistical analyses and visualization in R (v4.0.3) (40). We rarefied data to the 160 
minimum library size (1,003) across all samples before calculating alpha and beta diversities using 161 
the phyloseq R package (v1.34.0) (41). We considered both non-farming exposures, including state 162 
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of residence, sex, presence of indoor pets, home condition, and season of dust collection, and farming 163 
exposures in the past 12 months, including living on a farm, crop farming, and animal farming. All 164 
exposures were treated as binary variables. For season of dust collection, we compared one season to 165 
all other seasons combined. We included asthma as a covariate in all models due to the nested case-166 
control design.  167 

To evaluate intra-group alpha diversity and its association with farming and non-farming exposures 168 
we used the Shannon index, exponentially transformed for normality, as the outcome in linear 169 
models. We first fitted a baseline univariable regression model for each exposure to identify 170 
exposures associated with alpha diversity. We also considered whether associations differed by state 171 
of residence (IA or NC) by using product terms. Our final multivariable model included any exposure 172 
with significant association to alpha diversity from the baseline univariable model, along with any 173 
significant product terms for the individual interactions of each exposure with state of residence. 174 
Detailed analytical formula were described in Supplemental methods (SM3). We set p<0.05 as the 175 
statistical significance threshold for all analyses. 176 

To explore beta diversity, we calculated unweighted and weighted UniFrac distance metrics. We 177 
conducted permutational multivariate analysis of variance (PERMANOVA) analysis to test the 178 
differences in microbial community structure across exposure levels using the adonis method in the 179 
R vegan package (v2.5.7) (42, 43). We used the R2 value to quantify the percentage of variance 180 
explained. We did similar analysis as alpha diversity to evaluate differences in associations by state. 181 
We conducted non-metric multidimensional scaling (NMDS) analysis to visualize the separation 182 
between samples by exposure levels in a two-dimensional space using the phyloseq (v1.34.0) (41) 183 
and R ggplot2 (v3.3.6) (44) packages. 184 

To identify differentially abundant taxa for each exposure, we used analysis of composition of 185 
microbiomes with bias correction (ANCOM-BC, v1.0.5) models (45), which is based on a linear 186 
regression framework on the log transformed taxa counts, with exposures as dependent variables and 187 
sampling fraction as an offset term. To account for variation in sequencing depth, we performed 188 
normalization by estimating the sampling fraction using the ANCOM-BC built-in algorithm. We 189 
tested taxa at the OTU level and summarized the results by genus and phylum rank. We also 190 
calculated the log2 fold-difference which is the ratio of the mean abundance after normalized by 191 
ANCOM-BC across exposure levels. We controlled the false discovery rate (FDR) at 0.05 with the 192 
Benjamini-Hochberg (BH) method (46). We determined a taxon to be significantly differentially 193 
abundant if it had both p<0.05 after FDR correction and had log2 fold-difference larger than 1 or 194 
smaller than -1. We performed sensitivity analyses to evaluate differences in associations by state of 195 
residence. 196 

Lee et al. (47) analyzed samples for the same population with 16S rRNA amplicon sequencing. To 197 
examine differences of house dust microbial profile between these two methods, we compared the 198 
taxonomic chart from our WGS data to the previous 16S data to determine the number of unique and 199 
overlapping microbial organisms, at the phyla rank, detected by each sequencing method. We note 200 
how common or rare the uniquely identified phyla were based on the frequency of assigned taxa and 201 
the relative abundance across samples. In addition, we evaluated the differences between alpha 202 
diversities (richness and Shannon index) generated by the two sequencing methods by calculating the 203 
Spearman’s correlation coefficient. 204 

3 Results 205 
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3.1 Summary statistics for the study population and metagenomics characteristics 206 

Table 1 summarizes the demographic characteristics and environmental exposures of the study 207 
population. Iowa residents accounted for 68% of samples; North Carolina for 32% (247). Sixty 208 
percent of participants were male. Indoor pets (dogs or cats) were present in 43% of homes. Most 209 
homes (78%) were in good/higher cleanness, and nearly all had carpeted floors (93%). Overall, 83% 210 
of participants lived on a farm, 56% farmed crops in the past 12 months, and 51% worked with farm 211 
animals in the past 12 months. Of the 401 (51%) participants who reported animal farming, 281 212 
worked with beef cattle, 48 worked with dairy cattle, 120 worked with hogs, and 90 worked with 213 
poultry. Overall, 31% of dust samples were obtained in summer, 25% in spring, 20% in fall, and 23% 214 
in winter. Current asthma was present in 296 (37.9%) participants and the overall mean age of 215 
participants was 62 years (standard deviation 11).  216 

After filtering out samples with low sequencing depth and filtering out rare taxa, 781 samples and 217 
6,528 taxa remained for downstream analysis with 183,025,561 reads across all samples. At the 218 
Kingdom phylogenetic level, 5,661 taxa were assigned to Bacteria, 156 to Archaea, 96 to Eukaryota, 219 
and 615 to viruses, with an average of 2,247 (±1,226) taxa per sample (n=781). Figure 2 outlines the 220 
phylum composition across all samples. Among the 59 phyla identified from WGS, 16 had relative 221 
abundance greater than 1% in at least one sample (Figure 2, Supplementary Table S5). Phyla 222 
Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes were the most prominent among home 223 
dust microbial communities. At lower taxonomy rank, 1789 unique genera were identified, where 36 224 
had relative abundance greater than 10% in at least one sample. The five most abundant genera were 225 
Mycobacterium, Serratia, Toxoplasma, Lactobacillus, and Alcaligenes (Supplementary Table S6). 226 

3.2 House dust microbial community diversity analysis  227 

Figure 3 shows the association between alpha diversity and each exposure. The presence of indoor 228 
pets and farming status (living on a farm, crop farming, animal farming with beef cattle, hogs, and 229 
poultry) were positively associated with alpha diversity, while good/higher home cleanliness was 230 
negatively associated with alpha diversity (p<0.050). State of residence had a suggestive significant 231 
association with alpha diversity with p=0.057. In our multivariable primary model including all 232 
statistically significant exposures and all significant interaction terms with state of residence, living 233 
on a farm and animal farming remained significantly positively related to alpha diversity 234 
(Supplementary Table S7).  235 

For beta-diversity, PERMANOVA analysis revealed significant differences in beta diversity for all 236 
demographic characteristics and exposure levels based on unweighted UniFrac distance although the 237 
percent variance explained by the exposure groups (R2 values) were small (Supplementary Figure 238 
S3). Current farming accounted for relatively greater explained microbial diversity variance (0.5% 239 
for crop farming and 0.7% for animal farming) compared to other farm and nonfarm exposures 240 
(Figure 4a, 4b). The differences in the microbial composition of home dust samples by state of 241 
residence explained around 1% of the variance of bacterial communities (p=0.001) (Figure 4c). The 242 
results with weighted UniFrac distance were similar to unweighted metric (Supplementary Figure 243 
S4).   244 

3.3 Differential abundance analysis of individual taxa 245 

There were 372 unique taxa belonging to 175 genera within 16 unique phyla, that were differentially 246 
abundant in relation to at least one exposure (Supplementary Table S8, Supplementary Table S9, 247 
Supplementary Figure S5). Animal farming and living on a farm were associated with more 248 
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differentially abundant taxa than non-farming exposures. Figure 5 includes volcano plots of 249 
differentially abundant taxa related to the presence of indoor pets, living on a farm, crop farming, and 250 
animal farming in the past 12 months, color coded by phylum. The top 10 taxa based on FDR values 251 
are labeled by their genus rank. Working with hogs was identified with the greatest number of 252 
differentially abundant taxa compared with other types of farming animals (Figure 5a, Supplementary 253 
Figure S5).   254 

Living on a farm was associated with differential abundance of 101 taxa (increased abundance for 255 
100 taxa and decreased abundance for one taxon in genus Dickeya), which were mainly in phylum 256 
Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria (Figure 5b). Among the top 10 taxa, 257 
two were in genus Bifidobacterium. The 26 differentially abundant taxa all had increased abundance 258 
related to crop farming were mainly in phyla Actinobacteria, Firmicutes, and Proteobacteria (Figure 259 
5c). The most significant taxa were genus Methanobrevibacter and Jeotgalibaca. Animal farming 260 
was associated with increased abundance for 191 taxa and decreased abundance for one taxon in 261 
phylum Firmicutes (Figure 5d). Genera Methanobrevibacter, Jeotgalibaca, Corynebacterium, 262 
Chryseobacterium, Glutamicibacter, Pseudomonas, and Rhodococcus were among the top 10 taxa. 263 
Forty-nine taxa were differentially abundant for the presence of indoor pets, mostly in phylum 264 
Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria, and Proteobacteria (Figure 5e). The taxa 265 
with the smallest FDR value were genus Frederiksenia and Poerphyromonas. Only a few 266 
differentially abundant taxa belonging to phylum Proteobacteria were related to the season of dust 267 
collection (Supplementary Table S8, Supplementary Figure S5).  268 

Many differentially abundant taxa were shared among exposures, but there were some taxa uniquely 269 
related to individual farming exposures (Figure 6, Supplementary Table S9). In particular, there were 270 
103 taxa assigned to 67 genera within 7 phyla (Proteobacteria, Actinobacteria, Bacteroidetes, 271 
Euryarchaeota, Firmicutes, Tenericutes, Chloroflexi) specific to animal farming. For crop farming, 2 272 
taxa were unique – Tatumella citrea in phylum Proteobacteria and Fusarium graminearum in 273 
phylum Ascomycota (Supplementary Table S9). There were only 4 taxa (Bacillus [Firmicute phyla], 274 
Campylobacter [Proteobacteria], Streptomyces [Actinobacteria], and Acholeplasma [Tenericutes]) 275 
that were identified to be associated with both animal farming and crop farming (Supplementary 276 
Table S9). In terms of specific type of farm animals, 89 taxa were unique to hogs, including 277 
Clostridium, Campylobacter, Pseudomonas, and Streptococcus suis, 14 unique to poultry, including 278 
Enterococcus, Brucella, and Escherichia genera, 5 unique to dairy cattle, including Mycoplasma and 279 
Acinetobacter, and 26 unique to beef cattle, including Corynebacterium and Bacillus (Supplementary 280 
Table S9). Several taxa were identified in multiple types of farming animals: 15 taxa were shared for 281 
hogs, beef cattle and dairy cattle, only one taxon (Carnobacterium sp._CP1) were common among 282 
hogs, poultry, and beef cattle, and 24 taxa including Methanobrevibacterium was related to either 283 
cattle type (Figure 6, Supplementary Table S9).  284 

As for non-farming exposures, 44 taxa were uniquely differentially abundant for presence of indoor 285 
pets, including animal-related Staphylococcus species pseudintermedius and felis. Additionally, 4 286 
taxa were unique to home condition, 16 unique to carpeting, and 3 unique to spring dust collection 287 
(Supplementary Table S9).   288 

3.4 Sensitivity Analysis by State of Residence 289 

For interaction effects by state of residence with either alpha or beta diversity, only sex, home 290 
condition, crop farming, general animal farming, beef cattle farming, and spring dust collection had 291 
significant interactions, but most effect sizes were minimal (Supplementary Table S10, 292 
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Supplementary Table S11, Supplementary Table S12). Therefore, we did not carry interaction 293 
products into the differential abundance analysis. When stratifying by state of residence, several 294 
exposures, including the presence of indoor pets, living on a farm, and general animal farming, were 295 
significantly associated with either alpha or beta diversity in Iowa, where about 2/3 of participants 296 
resided but not in North Carolina which has a much smaller sample size (Supplementary Table S13, 297 
Supplementary Table S14). Fourteen phyla were consistent for both states with differentially 298 
abundant taxa by at least one exposure (Supplementary Table S8, Supplementary Figure S6, 299 
Supplementary Figure S7).  300 

3.5 Additional findings with WGS from 16S rRNA sequencing results 301 

WGS data identified many more taxa and phyla than 16S rRNA. The 6,526 taxa identified by WGS 302 
data were assigned to 59 phyla, compared to 1,346 taxa from 18 phyla for 16S. The three phyla with 303 
the largest proportion of taxa assignment (most frequent) for WGS results (Proteobacteria, 304 
Actinobacteria, Firmicutes) were identical for 16S results. Among the 18 phyla identified from 16S 305 
sequencing, 17 were present in the WGS results (Figure 7, Supplementary Table S5). 47 phyla were 306 
uniquely identified by WGS, of which the most frequent phyla were Uroviricota with 518 (7.9%) 307 
taxa assigned, Ascomycota with 51 (0.8%) taxa assigned, Spirochaetes with 38 (0.6%) taxa assigned, 308 
Cossaviricota with 35 (0.5%) taxa assigned, and Apicomplexa with 25 (0.4%) taxa assigned 309 
(Supplementary Table S5). Additionally, many of the unique phyla in WGS were not rare, including 310 
Apicomplexa with average relative abundance across all samples at 3%, and Ascomycota, 311 
Cossaviricota, Basidiomycota, Nucleocytoviricota, and Uroviricota at 2% each (Supplementary 312 
Table S5). When examining differences in the alpha diversity of results from WGS and 16S 313 
sequencing, Spearman’s correlation coefficient for richness (rho=0.413, p< 2.2e-16) and the Shannon 314 
index (rho=0.355, p< 2.2e-16) were moderate. 315 

Because more microbial organisms were detected by WGS, we observed additional associations with 316 
farming exposures compared to 16S data presented by Lee et al. (39). Notably, a unique phylum 317 
(Ascomycota) detected only by WGS was significantly associated with crop farming. One of phyla 318 
identified by both WGS and 16S (Tenericutes) had differentially abundant taxa based on animal 319 
farming using WGS not with 16S (Supplementary Table S5, Supplementary Table S8). In addition, 320 
WGS provided the ability to assign taxa to genus taxonomic levels, including the 175 genera with 321 
differential abundance taxa related to at least one exposure (Supplementary Table S8), compared to 322 
16S results at the phyla and family level. Of 175 genera, 16 had relative abundance greater than 10% 323 
in at least one sample including Lactobacillus, Staphylococcus, and Bacillus (Supplementary Table 324 
S6, Supplementary Table S8). 325 

4 Discussion 326 

In this study, we evaluated the associations between farming exposures and house dust microbiota 327 
using the whole genome shotgun sequencing method in a US agricultural population. Our results 328 
indicate that both indoor microbial diversity and composition in homes differ in relation to current 329 
farming exposures; living on a farm, and crop and animal farming were associated with increased 330 
within-sample microbial diversity levels and altered microbial composition. Expanding on our 331 
previous findings performed with 16S rRNA gene amplicon sequencing, we identified four times 332 
more unique microbial taxa. The improved detection of unique taxa with WGS enabled us to detect 333 
novel associations between farm exposures and increased abundance of specific microbes including 334 
Rhodococcus, Bifidobacterium, Corynebacterium, and Pseudomonas. Enhanced identification of 335 
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factors that impact the indoor microbiome can improve understanding of environmental exposure 336 
pathways relevant to human health. 337 

A unique aspect of this study was the use of the whole genome shotgun sequencing technique, 338 
compared to many previous home dust microbiome studies that use the 16S rRNA amplicon 339 
sequencing technique (4, 12). This work is the first reported to use WGS to evaluate farm exposures 340 
in home dust microbiota. WGS has the advantage of sequencing the entire microbial genome, versus 341 
just a single gene, which can more accurately assign taxonomic classifications (48). In this study, the 342 
use of WGS identified more unique microbial phyla – 42 phyla were found only using WGS, 343 
including both common and rare taxa, versus only one phylum using the 16S technique. Detection of 344 
a greater number of unique phyla from WGS compared to 16S enables better characterization of the 345 
mixed, complex microbial composition of indoor dust in homes. Consequently, we observed novel 346 
environmental exposure associations with the newly detected microbial outcomes from this more 347 
comprehensive WGS method. Expanded taxonomic detection and depiction, as well as the 348 
development of updated, robust bioinformatic and statistical tools for metagenomic data (49), will 349 
then have downstream effects on the interpretation of association to environmental exposures. 350 

Consistent with findings using 16S, our data with WGS found that numerous bacteria were 351 
associated with environmental exposures across various phyla. At the phyla level, Actinobacteria, 352 
Bacteroidetes, Firmicutes, and Proteobacteria were positively associated with farm exposures, 353 
including living on a farm and crop and animal farming. These trends are similar to our findings 354 
using 16S, which found Firmicutes and Proteobacteria to be associated with farm exposures. In 355 
previous research, these phyla have been associated with various health conditions, such as asthma, 356 
atopy, and cardiometabolic outcomes (50-52). However, our 16S findings found that crop farming 357 
was associated with significant decreased abundance of taxa in 16 of the 19 phyla (4), compared to 358 
using WGS, where all 26 of our significantly associated taxa had an increased abundance with crop 359 
farming. Complementary studies evaluating home dust in Germany and Finland (12) and classroom 360 
dust in China (53) have found positive associations between nearby farm exposure and increased 361 
abundance of Proteobacteria (also known as Alphaproteobacteria) and Actinobacteria.  362 

WGS enables improved classification of microbial taxa at lower taxonomic levels, including the 363 
identification of genera that are differentially abundant by environmental exposures. Using WGS, we 364 
ascertained genera that were associated with our farming exposures, including Rhodococcus, 365 
Bifidobacterium, Corynebacterium, and Pseudomonas. Rhodococcus and Corynebacterium, gram-366 
positive bacteria, and Pseudomonas, a gram-negative bacterium, are found commonly in 367 
environmental sources (54-56). Certain strains of each can be pathogenic in immunocompromised 368 
individuals (54-56), and their abundance has been shown to be elevated in dust from children with 369 
asthma and atopy (57). Pseudomonas was also found to be increased using WGS in classroom dust 370 
samples in rural regions near farms compared to suburban areas in China (53). Interestingly, 371 
Rhodococcus, Pseudomonas, and Methylobacterium (another microbe positively associated with 372 
farm exposures in our data) have been previously identified in agricultural settings, where they can 373 
be bioremediation agents and degrade certain pesticides (58). Bifidobacterium is ubiquitous in the 374 
human and animal gastrointestinal tract and is associated with positive gut homeostasis, inhibition of 375 
pathogen colonization, and modulation of the local and systemic immune system (59, 60). We 376 
observed that Methanobrevibacter and Jeotgalibaca, both previously associated with cattle rumen 377 
and manure fermentation (61, 62), were increased with crop and animal farming, and unique to dairy 378 
and beef cattle farming, which is consistent with previous studies evaluating farm exposures in 379 
human microbial communities (12, 63, 64). Two taxa unique to crop farming, Tatumella citrea and 380 
Fusarium graminearum, are pathogens associated with grain production (65, 66). Reassuringly, we 381 
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noted an increased abundance of microbes specific to farm and companion animals associated with 382 
concurrent exposure to those animals, such as Streptococcus suis with hog farming exposure (67) and 383 
Staphylococcus pseudintermedius and felis with dog and cat exposure (68, 69).  384 

Our findings suggest that the home dust microbial diversity levels differ between participants 385 
exposed to farming activities, as well as pets, both for alpha and beta diversity levels. Overall, the 386 
findings from this study were generally similar to those preformed previously using 16S (4). For 387 
microbial composition beta diversity, we found distinct microbial community structure based on farm 388 
and non-farm exposures, which was significant for all explored variables, similar to results from 16S. 389 
The coefficient-of-determination R-squared (R2) statistic was greater using 16S, which supports the 390 
hypothesis that WGS resulted in more diverse microbial community identification with greater 391 
heterogeneity, so the same exposure would account for less of the variability. Both WGS and 16S 392 
findings had low R2 explained variance, consistent with previous research (70). Both analyses 393 
showed positive associations between alpha diversity and crop and animal farming. Living on a farm 394 
was a significant factor using WGS but not 16S. In addition, there were differences based on the type 395 
of animal production, with hog production having a positive association using WGS but not 16S, and 396 
dairy cattle production having a positive association using 16S but not WGS (although there was a 397 
positive trend).  398 

The differences in associations between exposures and Shannon alpha diversity in the WGS 399 
compared to our previous 16S data are to be expected given differences between the methods and 400 
batch effects when comparing two different methods run three years apart in different laboratories.  401 
Alpha diversity was slightly higher in WGS than 16S samples with moderate correlation (Spearman’s 402 
rho=0.36); unsurprisingly, as a greater number of unique microbes were identified with WGS and is 403 
similar to previous research on environmental samples (19). The discrepancies in measurements and 404 
effect sizes between WGS and 16S can lead to altered interpretations regarding risk factors for 405 
dysbiosis in home dust microbial composition and highlights the importance of how the processing of 406 
microbiome samples can impact downstream analyzes.  407 

The positive associations with farm exposures and alpha diversity reinforce trends observed in other 408 
literature (3, 10, 12, 14, 53), in addition to our prior 16S analyses (4). In a study of 203 homes in 409 
Finland and Germany, homes located on farms had significantly higher indoor microbial richness and 410 
diversity compared to rural non-farm home indoor dust, which was associated with decreased asthma 411 
risk in child inhabitants (12). Amin et.al. reported that airborne bacterial diversity was more abundant 412 
in farmer’s indoor environment than in suburban homes (10). Using WGS, a study in Shanxi 413 
Providence, China, found higher microbial diversity in schools in rural area near farms compared to 414 
urban non-farm schools (53).  415 

A limitation of this work is that we only have a single dust sample per household, collected in the 416 
bedroom. Thus, we assume the sample reflects the normal home condition. To the extent that 417 
microbial composition differs across the household (11), this may not be true. However, people 418 
spend about a third of their time in the bedroom, making this a logical single sampling location. This 419 
limitation would be expected to lead to nondifferential misclassification of exposure and a bias 420 
toward the null. Our work benefits from an advanced next-generation technique, whole genome 421 
shotgun sequencing, to explore the impact of detailed farm exposures on the indoor microbiome in a 422 
large sample size compared to previous studies. The improved detection from WGS across novel 423 
phyla at the genus level adds insights on factors influencing the built environment microbiota, which 424 
plays a key component on host microbiome composition and subsequent health outcomes. Future 425 
investigations on the functional capabilities of the dust microbiota, such as presence of antibiotic 426 
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resistance genes, can help better understand human health and disease etiology caused by 427 
environmental exposures. 428 

5 Conclusions 429 

We evaluated a comprehensive set of factors related to farming to determine their influence on home 430 
dust microbiome assessed using state of the art whole genome shotgun sequencing. The increased 431 
identification by WGS of microbial entities led to detection of associations missed using older 16S 432 
technology. Identifying significant predictors of indoor built environmental microbiota is an 433 
important element in understanding environmental exposure health pathways. The use of advanced 434 
whole genome shotgun sequencing techniques produced novel insights into these health pathways 435 
and may be considered an optimal metagenomic method for future environmental health studies.    436 
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Table 1. Characteristics of Study Population. φ percentage based on full cohort versus within each 650 
state. Exposures that were different by state of residence using Pearson’s chi-squared test (p<0.05): 651 
Dogs, Living on a Farm, Crop Farming, Animal Farming, Working with Beef Cattle, Working with 652 
Dairy Cattle, Working with Hogs. 653 
 654 

Category Exposure Total, N (%φ) NC, N (%) IA, N (%) 
Total 781 247 (31.6)φ 534 (68.4)φ 
Demography Male sex 469 (60.1) 140 (56.7) 329 (61.6) 

Age in years, Mean (SD) 62 (11) 63 (11) 61 (11) 
Presence of 
Indoor Pets 

Dogs or cats  338 (43.3) 118 (47.8) 220 (41.2) 
Dogs  248 (31.8) 95 (38.5) 153 (28.7) 
Cats  165 (21.1) 49 (19.8) 116 (21.7) 

Home 
Condition 

Home condition, higher category  607 (77.8) 183 (74.4) 424 (79.4) 
Carpeting, carpeted surface  727 (93.3) 223 (90.7) 504 (94.6) 

Current 
Farming Status 

Living on a farm  651 (83.4) 194 (78.5) 457 (85.6) 
Crop farming  437 (55.9) 85 (34.4) 352 (65.9) 
Animal farming  401 (51.3) 98 (39.7) 303 (56.7) 
Working with beef cattle  281 (35.9) 65 (26.3) 216 (40.4) 
Working with dairy cattle  48 (6.1) 7 (2.8) 41 (7.7) 
Working with hogs  120 (15.4) 18 (7.3) 102 (19.1) 
Working with poultry  90 (11.5) 35 (14.2) 55 (10.3) 

Season of Dust 
Collection 

Spring  199 (25.5) 68 (27.5) 131 (24.5) 
Summer 245 (31.4) 69 (27.9) 176 (33) 
Fall  159 (20.4) 46 (18.6) 113 (21.2) 
Winter  178 (22.8) 64 (25.9) 114 (21.3) 

Current Asthma Status, Case 296 (37.9) 86 (34.8) 210 (39.3) 
 655 
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 656 
Figure 1. Workflow of house dust microbiome study in WGS. This workflow includes a summary 657 
of sample selection from the Agricultural Lung Health Study (ALHS) (n=3,301) to the house dust 658 
microbiome study with 16S (n=879) and WGS sequencing (n=781). 659 
 660 
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 661 
Figure 2. Relative abundance at the phylum level across all home dust samples. The 16 phyla 662 
with relative abundance greater than 1% in at least one sample are color-coded according to the 663 
legend. All other phyla are represented in grey. 664 
 665 
 666 
 667 
 668 
 669 
 670 
 671 
 672 
 673 
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674 
Figure 3. Association between exposures and alpha diversity (Shannon index with exponential 675 
transformation). Data were rarefied to the minimum library size (1,003) across all samples. Effect 676 
size refers to the coefficient from the regression model (difference in alpha diversity for yes versus 677 
no for each exposure). The 95% confidence interval (CI) and p-value for each exposure from the 678 
regression model are reported.  679 
 680 
 681 
 682 
 683 
 684 
 685 
 686 
 687 
 688 
 689 
 690 
 691 
 692 
 693 
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 694 
Figure 4. Non-metric multidimensional scaling (NMDS) analysis based on unweighted UniFrac 695 
distances for samples with different exposure levels. (a) Crop farming (green: with crop farming, 696 
yellow: without crop farming). (b) Animal farming (green: with animal farming, yellow: without 697 
animal farming). (c) State of residence (green: North Carolina (NC), yellow: Iowa). The dust 698 
microbial community of each sample is represented by a single dot. The ellipse represents the 95% 699 
confidence interval for the centroids of each exposure level. R2 values (percentage of variance 700 
explained by an exposure) and p-values from the PERMANOVA analysis are reported.  701 
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 702 
Figure 5. Differentially abundant (DA) taxa related to individual exposure (FDR<0.05). (a) 703 
Number of DA taxa. (b)-(e) Volcano plot for (b) Presence of indoor pets, (c) Living on a farm, (d) 704 
Crop farming, and (e) Animal farming. DA taxa are colored by phylum. The top 10 DA taxa with the 705 
smallest adjusted p-values are labeled by genus. Dot size indicates the medium abundance level for 706 
each taxon. a Benjamini-Hochberg method is used for FDR correction. lfd: log2 fold-difference. 707 
Vertical and horizontal dash lines indicate the threshold of p value after FDR correction and lfd for 708 
filtering DA taxa. Sig: DA taxa with p<0.05 after FDR correction (i.e., log10 p<0.5) and lfd>1 (or 709 
ldf<-1); NS: non-DA taxa. 710 
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 711 
Figure 6. Differentially abundant taxa related to various types of farming animal (FDR<0.05). 712 
Commonly identified differentially abundant taxa shared by farming animal types were aligned by 713 
lines (orange), while differential taxa unique to farm animal type is identified by a single dot (blue). 714 
 715 
 716 
 717 
 718 
 719 
 720 
 721 
 722 
 723 
 724 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted April 12, 2023. ; https://doi.org/10.1101/2023.04.07.23288301doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.07.23288301


 
23 

 725 
Figure 7. Venn diagram of the number of phyla identified in WGS (blue) and 16S (orange). 17 phyla 726 
were identified by both methods (Supplementary Table S14). 727 
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