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Abstract 

Although the relationship between the environmental factors such as weather conditions and air 1 

pollution and COVID-19 case fatality rate (CFR) has been found, the impacts of these factors to 2 

which infected cases are exposed at different infectious stages (e.g., virus exposure time, 3 

incubation period, and at or after symptom onset) are still unknown. Understanding this link can 4 

help reduce mortality rates. During the first wave of COVID-19 in the United Kingdom (UK), 5 

the CFR varied widely between and among the four countries of the UK, allowing such 6 

differential impacts to be assessed.  7 

We developed a generalized linear mixed-effect model combined with distributed lag nonlinear 8 

models to estimate the odds ratio of the weather factors (i.e., temperature, sunlight, relative 9 

humidity, and rainfall) and air pollution (i.e., ozone, ���, ���, ��, ���� and ���.�) using data 10 

between March 26, 2020 and May 12, 2020 in the UK. After retrospectively time adjusted CFR 11 

was estimated using back-projection technique, the stepwise model selection method was used to 12 

choose the best model based on Akaike information criteria (AIC) and the closeness between the 13 

predicted and observed values of CFR. 14 

We found that the low temperature (8-11��), prolonged sunlight duration (11-13hours) and 15 

increased ���.�  (11-18 �	/�� ) after the incubation period posed a greater risk of death 16 

(measured by odds ratio (OR)) than the earlier infectious stages. The risk reached its maximum 17 

level when the low temperature occurred one day after (OR = 1.76; 95% CI: 1.10-2.81), 18 

prolonged sunlight duration 2-3 days after (OR = 1.50; 95% CI: 1.03-2.18) and increased ���.� 19 

at the onset of symptom (OR =1.72; 95% CI: 1.30-2.26). In contrast, prolonged sunlight duration 20 

showed a protective effect during the incubation period or earlier.   21 

After reopening, many COVID-19 cases will be identified after their symptoms appear. The 22 

findings highlight the importance of designing different preventive measures against severe 23 

illness or death considering the time before and after symptom onset.  24 

Keywords: Case fatality rate; Air pollution; COVID-19; Weather condition.   25 
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Introduction 26 

The emergence of COVID-19 has led to an unprecedented number of infections and deaths 27 

worldwide. Certain environmental factors, such as weather conditions and air pollution, have 28 

been shown to influence disease severity. Knowing the consequence of these factors to which 29 

infected individuals are exposed at different infectious stages (e.g., virus exposure time, 30 

incubation period, and at or after symptom onset) can potentially help to form guidance on 31 

reducing the number of COVID-19 deaths. Unfortunately, the evidence of such differential 32 

effects on case fatality rate (i.e., the probability of death after infection) remains largely 33 

unknown. 34 

Recent population studies have reported the association between COVID-19 deaths and weather 35 

conditions, such as temperature and humidity (Benedetti et al. 2020; Ma et al. 2020; Wu et al. 36 

2020b). A colder condition can increase the viability and survival of viruses during disease 37 

transmission (for review, see (Mecenas et al. 2020)), leading to a higher viral load. The viral load 38 

has been demonstrated to be associated with disease severity (Fajnzylber et al. 2020). Another 39 

possible route to affect disease mortality by temperature and humidity is through modulating 40 

immune responses. Studies have found that overreaction of immune responses, such as cytokine 41 

storm, triggered by innate immunity, can lead to severe consequences after the infection. 42 

Furthermore, the activity of macrophages, which drives innate immunity, has been shown to be 43 

associated with temperature (Hardie et al. 1994; Hassan et al. 2020). This innate defense 44 

mechanism generally began after the incubation period (Schultze and Aschenbrenner 2021). 45 

Hence, exposure to environmental factors at or after symptom onset might contribute to such 46 

dysregulated innate immunity. 47 

In addition to temperature, sunlight exposure is another potential environmental risk factor for 48 

COVID-19 deaths. Lower vitamin D levels were associated with an increased risk of infection 49 

and its severity (Merzon et al. 2020; Panagiotou et al. 2020). Sunlight exposure aids in 50 

synthesizing vitamin D, which is likely to reduce the severity of COVID-19 (Laird et al. 2020; 51 

Martineau and Forouhi 2020). Presumably, the effect of sunlight has to occur in the early 52 

infectious stages in order to influence immune response. However, no studies have shown at 53 

which infectious stages, sunlight exposure is associated with COVID-19 mortality. 54 
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Exposure to ambient air pollution is also associated with the transmissibility, population 55 

susceptibility, and severity of COVID-19 (Liang et al. 2020; Stieb et al. 2021; Woodby et al. 56 

2021). The main components of air pollution are gases and particles such as carbon monoxide 57 

(CO), nitrogen dioxide (���), sulphur dioxide (���), ozone (��), and particulate matter of size 58 

� 10 �� (����) and � 2.5 �� (���.�), respectively. As a result, air pollution is considered as 59 

the transport of viral particles in the air (Frontera et al. 2020; Martelletti and Martelletti 2020) 60 

and within the respiratory tract. By worsening chronic respiratory diseases or modulating 61 

immune responses, air pollution could increase the severity of COVID-19 (Bourdrel et al. 2021). 62 

Therefore, it is important to understand the impact of air pollution on disease fatality when they 63 

are exposed after the incubation period.  64 

Worldwide, the United Kingdom (UK) has the second highest number of COVID-19 related 65 

deaths as of May 31, 2020 (37,175 deaths) (Our World in Data 2021). After the initial spread of 66 

COVID-19, a strict social distancing policy was implemented on March 26 in the UK constituent 67 

countries, except Northern Ireland which two days later also adopted the same policy, to reduce 68 

COVID-19 transmission. This lockdown was initially relaxed on May 13, 2020. Despite the 69 

similar lockdowns, by the end of May, 2020, of its four constituent countries (England, Northern 70 

Ireland, Scotland and Wales), the most significantly affected country was England.   71 

This study aimed to identify risk factors among weather conditions and air pollution and quantify 72 

the impacts of these factors at different stages of infections on the probability of death after 73 

COVID-19 infection during the early spread in the UK. We developed a generalized linear 74 

mixed-effect model with distributed lag nonlinear models (DLNM) to assess the risk of 75 

environmental factors at the different stages. The results may help to inform recommendations of 76 

preventive measures for reducing disease severity. 77 

  78 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 9, 2023. ; https://doi.org/10.1101/2023.04.07.23288300doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.07.23288300
http://creativecommons.org/licenses/by/4.0/


 

4 
 

Material and Methods 79 

Epidemiological data 80 

We collected the daily reported cases and deaths from a publicly available source (GOV.UK 81 

2021). To assess the impact of environmental factors on the severity of COVID-19, the study 82 

period was defined as the time between March 26, 2020, and May 12, 2020, when the intensity 83 

of non-pharmaceutical interventions was relatively stable and similar between different countries 84 

in the UK (i.e., during the first lockdown period) (The Institute for Government 2020). Therefore, 85 

the number of deaths was not largely affected by the changes in control measures. 86 

Environmental data 87 

Weather data were collected from the European Climate Assessment and Dataset (ECA&D) 88 

project (Tank et al. 2002). The daily mean temperature was obtained from 120 UK 89 

meteorological stations, while mean sunlight duration was available from 24 stations. The 90 

temperature data had 1.1% values missing. To address these missing observations, we calculated 91 

the average of the temperatures of the previous 7 days to replace the missing values. As relative 92 

humidity data were not directly available from ECA&D at the time of data collection, we 93 

collected dew point temperatures from the National Oceanic and Atmospheric Administration 94 

(NOAA) (National Centers for Environmental Information 2020) to calculate relative humidity 95 

following a previous method (McNoldy 2020). Air pollution data, such as ��, ���, ��� , ��,  96 

����  and ���.� , were collected from Air Information Resource in the Department for 97 

Environment Food and Rural Affairs, UK (Department for Environment Food and Rural Affairs 98 

2021).  99 

Back-projection of COVID-19 deaths and estimation of instantaneous CFR 100 

In order to estimate the probability of newly confirmed infected cases who die later due to the 101 

infections on a given day, instantaneous case fatality rate (iCFR) was used (Liang and Yuan 102 

2022). One way to calculate iCFR is through a non-parametric back-projection approach to 103 

retrospectively adjust the time of death cases (Becker et al. 1991). This reduces the possible bias 104 

caused by different time points between reporting of cases and deaths when calculating the rate. 105 

We assumed that COVID-19 transmission dynamics appeared in different disease status 106 

including as exposed (�), symptom onset (�), cases confirmation (�) and deaths (�) (Figure 1A). 107 
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We assumed the time span between exposure and symptom onset to be �� � 5.71 days (referred 108 

as incubation period), and the time between symptom onset and case confirmation to be �� �109 

4.03 days (referred as confirmation delay). Additionally, the duration between case confirmation 110 

and death (time to death) was taken to be �� � 7.92 days. These values were estimated in our 111 

recent study (Liang and Yuan 2022). Given the time to death follows a gamma distribution, with 112 

a mean of �� � 7.92 days, we retrospectively calculated the actual number of deaths, (��), which 113 

were likely to be members of confirmed cases using an R function backprojNP (Meyer et al. 114 

2017). Finally, iCFR was calculated as a ratio of �� and �.   115 

Model formulation 116 

We used a generalized linear mixed-effect model (Gurka et al. 2012) with DLNM (Gasparrinia et 117 

al. 2010). We adjusted for the effects of relative humidity on the day of exposure to determine 118 

whether the iCFR was affected by it on the days when the indexed cases were exposed. We 119 

assumed the number of deaths, ��, follows a binomial distribution with a probability, �	

 (the 120 

probability of death after infection), among confirmed cases �, i.e., ��	
~� !"� #$%�	

 , �	


  &, 121 

where '  indicates a particular location and �  represents a day. The model was developed as 122 

follows 123 

log + �	



1 , �	

  - � . / .
 / 0 0 1�%2	,�,


 ;  4�,&
�

���

�

��

/ 56	��	��	��

 / 78	 / 9	
          :1; 

where �	

  represents the expected iCFR among newly confirmed cases on day � at location ' 124 

(' �  1, 2, 3 or 4; representing the four countries of the UK), . is the overall intercept of the 125 

model and .
   is the region-specific random intercept. 1�  represents a smooth function of the 126 

environmental predictor 2	,�,

  ( � 1, 2, 3; representing temperature, sunlight duration and ���.�) 127 

and  $ represents the lag days from the day of confirmation to the day of exposure. < is the 128 

maximum lag, which was defined as the sum of the incubation period and confirmation delay, 129 

i.e., < � �� / �� . 6	��	��	��

  represents the relative humidity on the day of exposure at time � and 130 

location '. 8	 represents the day of the week on a given day � which allows to adjust for weekly 131 

effect of COVID-19 testing whereby more test results are reported on specific days of the week 132 

(i.e., first day of the week or weekend). A random error term is represented by 9	
 . See detailed 133 

descriptions in Supplementary Information. 134 
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To completely capture the overall impact of weather during the incubation period and 135 

confirmation delay, we used a maximum lag of 10 days for temperature and air pollution. For 136 

sunlight duration, the time between three days before virus exposure and confirmation was 137 

considered under the assumption that vitamin D synthesis in individuals can happen before virus 138 

exposure and affect the immune response thereafter. The odds ratio of death was calculated using 139 

a reference value of each predictor. The linear effect of relative humidity was assessed on the 140 

day of exposure because models using distributed lagged effects of relative humidity did not 141 

show good fitting results based on Akaike information criterion (AIC).  142 

Model selection criteria 143 

To identify the best model (best-prediction model) among different combinations of predictors, 144 

in a two-stage selection approach, AIC were used in the first stage to choose a set of candidate 145 

models using a stepwise selection approach (details in supplementary materials). The models that 146 

gave relatively lower AIC were considered the candidate models in the second stage. In the 147 

second stage, we compared the model’s output to the observed data. The model that produced the 148 

lowest root means square errors (RMSE) was chosen as the best model. 149 

Sensitivity analysis for model validation 150 

The best model was further tested for sensitivity in terms of future prediction. We extended the 151 

data until mid-September 2020 when the first alpha variant was detected (Higgins-Dunn 2020). 152 

The data during the study period were trained in the model, and the data between May 13, 2020, 153 

and September 15, 2020, were considered test data sets. Finally, we estimated the prediction 154 

results of iCFR and compared them with the retrospectively time adjusted iCFR. 155 
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Results 156 

To estimate the iCFR, we first retrospectively adjusted the daily number of reported deaths to 157 

their possible confirmed data and divided this number by the daily number of confirmed cases. 158 

The reported deaths were back-projected to the time of confirmation assuming that infected 159 

individuals were died 7.92 days on average after they were confirmed (see Methods). 160 

We observed variations in both the iCFR and environmental predictors, such as weather and air 161 

pollution, in the UK (Figure S1 and S2). The iCFR was highest at the beginning of the lockdown 162 

in each of the UK's four countries, and the ratio gradually declined over time (Figure S1). 163 

Among them, England showed a highest iCFR. Temperature, sunlight duration, and humidity 164 

were low in England and Scotland at the start of the outbreak and declined later. Maximum 165 

fluctuation in the concentration of ���.�  was found in England and Wales (Figure S2). The 166 

detailed description of the variation of these factors and CFR was described in Supplementary 167 

Information. 168 

We compared seven models, from a baseline to more complicated models, including different 169 

combinations of the weather and air pollution predictors (Table 1). The best model (Model 6), 170 

including temperature, sunlight duration and ���.�, was selected after showing that the AIC was 171 

low and the RMSE of the observed and the estimated values was the lowest than others (Table 2). 172 

The model successfully captured the pattern of iCFR in each country (Figure S3).  173 

Differential risks of environmental factors 174 

We assessed the differential effects of temperature, sunlight duration and ���.�  during the 175 

course of infection. Compared to the reference temperature of 12��, low temperatures between 176 

8-11�� after the incubation period were associated with a higher risk (measured by odds ratio) of 177 

death (Figure 2A). A temperature of 9.5�� at 7 days after the exposed to virus gave a maximum 178 

OR of 1.76 (95% CI: 1.10-2.81). When temperatures were below 8��,  the death risk became 179 

lower both during and after the incubation period. Whether infected cases changed their 180 

behaviors, such as staying indoors more during those very cold days is unknown. 181 

Furthermore, we found that the sunlight-fatality relationship was distinctly different before and 182 

after the estimated symptom onset (i.e., during and after the incubation period) (Figure 2B). The 183 

exposure to sunlight after the appearance of symptoms appeared to be more harmful. Prolonged 184 
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sunlight exposure (11-13h) about 2 days after symptom onset was associated with a greater risk 185 

of death (OR = 1.50; 95% CI: 1.03-2.18). However, the prolonged exposure to sunlight, in 186 

contrast, showed a beneficial effect during the incubation period or earlier. 187 

���.�  showed a significant impact around symptom onset, such that a higher ���.�  of 11-188 

18�	/��  was associated with a higher OR of death (Figure 2C). The maximum OR was 189 

observed at symptom onset with a value of 1.72 (95% CI: 1.30-2.26) when ���.�  reached 190 

15�	/�� , compared with the reference :���.� � 10�	/�� ;.  The OR of these factors at 191 

specific infectious stages was described in the section the effects of weather on the iCFR at 192 

specific time points in Supplementary Information (see Figure S4). 193 

Cumulative and marginal effects of environmental factors 194 

The cumulative effects of temperatures and ���.� were estimated for the duration between virus 195 

exposure and three days after symptom onset (or incubation period), whereas the cumulative 196 

effects of sunlight duration were estimated from three days prior to the virus exposure to three 197 

days after symptom onset (Figure 2D-F).  198 

Overall, the cumulative effects (measured by log(OR)) of low temperatures (8-11�� ) were 199 

higher than zero but not statistically significant (Figure 2D). Sunlight durations of 6-8h were 200 

significantly associated with a higher OR, while higher sunlight durations of >13h appear to be 201 

protective (Figure 2E). The cumulative effects of low ���.� (7-10 �	/��) were significantly 202 

low and the effects of high ���.� (10-18 �	/��) were substantially high (Figure 2F), suggesting 203 

a positive relationship between iCFR and ���.�. While comparing the environmental predictors, 204 

the cumulative effect of the ���.� showed a larger variation than other predictors. 205 

We further assessed the impacts on iCFR for one unit change in the predictor variables (Table 3). 206 

The iCFR increased by 102% for each �	/�� rise in ���.�,  whereas it decreased by 62% for 207 

one  �	/�� decrease. In contrast, the temperature and sunlight duration had an inverse effect on 208 

the risk of death, i.e., with one unit increase in temperature and sunlight duration reducing the 209 

risk of death by 8 and 69%, respectively. In comparison, a one-unit decline increases the risk by 210 

51 and 98%. 211 

Model validation 212 
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Finally, we validated Model 6 by predicting future iCFR between May 13, 2020 and September 213 

15, 2020 (see Methods). The model was able to capture the trend among all countries. 81% of 214 

observed data were successfully predicted within 95% confidence interval (Figure 3).  215 

  216 
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Discussion 217 

Recent studies have shown that the mortality or CFR of COVID-19 was not only affected by the 218 

virulence of SARS-CoV-2 but also by environmental conditions, such as weather and air 219 

pollution (Benedetti et al. 2020; Liang et al. 2020; Ma et al. 2020; Wu et al. 2020b). However, 220 

whether their impacts were same across different infectious stages was unknown. After using the 221 

back-projection approach to obtain iCFR, we were able to provide evidence that lower 222 

temperature and sunlight exposure after symptom onset and increased ���.� around symptom 223 

onset resulted in a higher risk of death. This study employed a distributed lag nonlinear model, 224 

which enabled us to understand the lag effects of environmental variables to account for 225 

individual infectious statuses of infected cases (e.g., exposure period, incubation period, 226 

symptomatic period etc.). This finding suggests that different precautionary measures can be 227 

taken before and after symptom onset.  228 

The results suggest that a specific range of temperature (e.g., between 8-11��) could increase the 229 

risk of COVID-19 death when patients were exposed to them after the incubation period. One 230 

possible reason is that exposure to cold temperature during these periods might deteriorate or 231 

influence COVID-19 patients’ immune responses (Liang and Yuan 2022; Schultze and 232 

Aschenbrenner 2021).  233 

Sunlight appeared to have an important role in mortality. It affects the production of vitamin D 234 

(Haddad and Hahn 1973). Vitamin D deficiency results in impaired immune function, which can 235 

increase the risk of infectious diseases, such as those caused by respiratory viruses (Hart et al. 236 

2011). Recent studies showed that there are no significant differences in hospital mortality 237 

between the vitamin D3 group and the placebo group (Leaf and Ginde 2021). A systemic review, 238 

however, investigated seven out of nine studies indicated that the lack of vitamin D greatly 239 

impacts the severity and death of COVID-19 (Yisak et al. 2021). 240 

Prolonged exposure to sunlight has been found to inactivate SARS-CoV-2 (Chamary 2021; 241 

Ratnesar-Shumate et al. 2020), resulting in a reduced risk of infection or disease severity. 242 

However, whether prolonged exposure to sunlight may also suppress the proper functioning of 243 

the immune system is unknown, especially after the incubation period (Maglio et al. 2016). Our 244 

findings suggest the possible preventive effects of sunlight exposure on the disease severity of 245 

COVID-19 during but not after the incubation period. 246 
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In the UK, studies have revealed associations between the air pollutant ���.� and COVID-19 247 

infection and mortality. For the existing COVID-19 cases, air pollutants, particularly ���.�, may 248 

trigger airway inflammation. Ecological and individual-level investigation were conducted in the 249 

context of an association between air pollution and COVID-19 severity and mortality (Liang et al. 250 

2020; Mendy et al. 2021; Wu et al. 2020a) and observed that the frequency of illness and 251 

fatalities rose significantly with the increment of the ���.� (Meo et al. 2021; Travaglio et al. 252 

2021). 253 

Policy recommendations 254 

During the past few years, after close contacts of an infected case are identified, many of them 255 

are quarantined until they are confirmed after testing, then immediately becoming home-isolated 256 

or hospital-isolated if they are COVID-19 positive cases. There is still no clear guideline on how 257 

to reduce disease severity after disease exposure besides clinical treatment. Certain 258 

recommendations can be given based on our findings.  259 

1) For COVID-19 patients after symptoms appear, adopting certain preventive measures by 260 

maintaining the environment conditions (such as temperature, sunlight and ���.� ) in 261 

isolation facilities or at home may be effective in reducing the risk of severity.   262 

2) Different preventive measures might need to be taken according to infectious stages. For 263 

example, after symptoms appear, infected individuals can maintain the environment with 264 

moderate or low sunlight. In contrast, during the incubation period, more sunlight shows 265 

a higher protective effect.  266 

Limitations 267 

Recently, many studies have been conducted on the association between ambient temperatures 268 

and deaths where the inverse relationship was justified (Christophi et al. 2021; Liang and Yuan 269 

2022; Wu et al. 2020b; Zhu et al. 2021). In contrast, at temperatures below 8��,  the risk of death 270 

became low both before and after symptom onset. We were not able to exclude the possible 271 

influences of behavioral changes in the population during a very cold time. In cold temperatures, 272 

people usually stay more indoors and may be affected by the room temperatures rather than 273 

ambient temperatures. Although our study did not incorporate indoor temperature, a previous 274 

study suggested that indoor temperature was strongly correlated with outdoor temperature (Lee 275 
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and Lee 2015). Therefore, the overall pattern of the risk of temperature might likely be similar 276 

even when indoor temperature is used. 277 

Furthermore, the data used in this study were gathered during the initial lockdown period, which 278 

spanned from March to May 2020 without large variations in interventions. This period falls in 279 

the UK's winter season, with colder temperatures and reduced sunlight predominating. Moreover, 280 

the study did not consider the population's behavioral changes and indoor environments. For 281 

example, the use of heaters may influence the temperature in a room, etc. We suggest that further 282 

studies should be carried out to understand better the effects of environmental exposures on 283 

disease severity to capture all these limitations. 284 

Conclusions 285 

For example, how to maintain proper environmental conditions, such as indoor temperature, 286 

sunlight, and air quality, during quarantine or home-isolation periods to reduce the probability of 287 

death is largely unknown. After many restrictions were lifted in many countries, people with 288 

COVID-19 symptoms are advised to get tested and self-isolate. Understanding the relationship 289 

between these environmental factors and iCFR especially after symptoms appear provides 290 

important suggestions for reducing the number of severe cases. 291 

 292 
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List of figures 452 

453 

 454 
Figure 1. (A) Timeline of disease states and environmental risk factors. , , ,  and  represent the disease455 
states such as exposed, symptom onset (or the end of incubation period), case confirmation, recovered and reported456 
deaths, respectively. Number of deaths were assumed a subset of infected cases who were reported previous days.457 
Hence, a retrospective adjustment of time was made for estimating deaths who were reported as positive cases at458 
time  using non-parametric back-projection method. These estimated deaths were labeled as , and therefore459 

for each day. Thus, the iCFR is estimated as the ratio of and . (B) and (C) reported cases and deaths in the460 
UK. Bar charts representing the daily confirmed cases and deaths, respectively. The red line in (C) represents the461 
retrospectively estimated number of confirmed cases who later died per day and the yellow area represents the462 
corresponding 95% confidence interval. The gray-shaded regions in (B) and (C) represent the duration of the463 
lockdown in the UK. 464 

 465 
 466 

se 
ted 
ys. 
 at 

he 
the 
the 
the 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 9, 2023. ; https://doi.org/10.1101/2023.04.07.23288300doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.07.23288300
http://creativecommons.org/licenses/by/4.0/


 

20 
 

 467 

Figure 2. Risk of COVID-19 fatality under different environmental conditions and different time points 468 
since virus exposure (A, B, C). (A) Temperature, (B) sunlight duration and (C) particular matter (���.�). The 469 
vertical dashed lines in A, B, C represent the date of symptom onset (on day 5.71 since exposure). Therefore, 470 
time between 0 and 5.71 days represents the incubation period. Odds ratio was estimated with respect to the 471 
reference value (horizontal lines in A, B, C) of each predictor. Reference value for temperature was 12��, 472 
sunlight duration 9h and  ���.� 10 �	/��. Cumulative effects of environmental factors on the odds ratio 473 
of COVID-19 mortality (D, E, F). Horizontal dashed lines represent the baseline odds ratio at the reference 474 
values of the environmental predictors. The shaded regions represent 95% confidence interval of the log 475 
transformed odds ratio. The overall effect of temperature and ���.� was estimated for the duration between 476 
virus exposure and the confirmation day, whereas the cumulative effects of sunlight duration was estimated 477 
from three days prior to the virus exposure to the case confirmation day.  478 

 479 
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 480 
Figure 3. Sensitivity analysis of the best model (Model 6). The panels show the model's prediction results until 481 
mid-September, the time when the first alpha variant has been detected in the UK. The points in each subplot 482 
represent the instantaneous CFR (iCFR) estimated using the back-projection method for each date. Solid lines 483 
represent the CFR estimated using the best-prediction model. The shaded regions indicate pointwise 75% and 95% 484 
prediction intervals, respectively. The vertical dashed lines represent the day until which we train the data in the 485 
model, whereas on the right side of the line are tested data.   486 
  487 
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List of tables 488 

Table 1. Initial model selection. AIC and BIC represent Akaike information criterion and Bayesian information 489 
criteria, respectively. All candidate models were adjusted for the days of the week. 490 

 No. Model AIC BIC Log-
likelihood 

1 � � �� � ���  
Baseline (regional random effect) 

2967 2990 -1475 

2 � � �� � ��� � ����  
Regional random effect and sunlight duration 

650 708 -301 

3 � � �� � ��� � ���� � ��	�  
Regional random effect, temperature, and sunlight duration 

595 690 -258 

4 
� � �� � ��� � ���� � ��	� � ���
��  
Regional random effect, temperature, sunlight duration and 
sulfur dioxide 

581 705 -238 

5 
� � �� � ��� � ���� � ��	� � �������  
Regional random effect, temperature, sunlight duration and 
particular matter � 10 ��� 

579 713 -234 

6 
� � �� � ��� � ���� � ��	� � �����.	�  
Regional random effect, temperature, sunlight duration and 
particular matter � 2.5 ��� 

578 712 -233 

7 
� � �� � ��� � ���� � ��	� � �����.	� � ���
������

�   
Regional random effect, temperature, sunlight duration, 
particular matter � 2.5 ��� and humidity 

579 715 -232 

 491 
  492 
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Table 2. Model comparison. The three candidate models (Models 5-7) were compared using predicted results. 493 
Model Model expression RMSE 

Model 5 � � �� � ��� � ���� � ��	� � �������  
Regional random effect, temperature, sunlight duration and particular matter � 10 ��� 

0.02040 

Model 6 � � �� � ��� � ���� � ��	� � �����.	�  
Regional random effect, temperature, sunlight duration and particular matter � 2.5 ��� 

0.01767 

Model 7 
� � �� � ��� � ���� � ��	� � �����.	� � ���
������

�   
Regional random effect, , temperature, sunlight duration, particular matter � 2.5 ��� 
and humidity 

0.01855 

RMSE = Root mean squared error 494 
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Table 3. Changes in CFR under different scenarios of environmental predictors. 496 

Predictor Predictor value 
���

������

 Changes in CFR (%) 

Temperature 
  

 
1�� decrease 1.512 51 

 
1�� increase 0.924 -8 

Sunlight duration 
  

 
1h decrease 1.978 98 

 
1h increase 0.312 -69 

���.�  
   

 
1 ��/	� decrease 0.381 -62 

 
1 ��/	� increase 2.016 102 
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