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Objectives: Systemic lupus erythematosus (SLE), an autoimmune disease with incompletely 

understood etiology, has a strong genetic component. Although genome-wide association studies 

(GWAS) have revealed multiple SLE susceptibility loci and associated single nucleotide 

polymorphisms (SNPs), the precise causal variants, target genes, cell types, tissues, and 

mechanisms of action remain largely unknown. 

Methods: Here, we report a comprehensive post-GWAS analysis using extensive bioinformatics, 

molecular modeling, and integrative functional genomic and epigenomic analyses to optimize 

fine-mapping. We compile and cross-reference immune cell-specific expression quantitative trait 

loci (cis- and trans-eQTLs) with promoter-capture Hi-C, allele-specific chromatin accessibility, 

and massively parallel reporter assay data to define predisposing variants and target genes. We 

experimentally validate a predicted locus using CRISPR/Cas9 genome editing, qPCR, and 

Western blot. 

Results: Anchoring on 452 index SNPs, we selected 9,931 high-linkage disequilibrium (r2>0.8) 

SNPs and defined 182 independent non-HLA SLE loci. 3,746 SNPs from 143 loci were 

identified as regulating 564 unique genes. Target genes are enriched in lupus-related tissues and 

associated with other autoimmune diseases. Of these, 329 SNPs (106 loci) showed significant 

allele-specific chromatin accessibility and/or enhancer activity, indicating regulatory potential. 

Using CRISPR/Cas9, we validated rs57668933 as a functional variant regulating multiple 

targets, including SLE risk gene ELF1, in B-cells. 

Conclusion: We demonstrate and validate post-GWAS strategies for utilizing multi-dimensional 

data to prioritize likely causal variants with cognate gene targets underlying SLE pathogenesis. 

Our results provide a catalog of significantly SLE-associated SNPs and loci, target genes, and 

likely biochemical mechanisms, to guide experimental characterization.  
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INTRODUCTION 

Systemic lupus erythematosus (SLE, lupus) is a complex autoimmune disease with substantial 

genetic underpinnings, e.g., strong familial aggregation(1), large twin concordance 

(monozygotic>dizygotic)(2), and high sibling recurrence risk ratio (λs~30)(3). >50 candidate 

gene studies and genome-wide association studies (GWAS) have identified >100 SLE risk loci 

(p-value<5�×�10−8), across multiple ethnicities(4-7). However, these loci explain only ~30% of 

SLE heritability (h2)(5, 8). 

 

In addition to incomplete knowledge of precise risk loci and alleles underlying GWAS peaks, it 

is not generally understood how such alleles mechanistically contribute to disease. For a given 

locus, GWAS often reports a sole (“index”) single nucleotide polymorphism (SNP), which may 

or may not itself be functional, but is likely in linkage disequilibrium (LD) with disease-

predisposing SNPs(9). As in other complex diseases, >90% of reported SLE index SNPs are 

non-coding (intronic and intergenic). A major challenge in the post-GWAS era is to precisely 

identify predisposing coding and non-coding SNPs and their associated target genes, and to 

determine the molecular mechanisms underlying disease risk. 

 

Accurate association determination remains a nontrivial challenge in clinical genomics and 

genome informatics. Generally, post-GWAS analyses combine multiple GWAS signals using LD 

structure and epigenetics(10, 11). Additional data sources, such as multiple independent, 

consistent annotations, greatly assist prioritization of likely functional SNPs(12). SNPs can 

modulate transcription factor (TF) binding and chromatin structure, altering gene regulation. 

Indeed, cis- and trans-expression quantitative trait locus (eQTL) analyses frequently link 
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disease-associated alleles to specific gene/isoform expression(13). Together, annotating open, 

active chromatin from DNase I hypersensitivity and Assay for Transposase-Accessible 

Chromatin (ATAC-seq) peaks(14), alongside individual genomic regulatory elements 

(promoters, enhancers, silencers, etc.) using histone marks, chromatin modifiers, and 

transcription factors, and by in silico bioinformatics(15), yields a powerful framework for testing 

GWAS hypotheses. 

 

Multiple databases (e.g., ENCODE, RoadMap) integrate histone mark data from common cell 

lines to create consensus regulatory region annotations(16, 17). Moreover, combining ATAC-seq 

and gene expression data yields chromatin accessibility QTLs (caQTLs) to identify SNPs with 

allele-specific chromatin effects (e.g., allelic imbalance)(18). Genomic regulatory elements 

communicate with one another and target genes through complex three-dimensional chromatin 

interactions (topologically associating domains, TADs). Various chromatin-conformation 

capture (3C) technologies(19, 20) annotate TADs and other chromatin features. Such 

interactions, particularly direct enhancer-promoter interactions(21), underlie long-range enhancer 

activity(22), and can aid GWAS interpretation. Finally, recent methods like Massively Parallel 

Reporter Assays (MPRAs) simultaneously screen thousands of SNPs for transcriptional enhancer 

activity, providing information about SNP genomic context and allele behavior(23). 

 

We compiled all available data on the above features and cross-referenced them to predict 

locus/SNP functionality. Genomic regions can assume different activities in different cell types; 

we matched datasets taken from the same cell type, ensuring consistency. Further, when 

possible, annotations were taken from data derived solely from immune cells(15, 21, 24-26), 
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identifying associations relevant to pathogenesis. This approach has revealed target genes and 

cells associated with rheumatoid arthritis(27) and breast cancer(28), among others. We applied 

the same regulatory-SNP analysis pipeline to protein-coding SNPs, as many exons contain TF-

binding sites and/or promoters/enhancers(29). We also consider the effects of missense SNPs on 

protein structure/function. 

 

Using an integrated approach, we collate and reassess published SLE-GWAS association signals 

along with high-LD SNPs, incorporating diverse data on underlying genomic features. For each 

locus, we define potential functional variants and their cognate target genes in immune cells. We 

prioritize functional SNPs and assign associated target genes and modulated biochemical 

pathways. As proof of concept, we utilized CRISPR-Cas9 genome editing, qPCR, and Western 

blot to validate the allelic effects of a candidate SNP on SLE risk gene ELF1. 

 

MATERIALS AND METHODS 

Study design. Our workflow and study design are shown in Figure 1. We 1) collated, from 

qualified studies, all reported and replicated index and correlated SNPs to define statistically-

independent SLE susceptibility loci, 2) predicted SNP effects in statistically-independent loci 

and annotated them in regulatory tiers, 3) performed molecular modeling on missense SNPs, 4) 

leveraged cell type-specific cis- and –trans-expression quantitative trait loci (eQTLs) and 

promoter-capture Hi-C (PCHiC) data to define “enhancer” and “promoter” SNPs and target 

genes, 5) estimated locus overrepresentation in molecular pathways and gene ontology categories 

and identified cell type-specific SNP enrichment in epigenetic features, 6) used chromatin 

accessibility QTLs (caQTLs) and massively parallel reporter assay (MPRA) data to identify 
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allele-specific effects, and 7) experimentally validated a functional variant using CRISPR/Cas9-

based activation/silencing in B-cells. 

 

Collating variants. We thoroughly reviewed SLE association studies up to September 2021, 

encompassing GWAS and candidate-gene studies with sample sizes >2,000. We selected 

genome-wide significant index SNPs (P<5x10-8) (Supplementary Table 1, Supplementary 

Notes). To find potential causal SNPs, we expanded each locus to its LD region, treating loci as 

independent if separated by >250 kb with low LD (r2<0.2). We excluded the HLA region. 

 

Regulatory region annotation. We employed diverse bioinformatics tools and databases to 

assess the regulatory implications of each SNP (Supplementary Notes). To identify allele-

specific enhancers, we conducted Massively Parallel Reporter Assays (MPRAs) involving over 

3,000 SNPs with both alleles present(30). Furthermore, we utilized chromatin accessibility 

quantitative trait loci (caQTLs)(18, 24) data to enhance the fine-mapping and annotation of SNP-

specific regulatory elements. 

 

Target genes. We used two methods to determine SNP targets (Supplementary Notes). First, 

SNPs were annotated with cis- and/or trans-expression QTLs (eQTLs) and splicing QTLs 

(sQTLs) using multiple databases. Second, to identify SNPs interacting with enhancers and 

promoters through chromatin interactions, we overlapped associated SNPs within anchors of 

chromatin interactions in immune cells with available promoter-capture Hi-C (PCHiC)(15, 21) 

data from immune cells.  
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SNP/geneset enrichment analysis. Gene targets of functional SNPs were tested for enrichment 

in Gene Ontology (GO) categories, biochemical pathway membership, and disease association. 

Enrichment analysis was carried out using FUMA(11) and epiCOLOC(31) on different SNP sets 

and their target genes identified through target-type annotations. 

 

Transcription factor binding. Binding sites were annotated from UCSC Genome Browser 

GRCh37/hg19 JASPAR core 22. 

 

Protein models. Protein models were taken from AlphaFold2 and illustrated with PyMOL. 

 

Cell culture and transfection. Lymphoblastoid cell lines (LCLs; NA18566) with the TT 

genotype were thawed and cultured in T25 culture flasks until they reached a confluence of 0.5 - 

0.7 x 10^6 cells/mL. For CRISPR-based inhibition and activation, we used the plasmids SP-

dCas9-TET1 and SP-dCas9-LSD1. We co-transfected pools of ELF1-sgRNA plasmids with 

dCas9-based activation and inhibition plasmids into LCL cells using electroporation. Cells 

transfected only with sgRNA plasmids were used as the control group. 

 

CRISPR-based functional validation. We used CRISPR/Cas9 activation/silencing (CRISPRa/i) 

to bring activating or silencing domains to rs57668933. Briefly, single-guide RNA 

(sgRNA)/Cas9-RNP complex was prepared at room temperature in Cas9 buffer. RNP complex 

was transfected into NA18535 LCL cells with electroporation and allowed to express for 72 

hours. 
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qPCR. To assess the impact of the SNP on target gene expression, we used qRT-PCR on WT, 

CRISPRa, and CRISPRi cells, as described elsewhere(32). RNA was isolated from WT and 

CRISPRa/i cells using an RNA Mini kit (Zymo Research) and reverse transcribed using iScript 

Reverse Transcription Supermix cDNA synthesis kit (Bio-Rad). We measured ELF1 expression 

and analyzed results for significance using Prism V.7 (GraphPad). 

 

Western blot. Cells were collected 72 hours after transfection and lysed in RIPA buffer 

supplemented with a protease and phosphatase inhibitor cocktail (as outlined in Supplementary 

Notes). The blot was visualized using an Azure ChemiBlot machine, and the obtained results 

were subjected to analysis. Expression levels were quantified using ImageJ, and densitometry 

values were graphed using GraphPad Prism. 

 

RESULTS 

Defining independent SLE candidate loci. Overall, we identified 452 reported genome-wide 

significant (P<5x10-8) non-HLA index SNPs from 76 different GWAS and candidate gene 

studies (Supplementary Table 1). Most index SNPs derived from East Asian and European 

ancestry studies (Supplementary Figure 1). Most (242, 53.5%) index SNPs lay within 145 

genes, 210 (46.5%) were intergenic (Supplementary Table 2). 

 

We then collected SNPs in high (r2>0.8) linkage disequilibrium (LD) with index SNPs, finding 

9,479 – totaling 9,931 SNPs for study. We binned these into 182 statistically independent loci 

(Table 1, Supplementary Table 2), with median locus size of 57.7 kb [range 314 bp – 1.15 

Mb]. Of the 182 loci, 89 contained single index SNPs; the rest had 2-14 (median 2; 
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Supplementary Figure 1, Supplementary Table 7). Total linked SNPs per locus ranged from 

1-1,148 (median 26; Supplementary Table 7). Correlated SNPs per index SNP ranged from 1-

146 (median 24). Fifteen loci had single index SNPs and no LD-SNPs; conversely, LOC_180 

had two index SNPs and 1,146 LD-SNPs. The physical distance between index SNPs and LD-

SNPs varied from 1 bp to 499 kb (median 14 kb). 

 

The 182 independent loci contain 426 genes. Of 9,931 total SNPs, 47.0% are intronic, 0.9% 

synonymous, 0.9% missense, and 51.2% intergenic (Figure 1, Supplementary Table 2). We 

annotated all SNPs for cis- and trans-regulatory effects. The 89 missense SNPs also potentially 

alter protein structure/function/expression and were molecularly modeled. 

 

Annotation pipeline. To annotate and prioritize these 9,931 SNPs at 182 loci/426 genes, we 

established this pipeline: 1) collate eQTLs and 2) PCHiC from immune cells (Supplementary 

Table 6), 3) combine to initially classify SNPs, 4) add histone mark and MPRA data, 5) refine 

GWAS peaks with caQTLs, 6) experimentally test prioritized SNPs. caQTLs appear much 

narrower than many other GWAS signals(18); however, of immune cells, they are currently only 

available for B-cells. As such, we placed them late in our pipeline, so that the initial 

prioritization covers all cell types. As caQTL data becomes more widely available for other cell 

types, placing this step earlier in the pipeline could narrow GWAS peaks sooner. 

 

eQTLs. We first annotated all SNPs with cis- and trans-eQTLs and associated target genes, using 

only immune cell-specific data. Most SNPs (9,052) have ≥1 significant cis-eQTL [range 0-31; 

856 SNPs have single cis-eQTLs and 5,539 have ≤5 cis-eQTLs] (Supplementary Table 2). cis-
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eQTL targets are enriched in immune-related genes, with many being known SLE risk loci. In 

LOC_13, rs17849501 (Neutrophil cytosol factor 2, NCF2) is an eQTL of several genes in 

multiple immune cell types. We experimentally demonstrated strong, allele-dependent enhancer 

activity of this SNP(33). In LOC_66, rs2431697 (intergenic) affects expression of multiple genes 

across cell types. This SNP has been experimentally shown to physically associate with the 

promoter of miRNA-146a, a potent immune regulator(34) and SLE biomarker(35). In LOC_76, 

SLE risk SNP rs2230926 (Tumor necrosis factor, alpha-induced protein 3, TNFAIP3) greatly 

increases neutrophil extracellular traps and citrullinated epitopes in SLE patients(36). In 

LOC_83, rs13239597 (intergenic) is an experimentally validated allele-specific enhancer of 

Interferon regulatory factor 5 (IRF5), a key SLE risk gene. 

 

For trans-eQTLs (having target genes >1 Mb or on another chromosome), we identified 75 SNPs 

from 22 loci targeting 272 unique genes (range 1-149 per locus; 20 out of 22 trans-eQTLs had 1-

11 target genes) with false-discovery rate (FDR) <1e-5 (Supplementary Tables 8-10). Among 

them, 13 target genes were distal, and 259 on different chromosomes. Among 75 trans-eQTL 

SNPs, 73 were also identified as cis-eQTLs. At LOC_121 (SH2B3, ATXN2), all 8 trans-eQTL 

SNPs showed >100 target genes, demonstrating substantial interactions across the genome. 

SH2B3 (a.k.a. lymphocyte adaptor protein, LNK) links numerous immune signaling pathways to 

inflammation(37) and is a major immune regulator. LOC_79 (IKZF1) had one trans-eQTL 

(rs4917014) with 50 target genes. Many target genes were themselves immune-related and often 

SLE-associated. rs1990760, a coding SNP at IFIH1 (LOC_31), is defined for lupus 

susceptibility(38). This SNP is also a trans-eQTL targeting nine genes (MX1, IFI44L/IFI44, 

HERC5, IFIT1/IFI6, OAS3/OAS2, HERC6) significantly enriched in type I/II interferon signaling 
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genes. Interestingly, seven (MX1, IFI44L/IFI44, HERC5, IFIT1/IFI6, OAS3) and four (MX1, 

IFI44L/IFI44, HERC5) target genes were also targeted by LOC_97 and LOC_99, respectively 

(Supplementary Table 8), suggesting that coregulation of core genes further amplifies trans-

effects in an omnigenic model(39). 

 

Chromatin interactions. We independently analyzed PCHiC data on immune cells(15, 21). The 

6,198 SNPs had ≥1 PCHiC connection (762 SNPs had 1; 3,322 SNPs had ≤5; maximum 93). 

Combining eQTL and PCHiC datasets, our SNPs target 3,504 unique genes (Figure 1, 

Supplementary Tables 2, 4). 

 

SNP categorization. Concordance between eQTL and PCHiC annotation suggests that a given 

SNP has a strong regulatory role; thus, we based SNP tiers on this intersection (Figure 1, 

Supplementary Table 2). Tier1 includes SNPs annotated by both methods with non-zero target 

gene overlap. These SNPs (3,746 from 143 loci) have strong evidence of controlling expression 

of specific target genes. The 1,906 SNPs (17 loci; Tier2) were annotated by both methods but 

targeted different genes in existing datasets. Tiers 3a and 3b (546 SNPs, 11 loci; 3,400 SNPs, 6 

loci) showed either PCHiC or eQTL activity, respectively, but not both. Finally, 333 (Tier4) 

exhibited neither activity. Of 9,052 cis-eQTL SNPs, 3,746, 1,906, and 3,400 were categorized as 

Tier1, Tier2, and Tier3b, respectively. Of 75 trans-eQTL SNPs, 50, 11, and 14 were Tier1, 

Tier2, and Tier3b, respectively. 

 

Regulatory elements. Linked SNPs were closely associated with transcriptional regulatory 

regions annotated by GenoSTAN and other databases; 4,332 (43.6%) lie in annotated promoter, 
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enhancer, and/or silencer regions (Supplementary Table 2). Of 9,059 eQTL SNPs, 3,457 

(38.1%) lie in enhancers, 625 (6.9%) in promoters, 485 (5.4%) in both, and 670 (7.3%) in 

silencers. We observed median 13 transcriptional element-associated SNPs per locus (4 loci had 

no such SNPs; LOC_71 had 360). The bulk were Tier1/Tier2 SNPs, indicating a relationship 

between transcriptional regulatory elements and eQTL/PCHiC activity. Enhancer SNPs that are 

also eQTL SNPs had a median distance of 47.2 kb to their target genes’ transcription start sites 

(TSSs); for Tier1 SNPs, this distance was 45.0 kb. Enhancer SNPs that are also PCHiC SNPs 

had a median distance of 214.5 kb to their target genes’ TSS; for Tier1 SNPs, this distance was 

193.3 kb (Supplementary Table 4). Tier1 SNPs are substantially closer to their target genes 

than other tiers, consistent with stronger regulatory effects. 

 

Of all regulatory element-associated SNPs, 117 (from 32 loci) were Tier1 SNPs with 1-4 

common target genes, leading to 58 unique genes targeted in both eQTLs and PCHiC. Of 

enhancer SNPs, 93 (26 loci) were Tier1, together targeting 44 unique genes (Supplementary 

Table 2). These SNPs, which are in annotated enhancers, are involved in chromatin interactions, 

and transcriptionally regulate specific target genes, represent highly prioritized candidates and 

are given further attention below. 

 

Massively parallel reporter assays. As an independent measure of SNP effects on transcription, 

we mined massively parallel reporter assay (MPRA) datasets, which characterize enhancers in 

high-throughput(40). We examined MPRA data from B-cells (GM12878)(30). A total of 2,614 

SNPs appeared in this dataset, and 42 out of 51 significant ones showed allele-specific 
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expression (ASE; FDR<0.01; Supplementary Tables 12, 13). MPRA-ASE SNPs were 

overwhelmingly non-coding: 50 intergenic, 46 intronic, 1 synonymous, 1 missense. 

 

Deleteriousness scores. We annotated SNPs with pre-computed deleteriousness scores 

(predictSNP2, CADD, GWAVA). Of exonic SNPs (177 in 61 loci, 91 unique protein-coding 

genes; 89 missense from 43 loci, 57 unique genes), the algorithms identified 11, 26, and 37 

deleterious SNPs, respectively. For missense SNPs, 9, 17, and 37, respectively, were labeled 

deleterious. For non-coding SNPs, 516 (55% intronic, 45% intergenic) were deemed deleterious 

by ≥1 algorithm (Supplementary Table 3). 

 

Chromatin accessibility. We next annotated our SNPs according to two measures of chromatin 

accessibility in whole blood: DNase hypersensitivity and ATAC-seq. Tier1 had by far the largest 

signals, followed by Tier2 and 3a (Supplementary Figure 4). Tiers 3b and 4 showed essentially 

zero enrichment. 

 

caQTL SNPs. To identify SNPs with allele-specific chromatin accessibility, we searched a 

caQTL database from lymphoblastoid (B-cell) cell lines (LCLs) from ten ethnicities(18). caQTL 

peaks are quite narrow(41); however, the method is new and of immune cells, has only yet been 

applied to LCLs. Thus, although the technique dramatically reduces SNP numbers, the results 

here are specific to B-cells. SLE, of course, manifests through numerous cell types; this analysis 

is only a subset of associated SNPs. As caQTLs are determined in more cell types, this analysis 

can be extended. 
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Of our SNPs (covering 100 loci), 295 are caQTLs in ≥1 ancestry. Among our 182 loci, 100 had 

≥1 caQTL SNP (range 1-16); 73 loci had ≥1 Tier1 caQTL SNP (Figure 1). All but one caQTL 

SNP were also eQTL SNPs. Of 295 caQTL SNPs, 194 are Tier1, 46 Tier2, 6 Tier3a, 48 Tier3b, 

and 1 Tier4. Thus, caQTL SNPs are heavily enriched in high-tier SNPs, illustrating that 

unsurprisingly, SNP-driven changes in chromatin accessibility strongly contribute to downstream 

expression and chromatin interaction phenotypes. Of 295 caQTL SNPs, 235 (79.7%) lie in 

enhancers, 91 (30.8%) in promoters, 63 (21.4%) in both, and 19 (6.4%) in silencers. This is 

consistent with eQTL and MPRA data, although caQTL SNPs are substantially more enriched in 

enhancer SNPs (Supplementary Table 11). 

 

Transcription factor binding. Next, we independently annotated transcription factor (TF) 

binding sites using epiCOLOC(31). Tier1 SNPs showed by far the most TFs (89) with binding 

site enrichment (Supplementary Figure 3), with Tier2 next. Tier3a showed small enrichment, 

and Tiers 3b and 4 were negligible. TFs highly represented in Tier1/Tier2 SNPs include 

Brachyury/TBXT, TCF4, MYB, and NFKB1–all critical immune-linked proteins involved in 

SLE pathogenesis. Altogether, TFBS enrichment strongly correlates with eQTL/PCHiC activity, 

and enriched TFs were immune-linked and SLE-associated. 

 

Tissue enrichment. Next, for our collected loci, we tabulated expression in diverse tissues using 

FUMA GENE2FUNC. Tier1 loci target genes were significantly enriched (FDR <0.001) in 

whole blood and lymphocytes (Supplementary Figure 2). As before, lower tiers were much less 

enriched in these tissues and demonstrated less tissue enrichment overall. 
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Disease and pathway association. We searched disease GWAS association catalogs; Tier1 loci 

target genes were significantly overrepresented in 154 out of 310 traits/diseases. SLE, 

rheumatoid arthritis (RA), and inflammatory bowel disease (IBD) were particularly enriched in 

GWAS hitting these loci. Lower tiers were much less linked to disease GWAS. Similarly, Tier1 

loci target genes were highly enriched among KEGG pathways (36 out of 68) and gene ontology 

(GO) classifications (464 out of 1,374), whereas lower tiers were not. Tier1 loci-associated 

pathways included immune system regulation, cytokine production, phosphorus metabolism, and 

regulation of protein modification and interferon signaling (Supplementary Table 5). Further 

studies are required to flesh out exact pathways and mechanisms by which these highly 

associated SNPs contribute to dyshomeostasis and SLE progression; these results will prioritize 

avenues for experimental investigation. 

 

Missense SNPs. We highlight several missense SNPs predicted to dramatically disrupt protein 

function. rs78555129 mutates a universally conserved arginine in adipolin 

(CTRP12/FAM132A/C1QTNF12) to cysteine, perturbing protein folding and presumably 

interactions with its (currently unknown) receptor (Supplementary Figure 5a). Adipolin is an 

anti-inflammatory adipokine implicated in diabetes, arthritis, and obesity(42). In B-cell scaffold 

protein with ankyrin repeats 1 (BANK1), rs10516487 destabilizes the protein (Supplementary 

Figure 5b), likely interfering with its interactions with TRAF6 and MyD88 in innate immune 

signaling(43). rs201802880 in Neutrophil Cytosolic Factor 1 (NCF1/p47phox) mutates a 

universally conserved residue (Supplementary Figure 5c), leading to protein destabilization. 

NCF1 is a subunit of NADPH oxidase, critical for phagocytic immune responses(44). rs2230926 

in TNFα-Induced Protein 3 (TNFAIP3) mutates a universally conserved residue important for 
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protein stability (Supplementary Figure 5d). TNFAIP3 is indispensable to TNF signaling and 

immune activation and is an SLE risk gene(45). 

 

CRISPR-based validation of rs57668933. To validate our approach, we employed CRISPR 

activation (CRISPRa) and inhibition (CRISPRi) targeting the rs57668933 locus (Figure 3e). 

Both activation domains doubled ELF1 transcript levels, while both suppressor domains halved 

them, as confirmed by Western blot (Figure 3f). The CRISPR-dCas9-based activation and 

inhibition system revealed distinct alterations in ELF1 protein expression. Compared to the 

control group transfected with sgRNA only, the dCas9-TET1 activation plasmid significantly 

increased (~1.8x) ELF1 protein expression, while the dCas9-LSD1 inhibition system reduced 

(~0.8x) ELF1 expression. These results strongly support the notion that the SNP region plays a 

pivotal role in regulating ELF1 expression, consistent with our other findings. 

 

DISCUSSION 

We have established a state-of-the-art SNP and locus analysis pipeline for assimilating data 

regarding gene expression, chromatin accessibility and interactions, histone marks, transcription 

factor binding, tissue expression, and disease association. Our pipeline dramatically reduces 

large sets of associated SNPs to several likely causal SNPs for experimental validation. This 

pipeline will be useful for diverse genetic association studies. 

 

After carefully gathering all high-quality SLE GWAS and candidate gene studies up to 

September 2021 and their high-LD SNPs from 1000Genomes Project Phase3, we defined 182 

statistically independent, non-HLA loci totaling ~10,000 SNPs. Our analysis first focused on 
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SNPs with effects on gene expression; unsurprisingly, these SNPs were overwhelmingly non-

coding, and very often localized to enhancer regions. We also found many missense SLE-

associated SNPs. These SNPs had high deleteriousness scores; in fact, 30% of the most 

deleterious SNPs were missense, compared to 1.7% of all SNPs. This dramatic enrichment 

supports their involvement; it should be noted, though, that CADD and other programs generally 

view missense SNPs as fairly deleterious. In further support, molecular modeling showed that 

many missense SNPs adversely affect protein structure and function. 

 

Intriguingly, we found several examples of SNPs encompassing both effects: they were 

simultaneously missense SNPs with adverse predicted effects on protein function, and enhancer 

SNPs affecting expression of multiple other genes. For instance, we again found rs1143679, 

which mutates a key protein residue of integrin alpha M (ITGAM) and disrupts multiple 

transcription factor binding sites, dramatically weakening enhancer activity(46). 

 

Only 45 loci contained missense SNPs; most SNPs were non-coding. Our pipeline tiered SNPs 

according to target gene expression (eQTL) and chromatin interactions (PCHiC). We obtained 

3,746 Tier1 SNPs, where the two independent experiments identified common regulated genes. 

Of these, 1,913 are also enhancer-SNPs. Overall, 100 loci had ≥1 caQTL SNP (total 295), and 22 

loci had ≥1 allele-specific enhancer SNP (total 42). Together, these constitute 106 out of 182 

total SLE loci (329 total SNPs) flagged by ≥3 independent experimental methods regarding gene 

regulation: eQTL-chromatin interaction-chromatin accessibility (B-cells) or eQTL-chromatin 

interaction-enhancer histone marks (Table 1, Supplementary Table 2). Adding MPRA data 

(GM12878 cells), yielded a final set of six loci (6 SNPs; Table 2) flagged by all available 
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experimental methods with highly significant changes in eQTLs, chromatin accessibility, and 

target gene expression. These SNPs are predicted to be highly associated with SLE, with effects 

manifested through enhancer-driven alteration of target gene expression, mediated through B-

cells. 

 

We examined these SNPs in detail. rs57668933 (intron of lymphoid cell transcription factor E74-

like factor 1, ELF1), at LOC_125 (Chr 13), controls ELF1 expression (Figure 3a-b). The 

protective T allele correlates with higher ELF1 expression in T-cells, B-cells, and monocytes in 

healthy controls (Supplementary Figure 7) and shows high allele-specific chromatin 

accessibility (Figure 3c) and enhancer activity (Figure 3d). ELF1 has been previously reported 

as an SLE risk gene (lead SNP rs7329174(47))–we show that rs57668933 is instead the likely 

causal SNP, with the risk allele yielding lower chromatin accessibility and ELF1 expression. 

ELF1 represses FcRγ expression(48); SLE patients’ T-cells express essentially no ELF1 but high 

levels of FcRγ, which activates immune reactivity and promotes nephritis(49). ELF1 also 

regulates antibody heavy chain production in B-cells. This SNP disrupts universally conserved 

binding sites for the tumor suppressors p63 and p73 (Supplementary Figure 6a), both with 

strong immune contributions. 

 

All six SNPs show much experimental evidence linking them to SLE (Table 2, Figure3, 

Supplementary Figure 8a-e). Most disrupt highly conserved binding sites of critical immune 

transcription factors (Supplementary Table 14, Supplementary Figure 3). Target genes and 

disrupted transcription factors are known autoimmune risk genes, implicated in multiple diseases 
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(Supplementary Table 5). Many selected SNPs are far from index SNPs and do not appear in 

the literature, highlighting the pipeline’s ability to localize signals in large GWAS peaks. 

 

Beyond the six most highly selected SNPs (Table 2), our Tier1 hits and associated targets were 

very strongly enriched in immune-related genes. High-tier SNPs were also greatly enriched in 

SNPs flagged as deleterious by other methods. Overall, putative risk loci and target genes were 

overwhelmingly enriched in immune genes, with many being known risk for SLE, rheumatoid 

arthritis, systemic sclerosis, Crohn’s disease, Sjögren’s syndrome, primary biliary cholangitis, 

and particularly inflammatory bowel disease. We experimentally validated a high-priority SNP 

with CRISPR/Cas9 gene activation/silencing, confirming that this site indeed has dramatic 

enhancer activity, likely underlying SLE association. This experimental support for SNPs and 

loci prioritized by our analysis supports its utility in selecting likely underlying SNPs from 

GWAS peaks. 

 

Our study provides valuable insights into the functional variants and target genes associated with 

SLE, but has two major limitations. Firstly, the sparse MPRA data utilized in our analysis may 

result in some loci having unflagged causal variants, potentially leading to missed associations. 

Secondly, the sparse caQTL data restricts the strongest conclusions to B-cells, limiting the 

generalizability of our findings to other cell types.  To address these limitations, it is crucial to 

generate more MPRA data and caQTL data in diverse cell types. This would refine the existing 

loci, identify additional loci, and enhance the applicability of our pipeline to a broader range of 

diseases. Furthermore, future studies should focus on verifying causality and elucidating 

underlying biochemical mechanisms, utilizing our SLE dataset as a roadmap. 
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Another limitation of our study applies to all genetics projects: limited power to resolve rare 

variants. Various groups have shown that SLE risk loci, including our risk locus BANK1(50), are 

enriched in rare variants (sometimes strongly) associated with disease. Increasing sample sizes, 

and performing meta-analyses such as we do, increase power for resolving such associations – 

although follow-up candidate-gene experiments are required to analyze and validate rare 

variants. It is likely that some of our loci manifest at least somewhat through rare SNPs. 

 

In conclusion, we demonstrate and validate a comprehensive analysis pipeline useful for diverse 

post-GWAS studies. We anticipate that this work will inspire future research to verify causal 

relationships and uncover the intricate biochemical mechanisms underlying SLE and related 

diseases. The SLE dataset we generated will serve as a roadmap for future studies verifying 

causality and establishing underlying biochemical mechanisms. 
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Table 1. Summary of all SLE loci. 

Locus CHR Boundaries Likely 
causal SNP 

Index/LD Nearest Gene 

LOC_1 1 1156655 – 1191870 rs6697886 1/104 C1QTNF12 

LOC_2 1 8431607 – 8505058 rs301807 1/10 RERE 

LOC_3 1 24518206 - 24519920   1/1 IFNLR0 

LOC_4 1 38258007 - 38379018 rs28469609 1/43 MTF1 

LOC_5 1 67787691 - 67891029 rs11209064 2/55 IL12RB2 

LOC_6 1 114303808 - 114377568   2/0 PTPN22 

LOC_7 1 117040622 - 117104215 rs10924104 2/40 CD58; NAP1L4P1 

LOC_8 1 157108159 - 157119915 rs116785379 1/2 ETV3 

LOC_9 1 157486336 - 157538786 rs34273689 1/90 FCRL5 

LOC_10 1 161469054 - 161596283   3/30 FCGR2A; FCGR2C 

LOC_11 1 173177392 - 173376184 rs6664517 13/157 AL645568.1 

LOC_12 1 174396030 - 174923045 rs72717613 1/420 RABGAP1L 

LOC_13 1 183225237 - 183591098 rs10911363 7/39 NCF2 

LOC_14 1 184636486 - 184723135   1/39 EDEM3 

LOC_15 1 192513661 - 192544795 rs2984920 1/34 AL390957.1 

LOC_16 1 198543027 - 198670469   2/116 PTPRC 

LOC_17 1 201977073 - 201986311   1/0 ELF3 

LOC_18 1 206642539 - 206647450   2/7 IKBKE 

LOC_19 1 206939904 - 206955041 rs3024493 1/3 IL10; IL19 

LOC_20 1 235890096 - 236041129 rs4660117 1/27 LYST 

LOC_21 1 246434447 - 246444082   1/3 SMYD3 

LOC_22 2 7573079 - 7584668   1/24 AC013460.1 

LOC_23 2 30442402 - 30492116 rs906866 3/48 LBH 
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Locus CHR Boundaries Likely 
causal SNP Index/LD Nearest Gene 

LOC_24 2 33701890 - 33702203 rs13385731 2/0 RASGRP3 

LOC_25 2 61040651 - 61173382   1/11 LINC01185 

LOC_26 2 65559027 - 65667272 rs1876518 3/58 SPRED2 

LOC_27 2 74200833 - 74219948   3/24 TET3 

LOC_28 2 111868604 - 111940585 rs12613243 1/20 BCL2L11 

LOC_29 2 136555659 - 136761853 rs2278682 3/75 LCT; MCM6 

LOC_30 2 144013184 - 144028568 rs10153706 1/28 ARHGAP15 

LOC_31 2 163025929 - 163211491   5/244 FAP; IFIH1 

LOC_32 2 191399581 - 191434502   1/0 AC108047.1 

LOC_33 2 191900449 - 191973034 rs7574865 8/38 STAT4 

LOC_34 2 198492316 - 198954774 rs13034353 2/216 PLCL1 

LOC_35 2 204690355 - 204738919   1/52 CTLA3 

LOC_36 2 213585035 - 213593970   1/3 AC093865.1 

LOC_37 2 213862922 - 213890232   1/9 IKZF2 

LOC_38 3 28068394 - 28079260 rs1813375 1/15 LINC01967 

LOC_39 3 58261741 - 58473899   4/56 PXK 

LOC_40 3 72200387 - 72256927 rs7637844 1/0 LINC00870 

LOC_41 3 119111870 - 119272391 rs9877891 7/22 TIMMDC1; CD80 

LOC_42 3 159625393 - 159748367 rs2936303 3/62 IL12A-AS1 

LOC_43 3 169476991 - 169528523 rs3821383 3/47 LRRC34 

LOC_44 3 188451078 - 188472383 rs1568669 1/11 LPP 

LOC_45 4 953193 - 983809 rs11248061 3/16 DGKQ 

LOC_46 4 2540146 - 2760732 rs4690053 2/126 FAM193A 

LOC_47 4 8558199 - 8568191   1/11 GPR78 
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Locus CHR Boundaries Likely 
causal SNP Index/LD Nearest Gene 

LOC_48 4 40301264 - 40308368 rs13136820 1/4 LINC02265 

LOC_49 4 55547533 - 55553801   1/10 KIT 

LOC_50 4 79626160 - 79679733   1/31 AC112253.1 

LOC_51 4 84141253 - 84161920 rs4693592 1/51 AC114781.2 

LOC_52 4 87888054 - 87976055 rs340643 2/50 AFF1 

LOC_53 4 102712542 - 102762581 rs6811141 6/70 BANK1 

LOC_54 4 108968701 - 109090112   1/0 LEF1 

LOC_55 4 123073009 - 123551032   2/76 ADAD1; IL21 

LOC_56 4 184603297 - 184618470   1/5 TRAPPC11 

LOC_57 5 1282319 - 1286516   2/6 TERT 

LOC_58 5 35850149 - 35916174   1/10 IL7R; CAPSL 

LOC_59 5 100084878 - 100291657 rs10060686 3/216 ST8SIA4 

LOC_60 5 127733961 - 127853142   1/15 FBN2 

LOC_61 5 130665788 - 131259361   1/4 FNIP1 

LOC_62 5 131812897 - 131835395 rs61175929 1/60 IRF1 

LOC_63 5 133418739 - 133433641   3/21 AC008608.1 

LOC_64 5 150386395 - 150462638 rs10036748 5/26 GPX3; TNIP1 

LOC_65 5 158883027 - 158944457   1/6 LINC01845 

LOC_66 5 159879978 - 159887336 rs2431697 2/0 MIR3142HG 

LOC_67 6 238790 - 259719   2/24 AL035696.1 

LOC_68 6 16299343 - 16761722   1/0 ATXN1 

LOC_69 6 25184408 - 26339131 rs17598658 4/93 CARMIL1; H2BC6 

LOC_70 6 27498217 - 27665920 rs10807029 1/20 CD83P1 

LOC_71 6 34549107 - 35356143 rs6934662 8/794 PPARD 
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Locus CHR Boundaries Likely 
causal SNP Index/LD Nearest Gene 

LOC_72 6 36695519 - 36722789 rs236469 1/26 CPNE5 

LOC_73 6 90936894 - 91002494 rs614120 1/13 BACH2 

LOC_74 6 106564236 - 106598933   3/15 ATG5 

LOC_75 6 116690849 - 116694120   2/0 DSE 

LOC_76 6 137959235 - 138243739 rs200820567 9/49 TNFAIP3 

LOC_77 6 154562302 - 154579861 rs2141289 1/15 AL357075.4 

LOC_78 7 28142088 - 28209953 rs702814 3/15 JAZF1 

LOC_79 7 50227828 - 50348043 rs876039 6/26 IKZF1 

LOC_80 7 67014434 - 67084823   1/36 MTATP6P21 

LOC_81 7 73434106 - 74193642   5/37 GTF2IRD1 

LOC_82 7 75167934 - 75209951   6/21 HIP1 

LOC_83 7 128563721 - 128764737 rs3778752 14/114 IRF5; TNPO3 

LOC_84 8 8088230 - 8155475 rs2945248 2/44 ALG1L13P 

LOC_85 8 8622877 - 8649881 rs2428 1/30 MFHAS1 

LOC_86 8 10712945 - 10802146 rs6985109 5/55 XKR6 

LOC_87 8 11270993 - 11402063 rs67934857 13/84 AF131216.5; BLK 

LOC_88 8 42128820 - 42189978   1/0 IKBKB 

LOC_89 8 56835673 - 57044066 rs189658553 2/198 LYN; RPS20 

LOC_90 8 71017438 - 71330166 rs71517442 2/95 NCOA2 

LOC_91 8 72891748 - 72913114 rs9298192 1/14 MSC-AS1 

LOC_92 8 79555186 - 79657666 rs3808619 2/65 ZC2HC1A; IL7 

LOC_93 8 128192981 - 128197856 rs2456452 1/11 CASC19 

LOC_94 8 129324232 - 129465024   2/50 LINC00824 

LOC_95 9 4981602 - 4984530   1/1 JAK2 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 29, 2023. ; https://doi.org/10.1101/2023.04.07.23288295doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.07.23288295


35 
 

Locus CHR Boundaries Likely 
causal SNP Index/LD Nearest Gene 

LOC_96 9 21171267 - 21320324 rs10757201 2/147 IFNA22P 

LOC_97 9 102337143 - 102605963 rs1405209 2/64 NR4A3 

LOC_98 10 5894714 - 5914581   1/12 ANKRD16 

LOC_99 10 50014917 - 50122181 rs7086101 5/121 WDFY4 

LOC_100 10 63785089 - 63825807 rs56140430 2/21 ARID5B 

LOC_101 10 64399617 - 64443139 rs2393909 2/24 AC067752.1 

LOC_102 10 73466709 - 73506129 rs3802712 2/34 CDH23 

LOC_103 10 104973061 - 105175131   1/25 NT5C2; INA 

LOC_104 10 105671683 - 105700775   1/5 STN1 

LOC_105 10 112633671 - 112799757 rs73343848 1/27 BBIP1 

LOC_106 11 551235 - 635569 rs59115876 5/87 IRF7; CDHR5 

LOC_107 11 3875757 - 4114440   1/0 STIM1 

LOC_108 11 18303597 - 18362382   1/1 HPS5; GTF2H1 

LOC_109 11 35070068 - 35123574 rs2785201 5/51 PDHX 

LOC_110 11 65378028 - 65564926 rs10791824 4/31 AP5B1; OVOL1 

LOC_111 11 68814887 - 68869034 rs7942690 2/35 TPCN2 

LOC_112 11 71132868 - 71225082 rs11606611 1/66 NADSYN1 

LOC_113 11 72499768 - 72895102   3/6 FCHSD2 

LOC_114 11 118480115 - 118735476 rs2508573 4/42 DDX6 

LOC_115 11 128297318 - 128504173 rs12576753 6/17 ETS1 

LOC_116 12 4134873 - 4152163   1/7 AC084375.1 

LOC_117 12 12760658 - 12874462 rs12811932 5/44 CDKN1B 

LOC_118 12 43130547 - 43200941   1/9 LINC02450 

LOC_119 12 102271358 - 102405908   1/0 DRAM1 
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Locus CHR Boundaries Likely 
causal SNP Index/LD Nearest Gene 

LOC_120 12 103912112 - 103965115   1/0 AC084364.3 

LOC_121 12 111826477 - 112059557   4/8 ATXN2 

LOC_122 12 121099302 - 121378566 rs904628 2/141 CABP1 

LOC_123 12 129276658 - 129307699 rs35907548 7/71 SLC15A4 

LOC_124 12 133038182 - 133042182   1/0 AC079031.2 

LOC_125 13 41529773 - 41588832 rs57668933 2/15 ELF1 

LOC_126 13 50143361 - 50192528   1/20 RCBTB1 

LOC_127 13 100084039 - 100104407 rs749114 1/13 TM9SF2 

LOC_128 14 35831811 - 35832666   1/1 AL133163.2 

LOC_129 14 68728425 - 68760141 rs3784099 2/14 RAD51B 

LOC_130 14 88370343 - 88383035 rs28626750 1/13 GALC 

LOC_131 14 103238582 - 103290221 rs12880641 1/62 TRAF3 

LOC_132 14 105386039 - 105416010 rs2819426 3/51 PLD4; AHNAK2 

LOC_133 15 38728250 - 38927386 rs7173565 4/10 RASGRP1 

LOC_134 15 75079474 - 75392795 rs34180494 3/23 CSK; SCAMP5 

LOC_135 15 77824646 - 77830430 rs1317320 1/19 AC046168.1 

LOC_136 15 97595545 - 97626101   1/9 AC055873.1 

LOC_137 15 101529012 - 101550214   1/1 LRRK1 

LOC_138 16 11038360 - 11291722 rs2041670 7/82 CLEC16A 

LOC_139 16 23871457 - 23901376   2/1 PRKCB 

LOC_140 16 30584430 - 30827205 rs3812999 2/88 PRR14; RNF40 

LOC_141 16 31260235 - 31369803 rs4632147 7/100 ITGAM; ITGAX 

LOC_142 16 50068422 - 50139799   1/67 HEATR3 

LOC_143 16 57352124 - 57403500 rs9921681 3/13 CCL22 
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Locus CHR Boundaries Likely 
causal SNP Index/LD Nearest Gene 

LOC_144 16 58247523 - 58268561 rs2731741 1/70 CCDC113 

LOC_145 16 68551277 - 68663156 rs28537207 3/197 ZFP90; RNU4-36P 

LOC_146 16 79739978 - 79755446   1/25 MAFTRR 

LOC_147 16 85966683 - 86020039 rs8052690 6/42 AC092723.4 

LOC_148 16 87390630 - 87443734 rs10431963 1/26 MAP1LC3B 

LOC_149 17 4706123 - 4712617   1/4 PLD2 

LOC_150 17 7208373 - 7240391   2/8 ACAP1 

LOC_151 17 16839901 - 16845467   2/1 TNFRSF13B 

LOC_152 17 37885383 - 38088150 rs34758895 7/245 MIEN1; IKZF3 

LOC_153 17 43422855 - 43457886   1/5 RNA5SP443 

LOC_154 17 47448102 - 47554350 rs2671655 1/0 AC091180.5 

LOC_155 17 73304710 - 73417662 rs8072449 3/158 GRB2 

LOC_156 17 76372972 - 76393736   1/5 PGS1 

LOC_157 18 67518031 - 67562657 rs1788103 3/36 CD226 

LOC_158 18 77377925 - 77386912 rs118075465 1/7 AC068473.4 

LOC_159 19 936297 - 952429 rs2238580 1/16 ARID3A 

LOC_160 19 2131148 - 2208859 rs2864419 1/49 DOT1L 

LOC_161 19 6689065 - 6699330   1/31 C3 

LOC_162 19 10392638 - 10481532 rs2569693 5/20 TYK2 

LOC_163 19 16438661 - 16443718 rs11086029 1/9 KLF2 

LOC_164 19 18383794 - 18637194 rs28375303 3/100 IQCN; SSBP4 

LOC_165 19 33035097 - 33106621   2/21 PDCD5 

LOC_166 19 49788205 - 49918814 rs7257053 2/45 SLC6A16; TEAD2 

LOC_167 19 50162909 - 50182697   1/2 IRF3 
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Locus CHR Boundaries Likely 
causal SNP Index/LD Nearest Gene 

LOC_168 19 52021247 - 52127053   2/30 SIGLEC6 

LOC_169 19 55730976 - 55739813   2/15 TMEM86B 

LOC_170 20 1507507 - 1558508   1/27 AL049634.1 

LOC_171 20 44730245 - 44749251   1/11 CD40 

LOC_172 20 48429020 - 48605930 rs117447227 1/92 RNF114 

LOC_173 22 18648861 - 18654105   1/19 USP18 

LOC_174 22 21798351 - 21985094 rs1034329 7/110 UBE2L3; YDJC 

LOC_175 22 39739187 - 39756650 rs2069235 2/9 SYNGR1 

LOC_176 22 40291139 - 40317126   1/13 GRAP2 

LOC_177 X 12839152 - 12907658   3/3 PRPS2 

LOC_178 X 30572729 - 30577846   1/5 CXorf21 

LOC_179 X 53081414 - 53111428   1/37 GPR173 

LOC_180 X 56295245 - 57406814 rs5913948 2/1146 KLF8; NBDY 

LOC_181 X 149663590 - 149673253   1/5 MAMLD1 

LOC_182 X 153189819 - 153378375 rs3027878 11/95 IRAK1; MECP2 

 

Table 2. Six most significant SNPs and their target genes. 

rsID  Chr  Risk/Non-Risk  Closest Gene Common target genes  

rs13385731 2 T/C  RASGRP3  RASGRP3, FAM98A 

rs2936303 3 G/A  IL12A-AS1 IL12A, TRIM59 

rs10036748 5 T/C  TNIP1 TNIP1, ANXA6, GPX3 

rs2431697 5 T/C  MIR3142HG PTTG1, SLU7 

rs57668933 13 C/T  ELF1 ELF1 

rs2069235 22 A/G  SYNGR1  PDGFB, MGAT3, RPL3 
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Figure 1. Study framework and summary. Tier 1: PCHiC and QTL with at least one same target

gene, Tier 2: PCHiC and QTL with different targets, Tier 3a: Only PCHiC target, Tier 3b: Only

QTL target, Tier 4: No targets.  

39 

et 

ly 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 29, 2023. ; https://doi.org/10.1101/2023.04.07.23288295doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.07.23288295


40
 

Figure 2. Distribution of 182

non-HLA SLE loci across the

human genome. Loci colored

by highest SNP tier. Tier1

names are common target

genes from both eQTL and

PCHiC data; other tiers are

named by the closest positional

gene. Loci with double dots

have ≥1 significant

experimentally validated

(caQTL or MPRA) allele-

specific SNP. Single dots mean

no experimentally validated

SNPs are yet known. 
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Figure 3. Analysis of LOC_125. This locus has two index SNPs and 15 high-LD SNPs. Of

these, rs57668933 is a caQTL-SNP with allele-specific enhancer activity. a) Visualized

connections of rs57668933 and neighboring regions based on PCHiC, alongside various histone

marks. b) The SNP lies in ELF1, a significant eQTL gene. Significant genotype-specific gene

expression in follicular T-helper cells (Tfh), CD16+ monocytes, and unstimulated and stimulated

B-cells. c) Chromatin accessibility of alleles. Reference allele T has higher chromatin
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accessibility. d) MPRA data shows T has higher enhancer activity. e) CRISPR-dCas9-based 

targeting of rs57668933-containing region by two activators (dCas9-VPR and dCas9-TET1) and 

two suppressors (dCas9-MECP2, dCas9-LSD1) and ELF1 (target gene) mRNA expression. f) 

Western blot demonstrating the differential expression of ELF1 protein in response to the 

CRISPR-dCas9-based activation (TET1) and inhibition (LSD1) systems. Densitometry plot 

illustrating representative Western blot results for ELF1 protein expression. Higher expression is 

observed in the presence of dCas9-TET1 (activator, lane 2), while reduced expression is 

observed in the presence of dCas9-LSD1 (inhibitor, lane 3) compared to the control (lane 1). 

Significance values (**p < 0.005, ***p<0.0005) indicate statistically significant differences. 
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