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Abstract  16 

The goal of this study was to perform an in-depth dynamic analysis of individual bladder 17 

diaries to inform which behavioral modifications would best reduce lower urinary tract 18 

symptoms, such as frequency and urgency. Three-day bladder diaries containing data on 19 

timing, volumes, and types of fluid intake, as well as timing, volumes, and bladder sensation at 20 

voids were analyzed for 197 participants with lower urinary tract symptoms. A novel dynamic 21 

analytic approach to bladder diary time series data was proposed and developed, including 22 

intra-subject correlations between time-varying variables: rates of intake, bladder filling rate, and 23 

urge growth rate. Grey-box models of bladder filling rate and multivariable linear regression 24 

models of urge growth rate were developed for individual diaries. These models revealed that 25 

bladder filling rate, rather than urine volume, was the primary determinant of urinary frequency 26 

and urgency growth rate in the majority of participants. Simulations performed with the 27 

developed models predicted that the most beneficial behavioral modifications to reduce the 28 

number of urgency episodes are those that smooth profiles of bladder filling rate, which might 29 

include behaviors such as exclusion of caffeine and alcohol and/or other measures, e.g., 30 

increasing number and decreasing volumes of intakes. 31 

  32 
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Introduction 33 

Bladder diaries (BDs) are a useful tool for diagnosis and treatment of patients with lower 34 

urinary tract symptoms (LUTS). Studies have shown that BDs provide accurate data on 35 

functional bladder capacity [1], incontinence episodes, frequency, nocturia, and daily urgency 36 

[2-6], and correlate well with symptom scores and urodynamics [7-8]. BDs can also provide 37 

timing and volumes of fluid intake, which is the primary driver of urinary output. The time lapse 38 

between intake and output is not straightforward. Although intake and output ultimately 39 

equilibrate over time, there is significant variability between individuals in the timing of output. 40 

Commonly used metrics from BDs ignore the timing of voids and tend to focus on summary 41 

statistics of voided volume (VV) and void frequency; however, inopportune timing of the urgent 42 

need to void can be bothersome to patients. 43 

Mathematical modeling can be used to leverage the rich time series data available in 44 

BDs. There are several mathematical models analyzing renal physiology and urine production, 45 

including neural control of kidney function [9-16]. These models provide helpful insights for 46 

understanding physiology of urination; however, they do not allow for the prediction of adverse 47 

urinary events or identification of behavioral modifications to avoid such events. 48 

The goal of this paper is to fill this gap by introducing a dynamic approach to the analysis 49 

of BDs, complementary to existing approaches that average dynamics of fluid intake and 50 

voiding over time. We investigate how drinking patterns and types of fluid intake affect the rate 51 

at which urine is produced by the kidneys. We also investigate how bladder filling rate (BFR) 52 

affects bladder sensations. Unlike the time-averaged approach, we are interested not only in the 53 

number of voids per day and how it correlates with the total volume of the intake, but also in 54 

how the time interval between voids and the bladder sensations at voids change during the day 55 

and how they associate with timing, volumes, and composition of fluid consumed. Since one of 56 

the goals of the paper is to introduce and justify the new analytic approach, the Methods section 57 
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is rather detailed and includes not only the description of, but also the thought process for 58 

selection of proposed methods.  59 

Materials and Methods 60 

Data 61 

Data were obtained from the Symptoms of Lower Urinary Tract Dysfunction Research 62 

Network (LURN) Observational Cohort study, which collected self-reported urinary symptoms, 63 

BDs, and physical examination data on 1064 care-seeking female and male participants across 64 

six tertiary care centers [17-18]. Three-day BDs were collected using a modified International 65 

Consultation on Incontinence Questionnaire (ICIQ) bladder diary [19]. Details of the study and 66 

quality of the data have been reported [20]. Diaries included information on the timing and 67 

volumes of fluid intake and voids, as well as bladder sensations during voiding and types of 68 

fluids consumed, across 3 consecutive days.  69 

Briefly, 448 participants returned BDs that had data on 3 days, had no missing intake 70 

and void volumes, and had a physiologically plausible fluid imbalance (<3 L across all 3 days). 71 

The dynamic analysis approach of this paper requires detailed data; therefore, we additionally 72 

excluded BDs that had missing voiding, drinking, waking, and sleeping times, types of fluid 73 

consumed, and bladder sensations. We did not attempt to impute these missing data, but 74 

limited ourselves to the analysis of complete BDs, since imputations inherently add variability, 75 

and since we had enough complete cases. We also excluded participants with post-void 76 

residual (PVR) >50 mL. This resulted in 197 BDs suitable for dynamic analysis belonging to 99 77 

male and 98 female participants. Of these, 74 had at least one incontinence episode in 3 days, 78 

165 consumed caffeinated drinks, and 65 consumed drinks containing alcohol.  79 

Reported information on the types of fluid consumed was used to estimate osmolality, 80 

caffeine, and alcohol content of the fluid based on literature review [21-22]. Estimates for 81 
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durations of fluid intake (time taken to drink the fluid) were based on expert opinion of the 82 

authors who independently reviewed a representative list of beverages and produced estimates 83 

of time for consumption for each type of beverage. Estimated durations varied from 1 minute to 84 

20 minutes (hot beverages and alcoholic beverages are usually consumed slower than water, 85 

for example). Bladder sensations were reported on a rating scale from 0 to 4, with 0 meaning 86 

“no sensation of needing to pass urine, but passed urine for social reasons; 1=“normal desire to 87 

pass urine and no urgency”; 2=“had urgency, but it had passed before patient went to the toilet”; 88 

3=“had urgency but managed to get to the toilet, still with urgency, but did not leak urine”, 89 

4=“had urgency and could not get to the toilet in time so leaked urine” [19]. The 197 3-day BD 90 

reported a total of 5124 voids. Of these, 342 were with urge level=0; 2341 with urge level=1; 91 

732 with urge level=2; 1287 with urge level=3; and 422 with urge level=4, i.e., participants 92 

experienced sensation of urgency during 47.6% of voids, normal desire to pass urine in 45.7% 93 

of voids, and in 6.7% cases voided for social reasons. 94 

Ethical guidelines and consent 95 

As described in the Data section above, this is a secondary data analysis of LURN 96 

bladder diaries. The authors confirm all relevant ethical guidelines have been followed, and all 97 

research has been conducted according to the principles expressed in the Declaration of 98 

Helsinki. Written informed consent was obtained from participants enrolled in the LURN study 99 

from 2015 to 2017, with each participant signing a confidential consent form witnessed and 100 

signed by the site research coordinator. This paper’s authors did not have access to information 101 

that could identify individual participants during or after data collection. Institutional Review 102 

Board (IRB) approval was obtained from: Ethical and Independent Review Services (E&I) IRB, 103 

an Association for the Accreditation of Human Research Protection Programs (AAHRPP) 104 

Accredited Board, Registration #IRB 00007807. 105 
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Methods 106 

Overview of the multistep analysis of BDs 107 

First, we performed a traditional time-averaged analysis of the BDs. We examined the 108 

distributions and inter-subject correlations of demographic and time-averaged BD variables 109 

across the cohort of 197 participants with LUTS. Then, we introduced a dynamic approach to 110 

the analysis of BDs by examining intra-subject correlations between BD variables across the 3-111 

day duration of the diaries, investigated cross-correlation functions and delays between these 112 

variables, and finally developed and evaluated dynamic models for individual BDs (Figure 1). 113 

Figure1. Flowchart of the multistep analysis of BDs. Analysis steps are in rectangles, data 114 

and results are in the hexagons. Steps 1-2 constitute time-averaged analysis; steps 3-8 115 

constitute a dynamic approach. First, we examined the distributions of BD variables across 197 116 

participants. Second, we performed the time-averaged analysis of BDs by examining the matrix 117 

of inter-subject correlation coefficients of intake and voiding variables across 197 BDs. Third, we 118 

visualized individual BD by presenting graphs of drinking and voiding events and introduced 119 

dynamic variables describing drinking and voiding patterns. Fourth, we examined the intra-120 

subject correlations between the introduced dynamic variables. Fifth, we calculated cross-121 

correlation functions between the introduced dynamic variables to estimate both their similarities 122 

and time lags. Sixth, we developed and evaluated the individuals’ grey-box models predicting 123 

BFR using data on intake profiles and composition of the drinks. Seventh, we developed 124 

multivariable linear regression models for each individual urge growth rate (UrgR). Finally, we 125 

proposed behavioral modifications, i.e., restrictions of intake volume, caffeine, and alcohol 126 

consumption and simulated the effect of these modifications on UrgR and urge levels at voids. 127 

 128 

Justification of dynamic approach 129 

A dynamic approach to understanding reality, i.e., description of relationships between 130 

changes in variables in time rather than relationships between the values of the variables, 131 

proves to be productive in quantitative sciences, starting with Newton’s laws of motion, where 132 

acceleration, i.e., change in velocity of the object, was shown to be proportional to the force 133 

acting on the object. We propose to use a dynamic approach to the analysis of BDs, by 134 

exploring how changes in blood volume, osmolality, and concentrations of caffeine and alcohol, 135 

caused by fluid consumption affect (change) the rate of urine production by the kidneys. We 136 

propose to investigate how the sensation of urinary urge changes in time and how it is affected 137 
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by the bladder filling rate and urine volume. Using this dynamic approach, we introduce urge 138 

growth rate (UrgR) as defined in the next section. We believe that UrgR often (with the 139 

exception of social or convenience voids) drives voiding behavior. For example, time interval 140 

between voids is determined by the time required to reach certain urge levels, and therefore is 141 

proportional to the reciprocal of the UrgR. In a sense, UrgR is more important than urge level at 142 

void. Any healthy person deprived of the opportunity to void will eventually get to a high level of 143 

urge, e.g., urge=3; however, it will likely take a healthy person much longer to get to this level 144 

than a person with overactive bladder (OAB). This makes UrgR a useful metric to evaluate the 145 

severity of OAB. 146 

While implementing this dynamic approach to the analysis and modeling of BDs and to 147 

the simulation of potential behavioral modifications, we kept in mind that information available 148 

for modeling, as well as our understanding of the involved physiological processes, are 149 

incomplete. For instance, were have no information on physical activities or changes in heart 150 

rate that might affect the urine production rate by the kidney. We do not have food diaries and 151 

therefore do not have information on the fluids consumed in food (e.g., watermelon or soup). 152 

We do not know how much salt is consumed with food and when, which influences water 153 

retention. We do not know about the presence of psychological distractions and triggers that 154 

might influence the sensation of urge. All this incompleteness of information makes our task of 155 

predicting urgency episodes less like Newtonian mechanics calculation of the position of planets 156 

and more like the task of the captain determining the course of the ship having an approximate 157 

knowledge of the strength of the winds and currents, and therefore regularly measuring the 158 

position of the ship relative to the sun and the stars or using global positioning system (GPS) 159 

signals. Similarly, we try to minimize the propagation of the errors along the modeling process 160 

and, whenever possible, use the measured values of variables recorded in the BDs.  161 
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Dynamic variables 162 

BDs report the values of intake variables (volumes and types of drinks) at times of 163 

intakes and voiding variables (volumes and urge levels) at times of voids, which do not coincide. 164 

Dynamic analysis requires the knowledge of intake variables and voiding variables at the same 165 

and preferably equidistant time points. To meet this requirement and to analyze dynamics of 166 

drinking and voiding patterns and bladder sensations, we defined several dynamic (time-167 

dependent) variables across the whole duration of the 3-day BDs. We calculated rate of intake, 168 

bladder filling rate (BFR), urge growth rate (UrgR), and time-dependent frequency of voiding (F), 169 

as shown below. Stepwise approximations were used to derive these variables from the BD 170 

data. They were considered constant during the time intervals (durations of fluid intake and time 171 

intervals between voids), with changes occurring only at the boundaries of these intervals. 172 

Fluid intake rate (IR(t)) was approximated as ith intake volume (IVi) divided by the 173 

estimated duration of ith intake (Di) and assumed zero everywhere except during reported 174 

intake, where i=1,..M, M-number of reported intakes. No fluid intake was assumed or attributed 175 

to the food the participant ate; only fluids recorded on the BD were included in the analysis. 176 

Frequency of voiding (F(t)) was defined as: 177 

 ���� � 24 � 60/∆
�                                                                                                                    (1) 178 

where ∆
� � 
� � 
���, time interval from previous void in minutes, 
� , j=1,..N – time of each of N 179 

voids reported by an individual. For easier interpretation, the 24 � 60 multiplier was introduced 180 

to make frequency defined by eq. 1 comparable with the averaged daily frequency, i.e., number 181 

of voids per day. Note that F defined by eq. 1 depends on time, unlike the frequency of voiding 182 

averaged across the day or several days typically used in the urologic literature [23,24]. For 183 

example, consider an individual who voided at 8:00 am, 9:00 am, 9:20 am, 9:40 am, 12:00 184 

noon, 2:00 pm, 5:00 pm, 7:00 pm, 8:00 pm, and 11:00 pm. They would typically be described as 185 
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voiding 10 times a day, or voiding every 90 minutes; however, there was a time during the day 186 

when they voided every 20 minutes, which is not reflected by the time-averaged definition of 187 

frequency, but is reflected by the peak (F(t=9:20 am)=72) of the time-dependent frequency (eq. 188 

1). Note that the presence of such high-frequency voids at inopportune times could be much 189 

more bothersome for the individual than voiding 11 versus 10 times a day; therefore, it is 190 

desirable to have tools to predict such high-frequency episodes, as well as high-urgency 191 

episodes. 192 

Urge was assumed to be zero immediately after each void, so UrgR(t) was defined as 193 

urge (�� ) reported at the jth void divided by ∆
�, assuming a linear growth of urge with time, 194 

which may not always be correct but is close to sigmoidal growth observed in several studies 195 

measuring real-time bladder sensations in individuals with and without OAB [25,26]. Even when 196 

the assumption of linear growth of urge is not valid, the variable UrgR(t)) defined as �� /∆
� is of 197 

importance since it reflects how much time it takes to reach the certain level of urge. The time 198 

required to reach urgency is even more important than level of urge. For instance, an individual 199 

without OAB driving on the highway (with limited access to a toilet) might get a sensation of 200 

urge �� =3 and need to exit the highway. However, an individual with OAB will get to urge �� =3 201 

much faster and would need to exit more often. Variable �� /∆
� is different from frequency 202 

defined by eq. 1, since some of the voids could be social or convenience ones and occur at the 203 

low level of �� . 204 

The BFR, sometimes referred to as the rate of diuresis [27,28], was defined as: 205 

������ � ���/∆
�, where ���is the jth voided volume (VV). Here, we assumed that the variation 206 

of PVR from void to void is small relative to the VV (justified in participants with PVR<50mL 207 

selected for this analysis); therefore, the VV can approximate the change of the urine stored in 208 

the bladder between voids. 209 
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Figure 2 illustrates the 3-day BD data (intake and VVs, and urge levels reported at voids) 210 

and its relationship with the dynamic variables derived from these data (BFR, time-dependent 211 

(F), and UrgR) for a typical study participant A. Supplemental Figures S1-S9 provide similar 212 

information for nine other representative participants (B-J). More detailed discussion of the 213 

figures is provided in the Results section; however, we think it is beneficial to introduce these 214 

figures here for better illustration of our dynamic approach to the BD analysis.  215 

Figure 2. Intake and voiding profiles recorded in the 3-day BD of patient A and dynamic 216 

variables derived from the profiles. Figure 2A: fluid intake volumes. Figure 2B: voided 217 

volumes (VV). Figure 2C: urge levels reported at voids. Data in Figures 2A-2C are presented in 218 

the form of stems instead of dots to illustrate the discrete nature of drinking and voiding events 219 

and to emphasize the impossibility of connecting the dots, e.g., intake volumes are equal to zero 220 

between intakes, and void volumes are equal to zero between voids. Figure 2D: bladder filling 221 

rate (BFR(t)). Figure 2E: time-dependent frequency of voiding (F(t)). Figure 2F: urge growth rate 222 

(UrgR(t)). Caffeine containing intakes are shown in Figure 2A in red. Note that peaks of BFR(t), 223 

F(t), and UrgR(t) are collocated with intakes of caffeine and with frequent and/or high-volume 224 

drinks. Some of these peaks are labeled to emphasize their collocation (X=time in hours from 225 

midnight of the first day of the diary; Y=values of the plotted variables). Note high (several fold) 226 

time variability of BFR. 227 

 228 

Inter-subject and intra-subject correlations 229 

Both inter-subject and intra-subject correlation coefficients of BD variables were 230 

calculated. The inter-subject correlations analysis was included in the time-averaged approach 231 

(step 2 in Figure 1). It was performed by first averaging the dynamic BD variables over time (3 232 

days of the BD) and then calculating the matrix of the Pearson correlation coefficients of the 233 

time-averaged variables across 197 BDs. The intra-subject correlation analysis was part of 234 

dynamic approach (step 4 of Figure 1). It was performed by calculating matrices of Pearson 235 

correlation coefficients of dynamic variables for each of the individuals and then averaging the 236 

individual correlation matrices across all 197 individuals. Matrices of Pearson correlation 237 

coefficients were calculated using the MATLAB function corrcoef.m (MathWorks, MA). 238 

Both for inter-subject and intra-subject correlations, we also calculated matrices of partial 239 

correlation coefficients, while controlling for certain variables. This type of analysis helps when 240 
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there are three or more codependent variables (e.g., A, B, C), and we want to know how 241 

variable A responds to the changes in variable B, which are not caused by the changes in 242 

variable C. It is similar to controlling for variables in linear regression models [29] and was 243 

implemented using the MATLAB function partialcorr.m. 244 

Cross-correlation function 245 

Reactions of organisms to changes in external factors are not instantaneous but take 246 

time, which may be short or long depending on the physiological processes involved and may 247 

differ across individuals. For instance, it may take different time in different individuals for the 248 

BFR to react to the increase in the intake due to consumed fluid. Intra-subject correlations do 249 

not allow for capturing similarities in the presence of unknown time delays between the 250 

variables. To evaluate similarities and time lags between the functions representing the dynamic 251 

variables, we used cross-correlation function, which is routinely used to compare signals in 252 

signal processing [30] and is defined as:  253 

���� � � ���� · ��� � ����/��� ������������� · �� ����������  )                                          (2),  254 

where ���� and ���� are two dynamic variables under comparison. The maximum possible 255 

value of cross-correlation function is �����	� � 1, which happens when ��� � ���	� � ����. 256 

Therefore, the value of �����	�  represents the level of similarity, while ���	 represents the time 257 

lag between the two functions. We used cross-correlation function to compare the dynamic 258 

variables derived from the BD data. We also used cross-correlation function to compare BFR 259 

profiles predicted by the developed models and derived from the BDs. Cross-correlation 260 

function was implemented as MATLAB function xcorr.m.  261 

Grey-box model of the urine formation rate 262 

We created mathematical models for each individual participant, describing the 263 

dynamics of the BFR, which is equal to the rate of urine formation by the kidneys. In doing so, 264 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 6, 2023. ; https://doi.org/10.1101/2023.04.05.23288100doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.05.23288100
http://creativecommons.org/licenses/by/4.0/


12 

 

we followed a nonlinear grey-box modeling approach. Grey-box model is a type of model where 265 

the equations describing the processes are assumed known, while the parameters/coefficients 266 

of the equations have physical or physiological meaning and are determined by minimizing 267 

differences between observed and modeled processes. We described the model by a set of 268 

nonlinear ordinary differential equations (ODEs), with free parameters determined through 269 

minimization of the difference between urine formation rate profile predicted by the model and 270 

BFR profile derived from the BD. We assumed that the structure of the model was the same for 271 

all participants, while the parameters of the models were participant-specific. The core of our 272 

model is the modified model of Bighamian et al [31] describing the dynamics of the distribution 273 

of added water between blood and interstitial fluid, which is essential for determination of time 274 

lags between intakes and voids. We generalized this model by adding two more compartments 275 

(stomach and intestine) and by describing transport, kinetics, and redistribution of electrolytes, 276 

caffeine, and alcohol between blood and interstitial fluid. We also allowed for urine formation 277 

rate dependency on blood plasma volume, osmolality, and caffeine and alcohol concentrations. 278 

The model was implemented with System Identification Toolbox (MATLAB 2021a), using 279 

function idnlgrey.m. Details on the assumptions, equations, and implementation of the grey-box 280 

models of urine formation rate are presented in the Supplemental Material. 281 

Comparing modeled and observed dynamic variables by evaluating locations and 282 

amplitudes of the peaks 283 

The traditional metric to compare modeled and observed variables is called “fit percent” 284 

and is calculated as: 285 

 ��� � !" #� � 100 · $1 � 
∑ �
��������
����������
���


∑ �
��������∑ ���	
���

�
�
��� ��

�
���

%                                                        �3�,  286 

where '()*����and '+(����� are the values of observed and modeled dynamic variable ' at all 287 

points ��, where this variable was observed and modeled. Note that this metric compares 288 
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differences in the observed and modeled values of the variable (numerator) with the overall 289 

time-variability of the observed variable (denominator), which makes it, in general, suitable for 290 

evaluating dynamic models. However, given the presence of high and narrow peaks in the 291 

variables of interest in the BDs (see BFR(t), F(t) and UrgR(t) in Figure 2 and Supplemental 292 

Figures S1-S9), which could be caused by high-volume or/and high caffeine content intakes, 293 

this metric might be unsatisfactory. For instance, it could happen that narrow peaks in 294 

'()*������ � and '+(�������� are closely collocated but not overlapping. In this case, the Fit 295 

Percent value would be lower than if the peak of interest was completely absent in the modeled 296 

function, which would misrepresent properties of the model. To avoid this situation, we 297 

introduced a new metric named Peak Fit, similar to Fit Percent, but allowing for some lags in the 298 

peaks of the modeled function; i.e., we identified ten highest observed and modeled peaks and 299 

searched for the modeled and observed maxima in the specified vicinity (30 minutes) of these 300 

peaks. The below equation for Peak Fit is similar to equation for Fit Percent but uses only the 301 

peak apex points compared with the maxima in the vicinity of the peaks. This way, it allows for 302 

limited lags in the modeled function relative to the observed function and punishes both the 303 

cases of missing peaks and of false modeled peaks, which are absent in the observed function.  304 
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                            306 

(4), 307 

where �� ��� ���  and �  ��� ���  are positions of the apexes of the peaks in the observed and 308 

modeled functions, while �� ��� ��	 and �  ��� ��	 are the maximum values of modeled and 309 

observed functions in the vicinity of the above peaks.  310 
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To evaluate the average lag between observed and modeled peaks, we introduced 311 

another metric: 312 

� ,- .,� � �/∑ 1�� ��� ��� � �� !"# ��� 2��$�%� � ∑ 1�  ��� ��� � � !"# ���2��$ %� 3 /20              (5). 313 

Note that this metric is similar to the ���	 –lag provided by the cross-correlation function; 314 

however, the latter is dominated by the lag of the highest peak, while the former provides lag 315 

averaged across multiple peaks. 316 

Evaluation and selection of grey-box models  317 

An important quality of any model is its ability to describe/predict observations in the time 318 

range outside of the time range used for parameter fitting. To estimate this ability, we derived 319 

not only the models using 3 days of BD data (3-day model), but also the models using only first 320 

2 days of BD data (2-day model). Then, we used the parameters of the 2-day models and 3-day 321 

intake data to predict BFR(t) during all 3 days. Details of the comparison of 2-day and 3-day 322 

models are provided in the Results section and are briefly summarized below. We evaluated the 323 

developed 197 individuals’ grey-box models of urine production rate by using the Peak Fit 324 

metric defined by eq. 4. We selected for further analysis and use only the individuals with Peak 325 

Fit>0.9 both for 3-day and 2-day grey box models of urine production rate. Models for 145 326 

individuals satisfied these criteria. The mean value of Peak Fit for these models of BFR(t) was 327 

0.94, and the mean value of Peak Lag was 6 minutes. We also compared the “full models”, 328 

including information on caffeine and alcohol content of the intakes, with the “no caffeine no 329 

alcohol” models ignoring this information. It was shown that “full models” provide substantially 330 

better fit.   331 

Regression models of UrgR 332 

Physiology of bladder sensations is less clear than that of urine formation by the 333 

kidneys; therefore, creation of the grey-box model of UrgR does not seem feasible. It is known, 334 
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however, that feeling of urinary urge is initiated by stretching of the bladder wall [32]. We 335 

assumed that the reaction of the nervous system to wall stretching was nearly instantaneous, or 336 

at least happened at a much shorter time scale (seconds) than the time scale of the BD records 337 

(time intervals between drinks and voids – minutes) and the typical time required to establish 338 

equilibrium distribution of water between blood and interstitial fluid (minutes or hours). Given the 339 

assumption of the nearly instantaneous reaction of the nervous system to the input variables, 340 

we used the multiple linear regression approach to create personalized models of urinary UrgR 341 

for each participant. Analysis of the intra-subject correlations performed as described in the 342 

“Inter-subject and intra-subject correlations” subsection above and in the Results section below 343 

provided evidence of different levels of correlations of UrgR with BFR and with VV, which 344 

correspond to sensitivity, not only to the level of bladder wall stretch, but also to the velocity of 345 

stretching. 346 

Given these observations, the inputs of the model included BFR (x1=BFR(t)) and volume 347 

(x2=V(t)) of the urine in the bladder (calculated as integral of the BFR from the time of previous 348 

void to the given moment plus PVR volume x2=� �����������
 +PVR). The last input (x3) was 349 

binary and contained information on whether the participant was awake or asleep at the given 350 

moment, which allowed for possible bladder sensation differences in these two states. The 351 

formula for model specification can be presented as: 352 

' � �#� !" 4� � ∑ 5��� � ∑ ∑ 5������&�%�&�%�&�%�                                                        (6), 353 

where ' = UrgR(t), while �� � 	�������'�	�������'�	�� , � � 1.2; �& �  9&. Scaling of the variables is not 354 

necessary in multivariable linear regression but was implemented for further comparison of the 355 

relative role of different input variables in predicting UrgR. For instance, intercept in this 356 

formulation represents the value of UrgR in the hypothetical case when all the input variables 357 

are kept constant during the 3-day BD and equal to the median values of these variables during 358 
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these 3 days. The values of coefficients 5�, 5� represent the increase in the UrgR in response to 359 

the change in the values of input variables equal to their medians. The above specification (eq 360 

6) means that the model allows not only for linear dependence of UrgR(t) on the input terms, but 361 

also on their interactions. The values of UrgR(t) and BFR(t) were determined from the BDs and 362 

assumed constant during the time intervals between voids; asleep/awake data was also taken 363 

directly from the BDs. This method was chosen to describe the inputs of the model as 364 

accurately as possible. BFR (t) can be determined from the grey-box model, however, less 365 

accurately than from the BDs since the model does not take into account the changes in heart 366 

rate or the consumption of salted food or diuretics, which could contribute to changes in BFR 367 

observed from BDs. 368 

 Multivariable linear regression was performed using MATLAB function stepwiseglm.m, 369 

which uses forward and backward stepwise regression to determine the values of coefficients 5� 370 

and 5�� . At each step, the function adds or removes terms to the model, based on the value of 371 

the 'criterion' chosen. In this situation, the default value of 'criterion' was used, i.e., the p-value 372 

for an F-test of the change in the deviance that results from adding or removing the term. The 373 

quality of the individual final models was evaluated by their adjusted R squared value (Adj. R2). 374 

Only the models with Adj. R2 >0.3 were selected for further analysis and simulation. 375 

Calculating urge level using the predicted UrgR: Predicting urgency episodes 376 

Timings of voids are not completely determined by the intake information, since some of 377 

the voids are “social” or “convenience” voids, which occur without urge or at the low level of 378 

urge and cannot be predicted by renal physiology-based models. Urge sensation is supposed to 379 

be zero at the moments right after voids; therefore, timings of voids are necessary as 380 

independent data to determine the level of urge with UrgR predicted by the developed 381 

regression models. Therefore, we used BD data on the timings of voids (��� together with the 382 
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predicted by the regression models UrgR (pUrgR(t)) to predict the values of urge levels at the 383 

times of voids: 384 

4���� � � 4�!����������
                                                                                           (7). 385 

Note that 4�!����� predicted by the model (unlike UrgR estimated from the BD) is not a 386 

necessary constant in the interval between the adjacent voids; therefore, integration rather than 387 

multiplication by the time interval is warranted. We then used eq. 7 to calculate urge levels at 388 

the time of each void and evaluated percentage of true positive and false positive predictions of 389 

urge episodes by comparing with urge levels reported in BD. Note that, while observed/reported 390 

values of urge at the moments of void have discrete integer values 0,1,2,3,4, the predicted 391 

values of urge pU(ti) can have any positive value. Given the previously-outlined definitions of 392 

urge levels [19], we counted all voids where U(ti)=2,3, or 4 as urgency episodes. In comparison, 393 

for the predicted urgency episodes, we implemented a “personalized urgency threshold” 394 

approach by allowing the threshold level for each patient to change from 1.05 to 2 and selecting 395 

for each patient the threshold that minimized the sum of percentages of false negatives and 396 

false positives. This is equivalent to adding one more parameter to the individual’s model of 397 

sensation of urge.  398 

Simulation of “what if’ scenarios and personalized behavioral modifications 399 

 We used the developed models to simulate personalized behavioral modifications 400 

aimed to avoid or minimize urgency episodes. Simulation is different from model development 401 

since it does not involve parameter fitting. Parameters of each individual model were already 402 

determined at the stage of model development. In simulation, parameters of the models are 403 

fixed, inputs of the models are modified, and the changes of the outputs caused by the 404 

modifications of the inputs are reported. Simulating modifications of intake patterns involve 405 

running with the modified intake data the developed individual grey-box models of urine 406 

production and the regression models of UrgR. In particular, some of the simulated 407 
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modifications excluded use of alcohol and/or caffeinated drinks, substituting them with the 408 

alcohol-free and decaffeinated drinks with the same osmolality and volume. The BFR(t) profiles 409 

with proposed modified inputs and with the initial true inputs are calculated using the grey-box 410 

models; the difference in two profiles is determined and added to the BFR(t) profile determined 411 

from the BD. The result constitutes our best guess of the BFR(t) profile and serves as the first 412 

input variable for the developed multivariable linear regression model of UrgR(t), while the 413 

second input variable is determined by the time integral of the first one. Note that these 414 

simulations are different from “no caffeine no alcohol” models discussed above. While the 415 

comparison of “no caffeine no alcohol models” with “full models” served to demonstrate the 416 

importance of considering the effect of caffeine and alcohol on BFR for achieving adequate fit of 417 

modeled and observed profiles, the simulations with excluded caffeine and alcohol containing 418 

beverages served to examine if abstinence of these beverages could help to avoid urgency 419 

episodes.  420 

Results 421 

Time-averaged analysis of BD data 422 

Distributions of the BD variables across 197 participants 423 

Our cohort of 197 participants with BDs suitable for dynamic analysis is quite 424 

heterogeneous. There is substantial variability across the cohort by age, body mass index 425 

(BMI), 3-day intake volumes, mean intake volumes, types of drinks (osmolality, caffeine and 426 

alcohol content), voided volumes (VVs), bladder capacity (estimated as maximum VV), urge 427 

levels, and numbers of leaks, as illustrated by Table 1 and histograms in Figure 3. 428 

Table 1. Distribution of age, PVR, BMI, and time-averaged BD variables across 197 429 

participants 430 

cohort 

minimum 

cohort 25 

percentile 

cohort 

median 

cohort 75 

percentile 

cohort 

maximum 

Age, years 20 49 61 70 84 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 6, 2023. ; https://doi.org/10.1101/2023.04.05.23288100doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.05.23288100
http://creativecommons.org/licenses/by/4.0/


19 

 

 431 

 432 

Figure 3. Distributions of the BD data and the derived dynamic variables across the 197 433 

participants. Rows 1-2: intake properties. First row: 3-day intake volume (mL), mean intake 434 

volume (mL), standard deviation of intake volume (mL), ratio of maximum hourly intake volume, 435 

and total intake volume. Second row: mean osmolality of consumed drinks (mOsm), standard 436 

deviation of osmolality of the drinks, total consumed caffeine (mg), total consumed alcohol (mL). 437 

Rows 3-4: voids properties. Third row: 3-day void volume (mL), mean void volume (mL), 438 

maximum void volume, i.e., bladder capacity (mL), number of voids per day. Fourth row: log2 439 

(max BFR(t)/median (BFR(t))) – measure of BFR versus time variability, mean urge, maximum 440 

urge, 3-day number of leaks. Note that our cohort is quite heterogeneous, with 3-day intake 441 

volume as low as 2L for some patients and as high as 14L for others, osmolality of the drinks 442 

varying from 0 to 1200 mOsm, both within the BD for a given participant and across participants. 443 

Bladder capacity varied from 200mL to 1400 mL, number of voids per day from 3 to 19, ratio of 444 

maximum to median BFR(t) from 1.6 to 128, mean urge from 0 to 4, and number of leaks during 445 

3 days from zero to 33. 446 

 447 

Intake volume variability during the day differed substantially across participants, with 448 

the ratio of maximum hourly intake volume to total 3-day intake volume ranging from 7% to 449 

30%. Time-variability of void volumes during the day, measured as the ratio of mean to 450 

maximum void volume ranges from 0.18 to 0.88, with cohort median equal 0.48 and 75 451 

percentile equal 0.58, supporting the observation [33] that the majority of people void when their 452 

PVR, mL 0 0 13 27 50 

BMI 19.2 25.5 29.1 33.5 55.6 

3-day intake volume, mL 1567.4 4081.2 5205 6688.9 13722.3 

mean intake volume, mL 109.2 242.3 291.2 351.7 597.4 

max hourly intake volume / total 

intake volume 0.07 0.11 0.14 0.17 0.3 

mean osmolality, mOsm 0 72.5 142.9 253.4 1049.2 

3-day caffeine, mg 0 100 300 542.5 1450 

3-day alcohol, mL 0 0 0 27.7 1632.5 

3-day void volume, mL 828.1 3672.7 5027.6 6458.2 14195.5 

mean void volume, mL 48.7 142.5 198.1 276.5 563.6 

maximum void volume, mL 103.5 295.7 414 591.5 1419.6 

mean/max void volume 0.18 0.38 0.48 0.58 0.88 

mean frequency, 1/day 3 7.6 9.4 11.2 18.9 

max/median of BFR 1.6 3.8 6 10.1 128 

mean urge rating 0 1.1 1.7 2.4 3.9 

max urge rating 0 3 3 4 4 

number of leaks 0 0 0 2.3 33 
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bladder is at most 50% full. The ratio of maximum to median BFR for a given participant varies 453 

from a rather low 1.6 to extremely high value 128. Specifically, max/median BFR >4 in 70% of 454 

participants and >8 in 36% of participants, demonstrating that the high variability of BFR 455 

observed in Figure 2 and Supplemental Figures S1-S9 is a general feature of the cohort.  456 

Table 2 provides values of significant correlation coefficients between the variables from 457 

Table1, sorted from stronger to weaker, and their partial correlation coefficients calculated with 458 

the rest of the variables kept constant.  459 

  460 
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Table 2. Inter-subject correlation coefficients between variables of Table 1. 461 

Variables 

Pearson 

Correlation p-value 

Partial 

Correlation p-value 

3-day void volume, mL ,3-day intake volume, mL 0.65 <0.001 0.22 0.003 

number of leaks, mean urge 0.62 <0.001 0.46 <0.001 

number of leaks, max urge 0.45 <0.001 0.09 0.233 

mean frequency, 1/day ,3-day void volume, mL 0.25 <0.001 0.79 <0.001 

mean intake volume, mL, BMI 0.23 0.001 0.22 0.003 

3-day caffeine, mg, age 0.22 0.002 0.24 0.001 

mean urge, BMI 0.21 0.003 0.09 0.25 

mean frequency, 1/day ,3-day intake volume, mL 0.2 0.005 0.06 0.422 

mean void volume, mL, BMI 0.17 0.018 0.18 0.016 

mean frequency, 1/day ,3-day caffeine, mg 0.17 0.02 0.16 0.037 

number of leaks, mean frequency, 1/day 0.16 0.029 0.04 0.574 

max/median of BFR, PVR 0.15 0.032 0.18 0.016 

mean urge, mean/max void volume 0.14 0.047 0.11 0.14 

3-day void volume, mL, mean osmolality, mOsm -0.16 0.022 0 0.974 

mean frequency, 1/day, BMI -0.16 0.028 0.01 0.866 

mean urge, mOsm -0.17 0.018 -0.05 0.473 

 462 

Most of the inter-subject correlations are either trivial (e.g., correlations between 3-day 463 

intake and void volumes, number of leaks and mean urgency during 3 days, or mean daily 464 

frequency and 3-day void volume), or weak, or become weak when controlled for other 465 

variables, therefore not allowing for identification of definitive predictors of frequency, urgency, 466 

and incontinence episodes in our heterogeneous cohort and demonstrating the need for a 467 

dynamic approach to the analysis of individual BDs.  468 

More interesting information is provided by the analysis of the distribution of VVs divided 469 

by the individual bladder capacity (estimated as the maximum VV during the 3-day BD). First, 470 

we performed analysis similar to [33] by creating histograms of the number of voids with the 471 

given ratio of VV to the individual bladder capacity. Then, we focused the analysis by looking 472 

only at the “very urgent” voids, i.e., voids with �� :=3. Finally, we investigated how many 473 

individuals had low-volume voids (
((
((���

; 0.2�, and low-volume “very urgent” voids. Results of 474 
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this analysis are presented in Figure 4. Low-volume voids appeared to be quite prevalent: 134 475 

of 197 (68%) individuals had low-volume voids, while 52 of 197 (26%) individuals had low-476 

volume “very urgent” voids, i.e., voided with urge �� :=3, when only 20% or less of their 477 

bladder volume were filled with urine. While for the majority of individuals, low-volume “very 478 

urgent” voids were infrequent (20% or less of their voids), for some individuals, such voids 479 

happened as often as in 50% of cases. This analysis indicates that, at least for some of the 480 

individuals, the fraction of bladder volume filled with urine is not the only or even the main 481 

determinant of urinary urge. Next, we performed dynamic analysis of individual BDs in search of 482 

such determinants. 483 

Figure 4. Distributions of the ratio of the voided volumes (VVs) to individual bladder 484 

capacity. Figure 4A: number of voids with the given ratio of VV to the individual bladder 485 

capacity in the cohort of 197 individuals. Figure 4B: number of individuals with low-volume voids 486 

(ratio<=20%) versus the number of such voids in the 3-day BD. Figure 4C: number of 487 

individuals with low-volume voids (ratio<=20%) versus the fraction of such voids in the 3-day 488 

BD. Figure 4D: number of “very urgent” voids ��� :=3) with the given ratio of VV to individual 489 

bladder capacity in the cohort of 197 individuals. Figure 4E: number of individuals with low-490 

volume “very urgent” voids (ratio<=20%) versus the number of such voids in the 3-day BD. 491 

Figure 4F: number of individuals with low-volume “very urgent” voids (ratio<=20%) versus the 492 

fraction of such voids in the 3-day BD. 493 

 494 

Dynamic analysis of BD data 495 

In this section, we concentrate on dynamic analysis of individual BDs by visualizing 496 

individual intake and voiding patterns, calculating intra-subject correlations between dynamic 497 

BD variables, investigating similarities and time delays in the dynamics of these variables, and 498 

creating mathematical models of the individual BDs. 499 

Intake and voiding profiles 500 

Three main observations can be made from visualization of the individual intake and 501 

voiding profiles and dynamic variables derived from the BDs. Here, we demonstrate it for a 502 

typical participant A (Figure 2) and for nine other representative participants B to J 503 

(Supplemental Figures S1-S9). First, dynamic variables, i.e., bladder-filling rate (BFR), 504 
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instantaneous time-dependent frequency of voiding (F), and urge growth rate (UrgR) can vary 505 

several-fold (e.g., 12-fold [Figure 2], 16-fold [Supplemental Figures S2, S3, S5, S7, S9]) during 506 

the day. Second, peaks of these functions occur at time points collocated with fluid intakes. The 507 

highest peaks of BFR(t), F(t), and UrgR(t) are closely following consumption of caffeine and/or 508 

alcohol, e.g., in participant A (Figure 2), and in participants B, C, D, and I (Supplemental Figures 509 

S2, S3, S4, S9). Other peaks are collocated with frequent and/or high-volume drinks. Third, 510 

periods of low BFR(t), F(t), and UrgR(t) are collocated with time intervals with no fluid 511 

consumption, usually at nighttime.  512 

Next steps serve to formalize and quantify these observations by examining intra-subject 513 

correlations and cross-correlation functions of the above dynamic BD variables, and by 514 

developing personalized models of BDs.  515 

Intra-subject correlations of dynamic BD variables  516 

In this section, we will show how correlation analysis of time-dependent (dynamic) 517 

variables reveals a powerful correlation of BFR with UrgR and F. We will also show, in contrast, 518 

a lack of significant correlation of urge level at void with either BFR or VV. BD data for a typical 519 

participant A (Figure 2) can be presented in a different way by plotting UrgR versus BFR (Figure 520 

5A) and versus VV (Figure 5B). Similarly, F can be plotted versus BFR (Figure 5C) and versus 521 

VV (Figure 5D). In this presentation, information regarding the sequence of events is lost; 522 

however, presence or absence of correlations between variables becomes more visible. For 523 

instance, for participant A, BFR is strongly and significantly correlated with UrgR (R=0.88, 524 

p� 3 · 10���) and with F (R=0.85, p� 2 · 10��$), while correlation of these variables with VV is 525 

weak and unsignificant (R=-0.19, p=0.29; R=-0.30, p=0.08). Correlations of urge level at the 526 

time of void (URG) is weak and unsignificant with VV (R=0.32, p=0.06) and BFR (R=0.31, 527 

p=0.08) (Figures 5E-5F). As shown in Figure 6, these observations hold for the majority of 197 528 

patients. While correlations of UrgR and F with BFR are almost always positive and are above 529 
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0.5 for the majority of participants, correlations of these variables with VV can be both positive 530 

and negative and are almost all weak (|R|<0.5). Figure 6C presents the correlations of URG with 531 

VV and BFR. Unlike UrgR and F, where correlation with BFR was a strong positive for almost all 532 

participants, there are participants with positive, zero, and negative correlations of URG with 533 

BFR. Similarly, there are participants with positive, zero, and negative correlations of URG with 534 

VV. Four extreme cases with the strongest positive and negative correlations are presented in 535 

Table 3. Note that the strongest negative correlation of URG with VV is observed for participant 536 

Y, consuming high osmolality drinks as well as caffeinated and alcohol-containing drinks. 537 

Negative correlations with BFR and VV are observed in participant Z, consuming the highest 538 

amount of caffeine. Likely, for these participants, urge level is determined not by the urine 539 

volume but by the composition of the drinks. The strongest positive correlation of URG with VV 540 

is observed for participant W, who consumed low osmolality drinks without caffeine and alcohol. 541 

The strongest positive correlation of URG with BFR was observed for participant X, with the 542 

highest time variability of BFR (max/median BFR=95.8). Observed differences in the 543 

correlations of URG with BFR and VV across participants suggest the differences in mechanism 544 

of urge, which could be potentially used for subtyping of patients with LUTS. 545 

  546 
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Table 3. Four participants with the strongest positive and negative correlations of URG 547 

with VV and BFR 548 

ID W X Y Z 

Sex Female Female Female Male 

Number of voids 15 30 22 36 

Number of leaks 2 0 1 6 

Total VV, mL 7097.8 3645.1 5352.9 6713.3 

Mean URG 2.4 1.21 2.86 1.53 

Max URG 4 3 4 4 

Number of intakes 15 9 19 21 

Total intake volume, mL 4864.9 3312.3 4199.5 5648.6 

Total caffeine, mg 0 150 200 700 

Total alcohol, mL 0 0 45 0 

Mean osmolality, mOsm 133.3 240 404.2 130 

Max/median BFR 3.12 95.83 6.36 5.69 

Correlation of URG with VV 0.91 0.48 -0.63 -0.24 

Correlation of URG with BFR 0.05 0.76 0.09 -0.32 

 549 

Figure 5. Example for a typical participant A of the correlations between the dynamic BD 550 

variables. Figure 5A: UrgR versus BFR (R=0.88, p� 3 · 10���). Figure 5B: UrgR versus VV 551 

(R=-0.19, p=0.29). Figure 5C: F versus BFR (R=0.85, p� 2 · 10��$). Figure 5D: F versus VV 552 

(R=-0.30, p=0.08). Figure 5E: URG versus BFR (R=0.31, p=0.08). Figure 5F: URG versus VV 553 

(R=0.32, p=0.06). 554 

 555 

Figure 6. Scatter plots representing the values of correlation coefficients between 556 

dynamic variables for 197 participants. Figure 6A: correlation of UrgR with BFR (mean 557 

R=0.73) versus correlation of UrgR with VV (mean R=-0.07). Figure 6B: correlation of F with 558 

BFR (mean R=0.75) versus correlation of F with VV (mean R=-0.17). Figure 6C: correlation of 559 

URG with BFR (mean R=0.12) versus correlation of URG with VV (mean R=0.36). Four cases 560 

(W, X, Y, and Z with the highest and lowest values of R) are labeled and described in Table 3.  561 

 562 

Table 4 presents the values of intra-subject correlation coefficients between dynamic BD 563 

variables calculated for each participant and then averaged across 197 participants. As seen, 564 

BFR, F, and UrgR are strongly and significantly correlated (correlations are preserved when 565 

controlled for other variables; see values of partial correlation coefficients); correlations of these 566 

variables with VV are weak, indicating that BFR rather than VV is the main determinant of 567 

urinary frequency and UrgR. This conclusion corroborates the observation of numerous low-568 
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volume “urgent” voids illustrated by Figure 4. There are two aspects of the correlation of UrgR 569 

with BFR. The first is obvious: A higher BFR results in faster bladder-filling to a level that 570 

produces a sensation of urge and a greater frequency of urination. The second aspect is 571 

revealed when we compare the full correlation coefficients with the partial correlation 572 

coefficients calculated when certain variables are fixed. For instance, partial correlation of BFR 573 

with UrgR (R=0.758) with fixed VV is even higher than full correlation of BFR with UrgR 574 

(R=0.733), while partial correlation of BFR with UrgR with fixed urinary frequency is relatively 575 

weak (R=0.3, p-value<0.001), indicating that the role of high BFR cannot be reduced to the time 576 

necessary to fill the bladder to a certain level. We further investigate the role of BFR and urine 577 

volume in the regression models of UrgR. 578 

Table 4. Intra-subject correlations between dynamic BD variables averaged across 197 579 

participants. 580 

Variables 

Pearson 

Correlation p-value 

Partial 

Corr, 

VV 

fixed p-value 

Partial 

Corr, 

BFR 

fixed 

p-

value 

Partial 

Corr, 

IR 

fixed p-value 

Partial 

Corr, 

F 

fixed p-value 

F, UrgR 0.807 <0.001 0.807 <0.001 0.597 <0.001 0.803 <0.001 

 
BFR, F 0.752 <0.001 0.797 <0.001 

 
0.753 <0.001 

 
BFR, UrgR 0.733 <0.001 0.758 <0.001 

 
0.728 <0.001 0.3 <0.001 

BFR, VV 0.151 <0.001 

   
0.16 <0.001 0.395 <0.001 

VV, UrgR -0.07 <0.001 

 
-0.231 <0.001 -0.061 <0.001 0.103 <0.001 

VV, F -0.167 <0.001 

 
-0.395 <0.001 -0.159 <0.001 

  581 

Investigating similarities between BD variables using cross-correlation functions 582 

Intra-subject correlation analysis in the previous section helped to reveal important 583 

relationships between variables in individual BDs; however, in such analysis, information about 584 

the sequence of intake and voiding events is lost. To preserve this information and analyze 585 
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similarities in profiles of the variables, including co-occurrence of events, we used cross-586 

correlation functions, calculated as explained in the Methods section. 587 

Cross-correlation functions of dynamic BD variables for a typical participant A are 588 

presented in Figure 7 and for nine other typical participants (B-J) in Supplemental Figure S10. 589 

The maxima of the cross-correlation functions of BFR(t), F(t), and UrgR(t) for participant A 590 

occurred at zero lag and have high values of over 0.96 (highest possible value of cross-591 

correlation function is 1), demonstrating the high level of similarity of the profiles and absence of 592 

time delay between these functions. This result corroborates the observation from Figure 2 that 593 

peaks of BFR(t), F(t), and UrgR(t) are co-occurring (e.g., labeled peaks at X=30, Figure 2). It 594 

also corroborates the result of the previous section that urinary frequency and UrgR are highly 595 

correlated with the BFR. The presence of two smaller maxima of these correlation functions at 596 

±24 hours indicate the similarity of voiding patterns in days 1,2,3 of the BD, i.e., stability of the 597 

daily voiding pattern for this participant. Note that peaks of cross-correlation function at ±24 598 

hours occur for some (B, D, G, H, I, J) but not for all participants in Supplemental Figure S10, 599 

indicating that similarity of voiding patterns of days 1,2,3 of the BD is not a universal, but a 600 

patient-specific property. 601 

Figure 7. Cross-correlation functions between dynamic BD variables of typical 602 

participant A. Cross-correlation functions of BFR(t), UrgR(t), and F(t) have high maxima 603 

(Xcorrmax=0.96) at zero lag (X=0), indicating high similarity and absence of time delay between 604 

these functions. Two more maxima of these cross-correlation functions (X=±24 hour) indicate 605 

similarity of voiding patterns in days 1,2,3 of BD. Lower values of maxima of cross-correlation 606 

functions of frequency and UrgR with intake rate IR(t) (X=-0.05, Xcorrmax=0.34) indicate that 607 

peaks in intake volumes alone cannot predict peaks in voiding variables. 608 

 609 

Cross-correlation functions of urinary frequency and UrgR with IR(t) demonstrate much 610 

lower values with maxima of about 0.34, indicating that peaks in intake volume alone cannot 611 

predict peaks in voiding variables. This corroborates with observations in Figure 2, where the 612 

highest peak (at X=30) co-occurred not with the highest intake volume but with the intake 613 
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containing caffeine. Similar cross-correlation functions can be observed in Supplemental Figure 614 

S10 for the nine representative participants (B-J). For all of these participants, the maxima of 615 

cross-correlations of F and UrgR with BFR are in the range of [0.88, 0.98], which is three- to 616 

four-fold higher than their correlations with the IR(t). This observation makes sense, since IR(t) 617 

captures information only of the volumes and durations of the drinks, while urine production rate 618 

and therefore BFR may be affected by the composition of the drinks, e.g., osmolality, caffeine, 619 

and alcohol content. Also, importantly, BFR is affected not only by the volume of fluid consumed 620 

at the most recent intake but at the previous intakes as well, as seen for the peak of BFR (at 621 

X=68.3) following several peaks of intake (around X=66.8) in Figure 2, or similarly, for the peaks 622 

of BFR and UrgR (at X=14.23) following a series of intakes (at X=13.5) in Supplemental Figure 623 

S2. Therefore, analysis with cross-correlation functions confirmed conclusions of the analysis of 624 

intra-subject correlations on high correlations and co-occurrence of peaks of urinary frequency 625 

and UrgR with the BFR, but also demonstrated that more sophisticated methods of analysis are 626 

necessary to predict these peaks from the intake profiles.  627 

Predicting BFR profile with the grey-box model of urine formation rate 628 

As described in the Methods section and in Supplemental Material, we developed renal 629 

physiology-based grey-box models of urine formation rate for 197 individuals by fitting 630 

parameters of the model equations to minimize the difference of the urine formation rate 631 

predicted by the models and BFR calculated from the BDs of these individuals.  632 

Figure 8 presents the comparison of BFR profiles derived from the BD with results of the 633 

grey-box models of urine formation rate for participants A (Figure 8A), B (Figure 8B), D (Figure 634 

8C), and J (Figure 8D). Two versions of the model are presented, i.e., the “full model” and the 635 

model ignoring caffeine and alcohol contents of drinks (“no caf no alc”). As seen, the “full model” 636 

is capable of better describing the peaks of BFR especially collocated with intakes containing 637 

caffeine. The “no caf no alc” model predicts peaks collocated with intakes; however, these 638 
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peaks are lower and broader than observed and predicted by the full model, as seen for 639 

participants A and C (Figures 8A, 8C). Figures 8B and 8D demonstrate that models ignoring 640 

caffeine and alcohol content of the drinks not only have problems in accurately predicting high 641 

peaks collocated with caffeine and alcohol consumption, but also sometimes create high false 642 

peaks collocated with drinks without caffeine and alcohol (e.g., around 7 pm on the first and 643 

third days in Figure 8B and on multiple locations in Figure 8D). This is the consequence of “no 644 

caf no alc” models not differentiating between different types of drinks and therefore attributing 645 

higher effects to the volume of the drinks. Although not ideal, “full models” are capable of better 646 

prediction of BFR profiles, with fewer peaks missed and fewer false peaks created. When 647 

comparing predicted and derived (from the BD) BFR profiles, it is important to remember that 648 

the later profiles are approximations as well, based on the assumption of BFR being constant 649 

during the interval between the voids, which is not necessarily correct and might be affected by 650 

multiple factors not recorded in the BD, e.g., heart rate, level of physical activity, consumption of 651 

salted food and/or diuretics. 652 

Figure 8. Comparison of BFR profiles derived from the BDs with the profiles predicted by 653 

the grey-box models of urine formation rate. Figure 8A: participant A. Figure 8B: participant 654 

B. Figure 8C: participant D. Figure 8D: participant J. Both “full models” (in red) and models 655 

ignoring caffeine and alcohol content of the drinks (in green) are presented.  656 

Evaluation and selection of the BFR models 657 

We evaluated the developed grey-box models by comparing BFR profiles predicted by 658 

the models and derived from the BD. We performed not only visual comparison (Figure 8) but 659 

also quantified similarities by using cross-correlation function (eq 1) and functions Peak Fit and 660 

Peak Lag (eqs. 3-4). As noted in the Methods section, an important quality of any model is its 661 

ability to describe/predict observations in the time range outside of the time range used for 662 

parameter fitting. To estimate this ability, we developed models using 3 days of BD data (3-day 663 

model), as well as models using only the first 2 days of BD data (2-day model). Then we used 664 

the parameters of the 2-day model and 3-day intake data to predict BFR(t) during all 3 days. 665 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 6, 2023. ; https://doi.org/10.1101/2023.04.05.23288100doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.05.23288100
http://creativecommons.org/licenses/by/4.0/


30 

 

The two rows in Figure 9 serve to compare the similarity of the observed BFR(t) and the 3-days 666 

(Figure 9A-9C) versus 2-day models (Figure 9D-9F). As seen, the histograms are rather similar, 667 

indicating that 2-day model predictions are only slightly less accurate than 3-day models. For 668 

the majority of the 3-day and 2-day models, maximum of the cross-correlation function (max 669 

Xcorr) is above 0.8 (Figures 9A, 9D). For the majority of the models, Peak Fit>0.9 (Figures 9B, 670 

9E) and Peak Lag <6.5 minutes (Figures 9C, 9F). We used the Peak Fit metric to select 671 

satisfactory models for further analysis. Specifically, we selected BDs for whom both 3-day and 672 

2-day models have similar accuracy, i.e., Peak Fit >0.9 for 3-day and 2-day models. We found 673 

145 such BDs. Table 5 provides the comparison of the 3-day and 2-day models for these 674 

selected BDs by showing mean values of maximum and lag of cross-correlation function, as 675 

well as mean values of Peak Fit and Peak Lag metrics. As seen, both 3-day and 2-day models 676 

provide satisfactory prediction of peak heights and positions, and the 2-day models are only 677 

slightly less accurate than the 3-day models. 678 

Figure 9. Distributions of metrics of similarity between modeled and observed (derived 679 

from BD) profiles of BFR for 197 participants. Figures 9A-9C: 3-day models. Figures 9D-9F: 680 

2-day models. Figures 9A, 9D: distribution of maximum values of cross-correlation function. 681 

Figures 9B, 9E: distribution of Peak Fit values. Figures 9C, 9F: distribution of Peak Lag values. 682 

Table 5. Metrics for comparison of 3-day and 2-day BFR full models with BFR derived 683 

from selected 145 BDs. Mean (std) values 684 

 685 

 686 

Predictions of linear regression models of urinary UrgR  687 

As described in the Methods section, we developed multivariable linear regression 688 

models of UrgR for each individual with the following three inputs: BFR, volume of urine in the 689 

bladder, and awake (yes/no or 1/0). Figure 10 provides the comparison of profiles of UrgR(t) 690 

 Peak Fit  Peak Lag, in 
minutes 

max Xcorr ���	, in 
minutes 

BFR full 3-day 0.947 (0.017) 5.91 (0.38) 0.877 (0.07) -2.32 (16) 

BFR full 2-day 0.943 (0.018) 5.99 (0.39) 0.844 (0.08) 2.88 (60) 
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derived from the BDs with those predicted by the developed multivariable linear regression 691 

models for four typical participants (A, B, E, and F). 692 

Figure 10. Comparison of profiles of UrgR predicted by the models and derived from the 693 

BDs for four typical participants. Figure 10A: participant A (Adj.R2 =0.88). Figure 10B: 694 

participant B (Adj.R2 =0.87). Figure 10C: participant E (Adj.R2 =0.86). Figure 10 D: participant F 695 

(Adj.R2 =0.77). Note that intake and voiding profiles for these participants are presented in 696 

Figure 2 and Supplemental Figures S1, S5, and S6. 697 

 698 

The quality of the multivariable linear regression models (the proportion of variance 699 

explained by the model) is estimated by Adj.R2. The distribution of Adj.R2 for 145 participants is 700 

presented in Figure 11A (0.1< Adj.R2<0.95). There is no universal rule to judge the quality of the 701 

model by the value of Adj.R2. It is recognized that higher values of Adj.R2 are expected in 702 

physics and chemistry and lower in biology, medicine, and sociology. Typically, models of the 703 

processes involving human behavior are considered “good enough” if Adj.R2>0.3 [34]. We 704 

applied this threshold and selected for further analysis the 124 participants for whom Adj.R2>0.3 705 

in the multivariable linear regression model of UrgR. These 124 participants are a subset of 145 706 

participants for whom the satisfactory grey-box models (Peak Fit>0.9) of urine production rate 707 

were created. We used the predicted profiles of UrgR(t) to calculate predicted urge scores at the 708 

times of void by using eq. 7 and compared the urge scores predicted by the models and 709 

reported in BD, as described in Methods, to determine percentages of true positive and false 710 

positive predictions of urgency episodes during individual 3-day BDs. The distributions of true 711 

positives and false positives are presented in Figures 11B and 11C. For 87 (70%) of individuals, 712 

models correctly predicted more than 90% of urgency episodes. Similarly, models predicted less 713 

than 10% false positive episodes in 82 (66%) individuals. The mean percentage of true positive 714 

predictions across 124 participants is 84.6%, while the mean false positive is 10.9%.  715 

Figure 11. Quality measures of the multivariable linear regression model of UrgR and 716 

urge scores at voids. Figure 11A: Distribution of adjusted R squared values for 145 individuals’ 717 

UrgR model (mean Adj.R2 =0.67). Figure 11B: Distribution of percentage of true positive 718 

predictions of urgency episodes in subset of 124 participants with Adj.R2 >0.3. Figure 11C: 719 
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Distribution of percentage of false positive predictions of urgency episodes in the same subset 720 

of 124 participants. There is a rather weak positive correlation between Adj.R2 of the model and 721 

percentage of true positive predictions of urgency episodes (R=0.3, p=0.006), and very weak 722 

negative correlation between Adj.R2 and false positive predictions (R=-0.17, p=0.054). 723 

 724 

One goal of creating multivariable linear regression models was to investigate how BFR 725 

and urine volume affect the UrgR in various individuals. We compared the group of participants 726 

(n=106) experiencing at least one episode of urgency (URG≥2) with those without urgency 727 

(n=18). Table 6 provides the mean and standard deviation values of the linear model 728 

coefficients for these two groups.  729 

Table 6. Comparison of coefficients of the linear model of UrgR for patients with and 730 

without urinary urgency  731 

(Model: UrgR= β1BFR0+ β2V0 + β3 Awake + β12BFR0*V0 + β13BFR0*Awake + β23V0*Awake+ 732 

�), where BFR0 = (BFR-median BFR)/median BFR, V0 = (V-median V)/median V. ) 733 

 734 

 mean with 

urgency 

std with 

urgency 

mean without 

urgency 

std without 

urgency 

p-values 

Intercept 0.0124 0.0064 0.0061 0.0013 5.8E-05 

β1 (BFR
0
) 0.0098 0.0054 0.0042 0.0021 3.6E-05 

β2 (V
0
) -0.0022 0.0020 -0.0010 0.0004 2.0E-02 

β3 (awake) -0.0014 0.0037 -0.0005 0.0012 3.9E-01 

β12 (BFR
0
*V

0
) -0.0003 0.0016 -0.0003 0.0005 9.5E-01 

β13 

(BFR
0
*awake) 

-0.0008 0.0065 -0.0004 0.0022 8.1E-01 

β23 (V
0
*awake) 0.0008 0.0023 0.0001 0.0007 2.9E-01 

Adj.R
2
 0.591 0.162 0.660 0.143 9.1E-02 

 735 

Intercept is significantly higher in the group with urgency. Similarly, β1 is positive in both 736 

groups but is significantly higher in the group with urgency, indicating that BFR is a strong driver 737 

of urgency. Mean of β2 is negative in both groups but has two-fold larger absolute value in the 738 

group with urgency. Mean negative value of the coefficient for 5� is in agreement with the 739 

negative mean intra-subject correlation of UrgR with urine volume (Table 4). The negative value 740 

of 5�  might seem counterintuitive; one would expect urge to be higher with the higher urine 741 

volume when everything else is kept equal. However, it is important to remember that our model 742 
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(eq 6) predicts urge growth rate not urge level, meaning that with negative 5� , urge is growing 743 

with the increase of urine volume but slower than linearly, suggesting possible saturation of the 744 

signal produced by the stretched bladder wall. Mean of β3 is negative in both groups but has 745 

nearly three-fold larger absolute value in the group with urgency, indicating that, when 746 

everything else is kept equal (i.e., BFR and urine volume), on average, UrgR is higher when 747 

participants are asleep than when they are awake in both groups, but to a larger extent in 748 

participants with urgency.  749 

Distributions of the intercept and model coefficients for participants with and without 750 

urgency in Figure 12 corroborates this observation. It also demonstrates that distributions of 751 

intercept and all coefficients are broader for participants with urgency relative to those without 752 

urgency. Rephrasing Leo Tolstoy, one can say that all people without urgency are “non-urgent 753 

alike”, while each person with urgency has urgency in their own way. Note that, while intercept 754 

and β1 are positive for all 124 participants (both with and without urgency), the values of 755 

intercept and β1 are higher for participants with urgency; 5� is negative for all participants 756 

without urgency and for the majority (107, or 92%) of participants with urgency. Coefficient β3 is 757 

negative for the majority of participants (85 with urgency and 12 without urgency), but is positive 758 

for some participants (31 with urgency and 6 without urgency), indicating that being awake 759 

could increase or decrease urgency growth rate in participants from both groups.  760 

Figure 12. Distributions of the intercept and 6 coefficients of multi linear regression 761 

models of UrgR across 124 participants. Blue: participants with urgency (n=106). Red: 762 

participants without urgency (n=18). Bottom-right panel compares the distributions of Adj.R2 
763 

values for participants with and without urgency (no significant difference). 764 

 765 

There are several metrics to estimate the severity of urgency in a patient; one possibility 766 

is to count the number of urgent voids. Table 7 provides correlations between the number of 767 

urgent voids with coefficients of the linear regression models across 124 participants. 768 
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Table 7. Inter-subject Pearson correlation coefficients between the number of urgent 769 

voids and coefficients of linear regression models of UrgR 770 

 771 

 772 

Number of urgent voids is strongly, significantly, and positively correlated with the 773 

intercept and coefficient β1. Correlation with the intercept is obvious and trivial (it just means that 774 

participants with higher UrgR have higher number of urgent voids). Positive correlation with the 775 

coefficient β1 is more interesting and indicates that, not only the BFR is driving urge, but the 776 

participants with more frequent urgent voids are more sensitive to the increased BFR. Number 777 

of urgent voids is also significantly negatively correlated with β2, suggesting that participants 778 

with a high number of urgent voids are less sensitive to the increased volume of urine in the 779 

bladder relative to the increased BFR. 780 

It is of interest to examine if the slopes (sensitivities to different factors) are correlated, 781 

e.g., are people more sensitive to the increase of BFR also more sensitive to the increase of 782 

urine volume or to being awake. Scatter plots of intercept and coefficients β1 and β2 in Figure 13 783 

demonstrate that intercept and β1 are positively correlated (R=0.47, p<0.001), meaning that the 784 

larger the mean UrgR for the participant, the higher their sensitivity to the increase in BFR. On 785 

the contrary, correlation between β1 and β2 is negative (R=-0.33, p<0.001), indicating that 786 

participants more sensitive to increased BFR are less sensitive to increased urine volume. Note 787 

that correlation between β1 and β2 is different from the interaction term β12, which deals with 788 

interactions of BFR and urine volume within a model for each individual. Negative β12 indicates 789 

Coefficient of 

variable 

Correlation with number of 

urgent voids 

p-

values 

Intercept 0.83 <0.001 5� 0.54 <0.001 5� -0.41 <0.001 5& -0.32 0.002 5��  -0.10 0.34 5�&  0.09 0.39 5�&  0.16 0.17 
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slower than linear growth of UrgR with BFR. Correlation between β1 and β2 are across the 790 

individuals. Negative correlation indicates that participants more sensitive to increased BFR are 791 

less sensitive to increased urine volume.  792 

Figure 13. Scatter plots of intercept and two model coefficients for 124 multivariable 793 

linear regression models of UrgR. Figure 13A: intercept versus β1 (R=0.47, p<0.001)..Figure 794 

13B: β2 versus β1 (R=-0.33, p<0.001).  795 

 796 

Of 21 correlations between 7 coefficients of the models, 12 are significant (Table 8) but 797 

the majority of them are weak to moderate. Of main interest are positive correlations between 798 

intercept and sensitivity to BFR (β1 ), and negative correlation between intercept and β2 and β3 , 799 

indicating that participants with higher UrgR are more sensitive to BFR, less sensitive to urine 800 

volume, and have larger difference between day and night UrgRs. Correlations between βi and 801 

βik , and βij and βki are stronger; for instance, strong negative correlation of β2 and β23 indicates 802 

that people more sensitive to urine volume are also more sensitive to it during the night than 803 

during the day. Overall, the complex structure of correlations between coefficients of the 804 

multivariable linear regression models of UrgR indicates the possibility of different mechanisms 805 

of urge in different people. It is not clear (due to a limited sample size, n=124) if it is possible to 806 

identify distinct subtypes of patients with urgency based on these data, or if it is a continuum of 807 

different levels of sensitivities to various factors. Subtyping of patients with urgency would 808 

benefit from inclusion of data outside of BDs (patient-reported symptoms, physical examination, 809 

etc.) and would require consideration of the correlations across these variables [35]. Such study 810 

is of interest but is beyond the scope of the current paper. 811 

Table 8. Significant inter-subject correlations between coefficients of UrgR models for 812 

124 participants 813 

First 

coefficient 

Second 

coefficient 

Correlation 

R 

p-value 

intercept β1 0.47 <0.001 

intercept β2 -0.53 <0.001 
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intercept β3 -0.56 <0.001 

intercept β23 0.21 0.014 

β1 β2 -0.33 <0.001 

β1 β12 -0.22 0.013 

β1 β13 -0.57 <0.001 

β1 β23 0.25 0.015 

β2 β3 0.48 <0.001 

β2 β23 -0.79 <0.001 

β3 β23 -0.48 <0.001 

 814 

Comparison of participants with satisfactory and unsatisfactory models 815 

As described above, models of urine production rate and UrgR for 124 (63% of 197 816 

participants) satisfied the selection criteria and were used for further analysis and simulation. It 817 

is of interest to evaluate how these 124 participants differ from 73 participants for whom 818 

satisfactory models were not created. Table 9 presents the comparison of the mean values and 819 

ranges of the BD variables for these two groups of participants. Variables are sorted starting 820 

with those with the most significant differences between the groups. Participants for whom 821 

satisfactory models were not created demonstrated significantly higher maximum across 3-day 822 

values of time-dependent instantaneous urinary frequency F(t) (Max F). They consumed more 823 

alcohol and high osmolality drinks. This demonstrates that our models have some difficulties in 824 

predicting extremely high peaks of F and in predicting the effects of alcohol and high-osmolality 825 

drink consumption. On the other hand, there are no differences in total intake and void volumes, 826 

maximum urge, number of voids and leaks, and sex of the participants. Differences between the 827 

groups in caffeine content of the drinks and mean urge levels are borderline significant. 828 
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Table 9. Comparison of the groups of participants with satisfactory (selected) versus unsatisfactory (filtered) models  

Variables 

Mean 

Selected 

Std 

Selected 

Min 

Selected 

Max 

Selected 

Mean 

Filtered 

Std 

Filtered 

Min 

Filtered 

Max 

Filtered 

p-

value 

Adjusted 

p-value 

Max F, 1/day 62.4 64.0 7.0 480.0 114.8 127.9 12.1 720.0 <0.001 0.003 

ALC, mL 19.1 44.9 0.0 215.2 75.7 212.2 0.0 1632.5 0.005 0.022 

OSM, mOsm 175.4 165.6 0.0 934.1 252.7 220.2 1.2 895.4 0.006 0.022 

Mean URG 1.9 0.8 0.8 3.9 1.7 0.7 0.0 3.8 0.026 0.083 

CAF, mg 318.5 278.6 0.0 1300.0 410.7 311.4 0.0 1450.0 0.032 0.086 

Sum intake, mL 5529.2 2246.1 1567.4 13722.3 6084.2 2437.0 2410.3 13101.3 0.105 0.240 

BFR ratio 2.6 1.4 1.0 11.8 2.5 1.1 1.1 7.4 0.594 0.849 

Sum void, mL 5299.3 2311.1 828.1 14195.5 5471.6 2261.5 1160.8 11740.9 0.609 0.849 

PVR, mL 15.4 15.0 0.0 50.0 16.2 15.5 0.0 50.0 0.711 0.849 

Max void, mL 462.9 212.8 103.5 1360.4 475.0 234.9 118.3 1419.6 0.712 0.849 

Max URG 3.0 1.0 1.0 4.0 3.1 1.0 0.0 4.0 0.719 0.849 

LEAK 2.0 4.3 0.0 26.0 2.2 4.8 0.0 33.0 0.743 0.849 

N voids 25.9 8.9 8.0 51.0 26.2 7.8 12.0 50.0 0.861 0.918 

male, % 47.6 
  

55.4 
  

0.999 0.999 

 

 . 
C

C
-B

Y
 4.0 International license

It is m
ade available under a 
 is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
(w

h
ich

 w
as n

o
t certified

 b
y p

eer review
)

T
he copyright holder for this preprint 

this version posted A
pril 6, 2023. 

; 
https://doi.org/10.1101/2023.04.05.23288100

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2023.04.05.23288100
http://creativecommons.org/licenses/by/4.0/


38 

 

 

Simulation of behavioral modifications by using the developed models 

We used the developed 124 satisfactory models of UrgR to simulate the effects of 

behavioral modifications. Of these participants with satisfactory models, 20 did not consume 

caffeine or alcohol (noCA), 29 consumed caffeine but not alcohol (yCnoA), 3 consumed alcohol 

but not caffeine (AnoC), and 72 consumed both caffeine and alcohol (yCA). Of these 124 

participants, 106 had at least one urgency episode; distribution of these participants “with 

urgency” across “consumer groups” was the following: noCA=17, yCnoA=23, yAnoC=3, 

yCA=63. Since the goal of behavioral modifications is to minimize urgency episodes, we 

investigated the effects of behavioral modifications only on 106 participants with urgency. Two 

metrics of the effects of the modifications are of interest: first, the reduction of the mean (across 

the 3 days of the diary) UrgR for each individual, and second, reduction of the number of 

urgency episodes for each individual. The first metric translates into the expected reduction in 

urinary frequency (assuming that voids occur at the same levels of urge as without 

modification). The second assumes that timing of voids is the same as without modifications, 

but urgency is not reached due to the reduced UrgR. Table 10 provides the values of both 

metrics (separated by semicolon) averaged within the above groups of consumers.  

Table 10. Improvements in mean UrgR and number of urgency episodes due to 
behavioral modifications  

Simulated 

modification 

Caffeine & 

alcohol 

consumers 

(n=23) 

Only caffeine 

consumers 

(n=63) 

Only alcohol 

consumers 

(n=3) 

No caffeine no 

alcohol 

consumers 

(n=17) 

All relevant 

participants* 

Exclude 

caffeine 

14.8%; 15.0% 14.5%; 14.9% N/A N/A 14.7%; 15.0% 

Exclude 

alcohol 

17.6%; 19.0% N/A 23.5%; 13.3% N/A 18.3%; 18.4% 

Exclude 

caffeine & 

alcohol 

26.9%; 27.6% N/A N/A N/A 26.9%; 27.6% 

Reduce intake 0.8%; 5.1% 0.7%; 0.8% 3.2%; 0.0% 0.1%; 1.2% 0.7%; 1.7% 
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volume by 

10% 

Reduce intake 

volume by 

30% 

2.0%; 9.6% 1.1%; 3.2% 7.2%; 0.0% 0.9%; 1.2% 1.4%; 4.2% 

Reduce intake 

volume by 

50% 

9.2%; 14.1% 7.2%; 7.1% 10.2%; 0.0% 2.3%; 3.1% 6.9%; 7.8% 

Keep BFR 

constant 

6.3%; 36.6% 8.5%; 27.9% 0.0%; 13.3% 10.9%; 17.3% 7.9%; 27.3% 

* ”All relevant participants” means participants capable of performing simulated modification, e.g., yCnoA 
group and yCA group can exclude caffeine, while group yAnoC and noCA cannot since they are not 
consuming it. Two metrics of improvement defined above are separated by semicolon. First metric 
describes reduction in averaged urinary frequency, while the second metric describes average reduction 
in the number of urgent voids if the total number of voids is kept constant for the given individual.  
 

Simulated exclusion of caffeine and alcohol predicted much higher effect in reduction of 

mean UrgR and reduction in the number of urgency episodes than reduction of intake volume. 

Exclusion of both caffeine and alcohol is more effective than exclusion of one of them. The most 

effective (in terms of reduction in the number of urgency episodes) simulated modification is 

presented in the last row of Table 10. It is the hypothetical case where BFR and urine volume in 

the bladder are somehow kept constant and equal to the median values of BFR and urine 

volume during the 3 days of the BD. Note that, in this case, the total intake volume is not 

reduced; however, the timings of intakes should be modified. Especially high is the reduction of 

the number of urgency episodes in all four groups of participants. The mean reduction in the 

number of urgency episodes is as high as 36.6% for participants consuming caffeine and 

alcohol and is 27.3% for all four groups on average. This result is consistent with our 

observation that peaks of UrgR are collocated with peaks of BFR (Figure 2 and Supplemental 

Figures S1-S9). It is also consistent with the strong intra-subject correlation of UrgR with BFR 

(R>0.7) in Table 4, and with the high level of similarity of the UrgR(t) and BFR(t) profiles 

demonstrated with cross-correlation functions (Figure 7 and Supplemental Figure S10). 

Reactions of participants to the simulated modifications vary across individuals. For 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 6, 2023. ; https://doi.org/10.1101/2023.04.05.23288100doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.05.23288100
http://creativecommons.org/licenses/by/4.0/


40 

 

some participants, modifications resulted in more than 50% improvement in the number of 

urgency episodes, while for others, they resulted in no improvement at all. Histograms in Figure 

14 present the distributions of relative improvement in the number of urgency episodes across 

participants capable of simulated modifications (see Table 10 footnote and Figure 14 caption). 

Simulated cases of excluded caffeine (Figure 14A), excluded alcohol (Figure 14B), intake 

volume reduced by 50% (Figure 14C), and a hypothetical case of constant BFR (Figure 14D) 

are presented. Keeping BFR constant appears to be the most effective simulated modification at 

the individual level as well; i.e., 23 (21.7%) of participants are predicted to experience more than 

50% reduction in the number of urgency episodes, while for other modifications, 50% reduction 

was achieved for a much lower number and percentage of relevant participants: caffeine 

exclusion 8 (9.3%), alcohol exclusion 3 (11.5%), and 50% intake volume reduction 3 (2.8%).  

Figure 14. Relative improvement in the number of urgent voids due to simulated 
behavioral modifications. Figure 14A: caffeine excluded in groups of participants with urgency 
consuming caffeine without alcohol (n=63) and caffeine and alcohol (n=23). Figure 14B: alcohol 
excluded in groups of participants with urgency consuming caffeine and alcohol (n=23) and 
alcohol without caffeine (n=3). Figure 14C: intake volumes reduced by 50% without changing 
the timing of voids in all patients with urgency (n=106). Figure 14D: simulated BFR and urine 
volume are kept constant and equal to the median values of BFR and urine volume during 3 
days (n=106). 
 

To determine what kinds of participants benefit more from the simulated modifications, 

we calculated inter-subject correlations of the above two metrics of improvement with the 

following characteristics of the individual participants: total intake volume, total void volume, 

total caffeine consumed, total alcohol consumed, mean osmolality of drinks, number of voids, 

number of leaks, ratio of maximum BFR to median BFR, mean level of urge at voids, mean 

UrgR, maximum UrgR. We calculated the above correlations for each modification and group of 

participants separately. The decrease in percentage of urgency episodes due to excluding 

caffeine (in the group consuming caffeine and both caffeine and alcohol n=23+63) was found to 

be correlated with total amount consumed caffeine (R=0.21, p=0.06) and with urge level at voids 
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(R=-0.36, p=0.0008), indicating that patients with moderate urgency and high caffeine 

consumption would benefit from caffeine exclusion. The decrease in percentage of urgency 

episodes due to excluding alcohol (in the group consuming alcohol and both alcohol and 

caffeine n=3+63) was found to be correlated with the ratio of maximum BFR to median BFR 

(R=0.48, p=0.014), confirming the role of alcohol in creating peaks of BFR and UrgR, which can 

be avoided by excluding alcohol. The decrease in the percentage of urgency episodes due to 

decreasing the intake volume by 50% (in all patients with urgency n=106) was found to be 

correlated with the total void volume (R=0.24, p=0.015), mean osmolality of drinks (R=0.24, 

p=0.014), and negatively correlated with the mean urge level (R=-0.26, p=0.007). The decrease 

in the mean UrgR due to 50% intake reduction was correlated with the total void volume 

(R=0.30, p=0.002), maximum voided volume (R=0.24, p=0.014), and negatively correlated with 

consumed alcohol (R=-0.16, p=0.09). The reduction in the number of urgency episodes was 

negatively correlated with mean urge level at voids (R=-0.38, p=0.0001) and with the number of 

leaks (R=-0.27, p=0.057), indicating that this modification is more beneficial for patients with 

moderate level of urge and not too frequent episodes of incontinence. The above hypothetical 

case is likely not easy to implement for the majority of patients, it rather serves as an asymptotic 

solution demonstrating what is the maximum potential improvement in the percentage of 

urgency episodes that could be accomplished without decreasing the volume of drinks and 

without changing timings of the voids. It also provides some insights for selection of patients for 

whom such approach might be helpful, i.e., patients with moderate mean urge at void level and 

with rare incontinence episodes. One consistent observation can be made for all the above 

simulations, i.e., intake modifications seem to be beneficial for patients with moderate urgency. 

For these patients, the most beneficial medication could be the exclusion of caffeine and alcohol 

and/or modification of timings of the drinks to avoid peaks in BFR. Additionally, for participants 

with higher-level urinary urgency, multiple episodes of urgency, and incontinence, none of the 

simulated behavioral modifications was helpful.  
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Discussion 

The main premise of this paper is that BDs allow much more than just verification or 

more accurate presentation of the data similar to that available through the relevant self-

reported responses on questionnaires. We believe that important additional information and 

insights could be extracted through the analysis of voiding and drinking patterns, where not only 

volumes of the voids and intakes and voiding sensations are recorded, but importantly, accurate 

timings of these events. To implement this program of pattern analysis, we proposed and 

developed a dynamic approach to the analysis of BDs, including seven steps or levels: 1) 

graphical representation and visual inspection of the patterns of intakes, voids, and sensations; 

2) introduction of dynamic variables, such as BFR, UrgR, and instantaneous time-dependent 

frequency (reciprocal of time intervals between voids); 3) intra-subject correlations between the 

dynamic variables; 4) analysis of similarities and delays between patterns of dynamic variables 

using cross-correlation function; 5) grey-box models allowing for prediction of the BFR in an 

individual, given the types, volumes, and timings of intakes; 6) multivariable linear regression 

models predicting individual’s UrgR from their BFR and urine volume; 7) simulation of the 

effects of intake modifications on sensation of urge. Each next level provides deeper 

understanding of the relationship between patterns of intakes, sensations, and voids; however, 

each level requires more detailed and accurate data; therefore, the number of individuals to 

whom the proposed levels of analysis are applicable progressively reduced from 197 (levels1-4) 

to 145 (level 5) to 124 (levels 6-7). Consistency of the results established across the levels of 

analysis increases our confidence. There are two lines of inquiry and findings across all seven 

levels; the first is about the role of BFR as a driver of urge and frequency, while the second is 

about the role of caffeine and alcohol in stimulating BFR and therefore urinary urge and 

frequency. 
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Visual inspection of dynamic variables patterns, in particular BFR(t) (Figure 2, 

Supplemental Figures S1-S9) demonstrated that BFR could change dramatically during the day, 

and that peaks of BFR could be 10-12-fold higher than median BFR value for the given 

individual. Analysis of the distributions of max BFR/median BFR values confirmed this 

conclusion for the whole cohort (Figure 3). Furthermore, the patterns of instantaneous 

frequency (F(t)) and UrgR(t) demonstrated high peaks, which were collocated with peaks of 

BFR(t) (Figure 2, Supplemental Figures S1-S9). Analysis with cross-correlation function (Figure 

7, Supplemental Figure S10) demonstrated a high level of similarity and absence of delay 

between BFR(t), UrgR(t), and F(t). Strong association of these patterns is corroborated by the 

high values of mean intra-subject correlation coefficients between BFR, UrgR, and F (Table 4) 

for full correlations and partial correlations calculated with fixed urine volume and IR(t). Strong 

positive correlations of UrgR and F with BFR were observed for the majority of individuals in the 

cohort, while correlations of UrgR and F with urine volume were mostly weak to moderate, with 

positive and negative correlations being almost equally prevalent (Figure 6). Consistent strong 

positive correlation of UrgR and F with BFR indicates that BFR rather than urine volume was the 

main determinant of urgency. The hypothetic mechanism is that BFR drives the urge growth 

rate and makes a person void when urge reaches certain level. One can argue that increased 

BFR increases the volume of urine in the bladder, and a person voids as soon as the certain 

fraction of the bladder volume is filled. This reasoning, however, contradicts the observation that 

multiple “very urgent” voids (URG≥3) occur when only a small fraction of the bladder is filled 

with urine (Figure 4D-4E) and the observation that the same level of urge in an individual could 

occur at different levels of bladder fullness (Figure 4F). Multivariable linear regression models of 

UrgR corroborated the conclusion of BFR being the dominant driver of UrgR and urge level; it 

also revealed that UrgR for most of the participants decreases with urine volume, meaning that 

urge is growing slower than linearly with urine volume. This result is in agreement with the 

observations of [27], where the reported urge during the natural bladder-filling experiments 
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demonstrated sigmoidal dependence on urine volume. Further analysis of the models showed 

that participants with more frequent urgency episodes are more sensitive to the increased BFR. 

Simulation of the hypothetical behavioral modification of keeping BFR as constant as possible 

showed that it resulted in the more effective reduction of the number of urgency episodes than 

reduction of intake volume or just exclusion of caffeine and/or alcohol. Thus, results of the 

analysis at multiple levels consistently demonstrated the role of the peaks of BFR as drivers of 

urge and the benefit of the measures leading to avoidance of such peaks.  

The results of our analyses are in concert with conclusions of the study by Redmond et 

al [36] of BDs of 24 women with OAB compared with 40 controls, where BFR was an 

independent predictor of the percentage of urgent voids in patients with OAB, but not in the 

control group. In that study, VVs and BFRs were stratified into three levels: low, medium, and 

high. All voids within the groups of women were combined together, ignoring possible 

heterogeneity of the individuals, of which the groups consist, including different bladder 

capacities. Our dynamic analysis was performed separately for each individual and is free of 

these limitations. Another study in concert with our observations reports on the bladder 

sensations in normal (n=12) and OAB (n=17) participants during the oral hydration by rapid 

consumption of 2L of Gatorade [37]. One conclusion was “this study showed fast filling can lead 

normal individuals to experience OAB sensations because sensation event patterns in normal 

participants during fast filling were similar to OAB participants during slow filling.” Although 

tempting to view this conclusion as a confirmation of our observations, it is worth noting that 

mean BFR was about 6.5 mL/min during “slow filling” and over 12 mL/min during “fast filling”. 

While “fast filling” BFR is similar to observed during the peaks of BFR in our BDs, the “slow 

filling” BFR was about 6-fold higher than mean BFR (~1 mL/min) across the 3-day BDs in our 

study. It would be of interest to see the results of oral hydration study with slower “slow filling”; in 
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this case, differences in bladder sensations during “slow” and “fast” filling might be even higher 

than observed in [37]. 

Caffeine- and alcohol-containing drinks were reported as drivers of diuresis and urge 

[38,39]. Our second line of inquiry is about the role of caffeine and alcohol. Visual inspection 

(Figure 2, Supplemental Figures S1-S9) demonstrated that peaks of BFR are often collocated 

with intakes of caffeine- and alcohol-containing drinks. The assumption that certain peaks of 

BFR are caused not just by the intake volume but by the caffeine and alcohol content of the 

drinks was corroborated by the better fit to the data of the grey-box models of urine production 

rate, taking composition of the drinks into account relative to the models ignoring caffeine and 

alcohol content (Figure 8). Simulated exclusion of both caffeine and alcohol in a group of 

participants consuming them predicted to reduce by nearly 30% both the mean UrgR and the 

number of urgent voids. The effect of caffeine and alcohol exclusion is predicted to be much 

more substantial than that of intake volume reduction.  

In summary, simulation predicted that the most beneficial modifications are those 

resulting in smooth profiles of BFR, which can be accomplished by exclusion of caffeine and 

alcohol and/or other measures (e.g., increasing number and decreasing volumes of intakes), 

which is consistent with some published recommendations [40]. It also demonstrated that, for 

some participants with severe and frequent urgency episodes, none of the simulated 

modifications was helpful. Such participants are likely beyond the behavioral modifications stage 

and require more radical medical treatment.  

The above distinction – together with observed differences in the dependence of UrgR 

on urine volume, i.e., positive and negative intra-subject correlations of UrgR and F with VV 

(Figure 6), and both positive and negative values of coefficient β2 (V
0) of the linear regression 

model (Figure 13) – indicate that urinary urge might have different mechanisms in different 
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participants. It is in line with the observation of urge dynamics in the natural-filling study, where 

some participants demonstrated sigmoidal and some linear dependencies of urge on the urine 

volume [27]. Recently, an expert panel [41] recommended to include some BD variables 

together with the results of physiological tests (e.g., maximum uroflow and PVR) into the 

classification of OAB patients. We believe that adding variables derived from the BDs using a 

dynamic approach, such as coefficients β1(BFR0) and β2(V
0) might improve classification and 

provide additional insights into the mechanism of urge in various phenotypes. 

Our paper is not free of limitations. The first group of limitations is related to the 

collected, or rather to the non-collected data; the second to the methodology and model 

assumptions. BDs are not perfect, there is always a chance of some intakes or voids being 

missed or recorded incorrectly [42]. We do not have data on the physical activity and heart rate 

that affects glomerular filtration rate. We do not have data on salt consumption with food that 

affects osmolality of the blood and, therefore, water reabsorption rate. We do not have data 

about fluids consumed with food (e.g., soup, watermelon). Participants reported the types of 

drinks, while information on alcohol and caffeine content is based on the literature data that is 

not necessarily accurate for all individual drinks. The absence or inaccuracy of these data 

negatively affects the accuracy of our models of urine production rate. We minimized the effects 

of these inaccuracies in the linear regression model of UrgR by using BFR(t) extracted from the 

BDs. The simulated changes in BFR(t) due to behavioral modifications were estimated as the 

difference in urine production rates predicted by the grey-box models with and without the 

above modifications, thus cancelling out some of the above inaccuracies. 

The main assumption in defining the dynamic variables (BFR(t), F(t), and UrgR(t) was 

that they are constant during the time intervals between voids and change abruptly at the time 

of voids. This is accurate for F(t), defined as reciprocal of time interval between voids, but it is 

an approximation for BFR(t) and UrgR(t), which is the best estimation, given the data available 
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in the BDs. Better approximation for BFR(t) may be derived from future studies where an 

observed rate growth of urine volume during natural bladder-filling (e.g., through ultrasound or 

fMRI measurements [43,44]) would be combined with BDs for the same participants. Similarly, 

accurate reporting of the level of urge during natural bladder-filling experiments [25] combined 

with BDs for the same patients could lead to better approximations of UrgR(t) profiles and more 

accurate predictions.  

Despite the above limitations and approximations, our findings at different levels do 

corroborate each other. Deeper levels of analysis require more assumptions and 

approximations to provide more details on the codependence of the patterns of intakes, 

sensations, and voids, but are, in general, in concert with the visual observations at the first-

level analysis, therefore increasing confidence in the obtained results. Obviously, our results 

should not be overgeneralized. They need to be validated in an independent cohort and require 

clinical verification. One possible way to evaluate clinical significance of dynamic approach to 

BD data is to start with implementing just the first step, i.e., graphically represent patterns of 

intakes, sensations, and voids, together with BFR and UrgR (Figure 2, Supplemental Figures 

S1-S9). This visual representation is useful since it clearly demonstrates the presence of peaks 

of BFR and urge growth and their collocation with certain intakes, which would enable both 

clinician and patient to generate and test hypotheses on the causes of urgency episodes, and 

propose and test behavioral modifications. Realized as a mobile application, it could be a useful 

educational and self-improvement tool for the patients.  

Advancement and the growth of popularity of wearable devices measuring physical 

activity, together with the development of numerous apps for recording bladder and food diaries, 

generate optimism with regard to improvement of the quality of data required for dynamic 

analysis. Another potential way to advance the accuracy of model predictions is to collect data 

on urine composition. Studies have shown that urine osmolality can be reliably estimated by 
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comparing the color of the urine with color charts [45]. Availability of such data would allow for 

fitting the model of urine production rate, not only by comparing model predictions with the BFR, 

but also with the osmolality profiles. Similarly advantageous would be at least occasional 

measurements of caffeine and alcohol concentrations in urine. Having both measured and 

simulated urine composition profiles would advance the accuracy of the UrgR models and could 

generate more insights potentially useful for clinical practice. 

Conclusion 

A dynamic approach to the analysis of bladder diaries was proposed and developed, 

including visual representation of the patterns of intakes, bladder sensations, and voids, as well 

as analyzing intra-subject correlations of the introduced dynamic variables (bladder filling rate 

and urgency growth rate), and predictive modeling of these variables. The main results of the 

dynamic analysis performed on the 3-day BDs from 197 participants with LUTS include 

observations of the collocation of the BFR and UrgR peaks with the timings of intakes 

containing caffeine and alcohol and with the high-volume intakes. For a majority of participants, 

urgent voids were observed when only a small portion of their bladder was filled with urine. 

UrgR was strongly positively correlated with the BFR in the majority of participants, indicating 

that BFR, rather than urine volume, was the main determinant of their urge sensations. A 

dynamic approach to analysis of BDs and its results should be validated in an independent 

cohort. Although the results of the analysis should not be generalized prior to validation, the 

dynamic approach itself might be applied to the analysis of other physiological processes of 

interest where continuous measurements of the variables are available, as in continuous 

glucose or continuous heart rate monitoring and where the rate of change of the variables in 

response to the stimuli might be as important or even more important than their absolute values. 
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Urine Formation Rate Model 

Supplemental References 

Supplemental Figures (Captions) 

Supplemental Figure S1. Intake and voiding profiles recorded in the 3-day BD of participant B 

and dynamic variables derived from the profiles. 

Supplemental Figure S2. Intake and voiding profiles recorded in the 3-day BD of participant C 

and dynamic variables derived from the profiles. 

Supplemental Figure S3. Intake and voiding profiles recorded in the 3-day BD of participant D 

and dynamic variables derived from the profiles. 

Supplemental Figure S4. Intake and voiding profiles recorded in the 3-day BD of participant E 

and dynamic variables derived from the profiles. 

Supplemental Figure S5. Intake and voiding profiles recorded in the 3-day BD of participant F 

and dynamic variables derived from the profiles. 

Supplemental Figure S6. Intake and voiding profiles recorded in the 3-day BD of participant G 

and dynamic variables derived from the profiles. 

Supplemental Figure S7. Intake and voiding profiles recorded in the 3-day BD of participant H 

and dynamic variables derived from the profiles. 
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Supplemental Figure S8. Intake and voiding profiles recorded in the 3-day BD of participant I 

and dynamic variables derived from the profiles. 

Supplemental Figure S9. Intake and voiding profiles recorded in the 3-day BD of participant J 

and dynamic variables derived from the profiles. 

Supplemental Figure S10. Cross-correlation functions between dynamic BD variables of 

participants B-J. 

Supplemental Figure S11. Box plots for the parameters of the urine formation rate models for 

145 participants.  
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