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Abstract 
 
Quantifying transmission intensity and heterogeneity is crucial to ascertain the threat posed by infectious 
diseases and inform the design of interventions. Methods that jointly estimate the reproduction number 
R and the dispersion parameter k have however mainly remained limited to the analysis of 
epidemiological clusters or contact tracing data, whose collection often proves difficult. Here, we show 
that clusters of identical sequences are imprinted by the pathogen offspring distribution, and we derive 
an analytical formula for the distribution of the size of these clusters. We develop and evaluate a novel 
inference framework to jointly estimate the reproduction number and the dispersion parameter from the 
size distribution of clusters of identical sequences. We then illustrate its application across a range of 
epidemiological situations. Finally, we develop a hypothesis testing framework relying on clusters of 
identical sequences to determine whether a given pathogen genetic subpopulation is associated with 
increased or reduced transmissibility. Our work provides new tools to estimate the reproduction number 
and transmission heterogeneity from pathogen sequences without building a phylogenetic tree, thus 
making it easily scalable to large pathogen genome datasets.  
 
Significance statement 
 
For many infectious diseases, a small fraction of individuals has been documented to disproportionately 
contribute to onward spread. Characterizing the extent of superspreading is a crucial step towards the 
implementation of efficient interventions. Despite its epidemiological relevance, it remains difficult to 
quantify transmission heterogeneity. Here, we present a novel inference framework harnessing the size 
of clusters of identical pathogen sequences to estimate the reproduction number and the dispersion 
parameter. We also show that the size of these clusters can be used to estimate the transmission 
advantage of a pathogen genetic variant. This work provides crucial new tools to better characterize the 
spread of pathogens and evaluate their control.  
 
Introduction 
 
Characterizing transmission parameters describing the intensity and heterogeneity of infectious diseases’ 
spread is fundamental both to understand the threat posed by epidemics and to inform their control. The 
reproduction number R, which describes the average number of secondary infections engendered by a 
single primary case, is a key statistic as it directly reflects the ability for a pathogen to propagate within a 
population (corresponding to R > 1) (1–4). Additionally, heterogeneity in the contribution of individuals to 
disease spread has important implications for outbreak control. When a small proportion of individuals 
plays a disproportionate role in transmission, control strategies targeting these superspreaders can 
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largely reduce the epidemic burden with a small effort (1,5). Individual variation is typically measured with 
the dispersion parameter k, with lower values corresponding to a higher degree of heterogeneity (5).  
 
Estimates of R can be obtained from the analysis of epidemiological time series (e.g. cases, 
hospitalizations or deaths). These methods have widely been used to track in real-time changes in 
transmission rates or the impact of interventions (2,6,7). However, these approaches do not allow the 
estimation of the dispersion parameter k. Other methods have been proposed to jointly infer the 
reproduction number and the dispersion parameter from transmission chain data or epidemiological 
cluster sizes (5,8–10). The collection of such data relies on the identification of epidemiological 
relationships between infected individuals. This can however prove difficult if there is widespread 
community transmission (hindering our ability to identify the putative infector), if a fraction of infected 
individuals remains undetected or if the resources available for such investigation remain scarce.  
 
Pathogen genome sequences can provide insights into the proximity of individuals in a transmission chain 
(11–13) or into the epidemiological processes associated with their spread (14). Phylodynamic 
approaches have been widely used to estimate epidemiological parameters from the shape of 
phylogenies, including the reproduction number R (15–18). Current methods however face a number of 
limitations. First, they require intensive computation and therefore do not scale well to large datasets. 
New approaches to estimate transmission parameters from sequence data without resorting to 
subsampling are hence of primary interest. Second, they generally do not enable to estimate the extent 
of transmission heterogeneity (superspreading or k). Finally, polytomy-rich phylogenies tend to decrease 
the statistical power available to estimate growth rates, thus deprecating the value of these methods 
during the early stage of an outbreak or when large superspreading events occur.  
 
Here, we demonstrate that the size distribution of clusters of identical sequences (or of polytomies) is 
shaped by epidemic transmission parameters (R and k). We develop and evaluate a statistical model 
accounting for heterogeneity in transmission to estimate the reproduction number R and the dispersion 
parameter k from this distribution. Our method does not require building the associated phylogenetic tree 
and is suited for the analysis of sequence data from pathogens causing acute infections with narrow 
transmission bottlenecks. Applying our framework to different epidemiological situations, we recover 
expected transmission parameters for well-characterized pathogens. Finally, we develop a novel 
inference framework to quantify differences in the transmissibility of genetic variants.  
 
Results 
 
Distribution of the number of offspring with identical genomes 
 
In this work, we used the formalism introduced by Lloyd-Smith et al. (5) and assumed that the number of 
secondary cases (or offspring) generated by a single index case follows a negative binomial distribution 
of mean R (the reproduction number) and dispersion parameter k. We focused here on the spread of a 
pathogen that mutates. More specifically, we were interested in the number of offspring which have the 
same consensus genome sequence as their infector. We introduced p, the probability that an infectee 
has the same consensus genome as their infector. For pathogens causing acute infections characterized 
by a narrow transmission bottleneck, this probability corresponds to the probability that a transmission 
event occurs before a mutation event (Supplementary text A). We showed that the number of offspring 
with identical genomes follows a negative binomial distribution of mean 𝑝	𝑅 and dispersion parameter k 
(see Materials and methods). This highlights that the relative timescale at which mutation and 
transmission events typically occur (captured by p, Figure 1A) along with transmission intensity (captured 
by R), will shape the expected mean number of secondary cases with identical sequences. For example, 
assuming the mean waiting time until a mutation event is three times that the waiting time to a 
transmission event, the mean number of offspring with identical genomes would be respectively 0.6, 0.75 
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and 0.9 for R of 0.8, 1.0 and 1.2. These values would drop to 0.2, 0.25 and 0.3 assuming the mean 
waiting time until mutation is a third that until transmission (Figure 1B).  
 

 
Figure 1: Impact of the reproduction number R and the dispersion parameter k on the size 
distribution of clusters of identical sequences. A. Probability that transmission occurs before mutation 
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as a function of the mean generation time dgen and the mean delay before the occurrence of a mutation 
dmut. B. Mean number of offspring with identical genomes as a function of the reproduction number and 
the ratio of the average delay before the occurrence of a mutation dmut and the average delay between 
generations dgen  C. Relationship between epidemiological clusters and clusters of identical sequences. 
D. Probability mass function of the size of clusters of identical sequences for different values of R and k 
and assuming a probability that transmission occurs before mutation of 0.7. E. Number of offspring with 
identical sequences generated during the largest transmission event as a function of the total number of 
offspring with identical genomes generated by a primary case exploring different values for k. F. 
Contribution of the largest transmission event to the total number of offspring with identical sequences 
as a function of the total number of offspring with identical genomes generated by a primary case 
exploring different values for k. In E-F, we report for each value of k the results of 100,000 simulated 
clusters of identical sequences with a reproduction number R of 1 and a probability that transmission 
occurs before mutation of 0.7. In E-F, the boxplots indicate the median along the 5%, 25%, 75% and 95% 
quantiles. In E-F, the total number of offspring with identical sequences is equal to the size of a cluster 
of identical sequences minus 1. In A-B, we assume that both the generation time and the time between 
mutations are exponentially distributed (see Materials and methods).  
 
 
Size of clusters of identical sequences 
 
We defined clusters of identical sequences as subsets of epidemiological clusters, which are defined as 
groups of infections with a known epidemiological link (9). Whereas epidemiological clusters end when 
every transmission chain composing them ceases to circulate (i.e. does not produce any offspring), we 
define clusters of identical sequences as ending when each transmission chain dies out or results in a 
mutation event (Figure 1C). Figure 1D depicts how the distribution of the size of clusters of identical 
sequences was impacted by assumptions regarding the transmission parameters R and k. For example, 
higher values of R would result in larger clusters of identical sequences. For a fixed R, lower values of k 
(corresponding to a higher heterogeneity in transmission) would result in a lower probability for a cluster 
to reach a certain size.  
 
Contribution of highly infectious individuals to the size of polytomies 
 
Though a highly infectious individual (who generates a large number of offspring) will tend to generate 
larger clusters of identical sequences, the presence of large polytomies in a phylogeny is not necessarily 
the signature of a high degree of transmission heterogeneity. When the mean number of offspring with 
identical genomes (equal to 𝑅 ⋅ 𝑝) is greater than 1, the probability of cluster extinction is strictly lower 
than 1 (Figure S1). Large clusters of identical sequences are thus not unlikely when the reproduction 
number R is greater than 1/𝑝, regardless of the extent of transmission heterogeneity (Figure 1D, S1). 
This value corresponds to the criticality threshold for transmission events associated with identical 
sequences. Moreover, large clusters of identical sequences do not stem solely from a single transmission 
generation as they also encompass prior or posterior transmission events. In Figure 1E-F, we explored 
to what extent the most infectious individual of a cluster was contributing to the size of that cluster. We 
found that larger clusters of identical sequences corresponded to more infectious individuals (Figure 1E). 
Assuming a reproduction number R of 1 and a probability p that transmission occurs before mutation of 
1, the median contribution of the most infectious individual (defined as the cluster member generating 
the most offspring) to overall cluster size was however limited for very large clusters of identical 
sequences (e.g. 13%, 17% and 21% for values of k of 1.0, 0.1 and 0.05 considering clusters of identical 
sequences greater than 140).  
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Inference of transmission parameters from the size distribution clusters of identical sequences 
 
Clusters of identical sequences are hence imprinted by the characteristics of the disease offspring 
distribution. This suggests that the size distribution of these clusters might be used to estimate outbreak 
transmission parameters. We thus next sought to develop an inference framework to estimate the 
reproduction number R and the dispersion parameter k from the size distribution of clusters of identical 
sequences. Our maximum-likelihood based approach was inspired by the methods used to estimate 
these two parameters from the size distribution of epidemiological clusters (8,9). It requires input values 
for the probability p that transmission occurs before mutation and the fraction of infections that would be 
sequenced.  
 
We evaluated our inference framework on simulated data generated under different assumptions 
regarding the reproduction number, the dispersion parameter, the probability that transmission occurs 
before mutation and the fraction of infections sequenced. Figure 2A depicts the relationship between 
estimates of the reproduction number R and the true value used to generate synthetic clusters. We were 
able to correctly estimate the reproduction number at lower values. However, when the reproduction 
number reached the threshold of 1/𝑝, we became unable to accurately estimate its value, with our 
estimates remaining stuck at the threshold value. Below the reproduction number threshold of 1/𝑝, 
increasing the number of clusters included in our analysis improved the precision of our estimates (Figure 
S2). When R remained below the threshold, we were able to correctly infer the value of the dispersion 
parameter k (Figure 2B, Figure S3). Relying on a low number of clusters for the inference resulted in 
overestimates of the dispersion parameter (Figure S3) and underestimates of the reproduction number 
(Figure S2), in line with previous studies on the ability to infer parameters from a negative binomial 
distribution (9,19). For values of R higher than the threshold, we were unable to correctly infer the 
dispersion parameter, with values consistently overestimated and a bias that increased with both k and 
the expected mean number of offspring of identical sequences (Figure S4-S5). Considering lower values 
for the proportion of infections sequenced required a greater number of clusters to be analyzed to reach 
the same accuracy as that obtained at higher sequencing fraction (Figure S6). Overall, we found that 
bias increased with the proportion of singletons among clusters (Figures S7). 
 
Reproduction number threshold for different acute infections 
 
The R threshold value below which our inference framework will produce unbiased estimates will thus 
depend both on the natural history of the infection and the evolutionary characteristics of the pathogen. 
We explored how this threshold varied for a range of viruses (Figure 2C, Table S1-S2). For Severe Acute 
Respiratory Syndrome (SARS), we estimated a probability for transmission to occur before mutation of 
27% (uncertainty range: 23%-58%), thus resulting in a R threshold value higher than 3. This observation 
is consistent with previous work highlighting the value of genome sequences in reconstructing SARS-
CoV-like outbreaks (11). For the other pathogens we considered, we estimated values of the probability 
that transmission occurs before mutation between 51% (48%-54%) for Ebola and 82% (79%-85%) for 
H3N2 influenza, corresponding to R thresholds between 1.22 (1.18-1.26) and 1.96 (1.85-2.08).  
 
Our inference framework hence provides unbiased estimates of both R and k when the mean expected 
number of offspring with identical genomes lies below 1. When reaching this critical threshold, estimates 
of the reproduction number become biased downwards. In the following, we focus on situations where 
the reproduction number lies below the critical threshold of 1/𝑝 and we report a series of analyses 
showcasing how our method may be applied in different epidemiological settings. For each of these 
analyses, the fraction of infections sequenced was computed as the product of the proportion of cases 
sequenced and the assumed proportion of infections detected as cases. 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 10, 2023. ; https://doi.org/10.1101/2023.04.05.23287263doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.05.23287263
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

 
Figure 2: Inference of the reproduction number and the dispersion parameter from synthetic 
clusters of identical pathogen sequences. A. Estimated reproduction number R as a function of the 
true reproduction number value used to simulate synthetic clusters. B. Estimated dispersion parameter 
k as a function of the true dispersion parameter value used to simulate synthetic clusters. C. Estimates 
of the probability p that transmission occurs before mutation for a range of pathogens. In C, points indicate 
central estimates and vertical segments indicate uncertainty ranges (see methods). In A and B, point 
estimates correspond to maximum-likelihood estimates and vertical segments to 95% likelihood profile 
confidence interval obtained from analyzing 1000 synthetic clusters of identical sequences. Results in A 
correspond to the joint inference of R and k for true values of k equal to 0.1. Results in B correspond to 
the joint inference of R and k for true values of R equal to 1.0. Different proportions of sequencing among 
infections are explored (10% and 50%). In A and B, different probabilities p of transmission occurring 
before mutation are explored.  
 
 
Recovering characteristics of the Middle East Respiratory Syndrome (MERS) outbreak (2013-2015) 
 
MERS is a respiratory infection first identified in 2012, associated with a case fatality ratio of around 40%. 
MERS is transmitted to humans either upon contact with infected camels, who act as a zoonotic reservoir, 
or with infected humans (20). Human-to-human transmission however results in subcritical transmission 
chains (R < 1) (21–25) characterized by substantial heterogeneity (23,24). We analyzed 174 MERS-CoV 
human sequences sampled between 2013 and 2015 (25) and identified 140 clusters of identical 
sequences, with an average cluster size of 1.2 (Figure 3A). Assuming all infections were detected as 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 10, 2023. ; https://doi.org/10.1101/2023.04.05.23287263doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.05.23287263
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

cases, we estimated a reproduction number of 0.57 (95% confidence interval (CI): 0.46-0.70) and a 
dispersion parameter of 0.14 (95% CI: 0.04-0.46) (Figure 3B-C, Table S3). These estimates were 
consistent with those obtained from the analysis of the size of MERS epidemiological clusters (23). 
Interestingly, our confidence intervals were narrower than the ones obtained from the analysis of 
epidemiological clusters.  
 
Epidemiological surveillance is generally able to only detect a fraction of the overall infection burden and 
is skewed towards symptomatic or severe outcomes. For MERS, modelling studies have suggested that 
detected cases may have accounted for only around half of overall infections (26). In this scenario, we 
estimated a higher value of 0.65 (95%CI: 0.54-0.77) for the reproduction number and a lower value of 
0.09 (95%CI: 0.03-0.26) for the dispersion parameter (corresponding to a higher degree of heterogeneity 
in transmission) (Figure 3B-C, Table S3). Estimates were however qualitatively similar to the ones 
obtained assuming infections were completely detected.  
 
Characterizing measles transmission in the post-vaccination era 
 
During the last decade, European countries have experienced important measles outbreaks despite 
elevated vaccination coverages. Such outbreaks may occur either due to insufficient population 
vaccination coverage or due to persisting pockets of low vaccination rates (27,28). Here, we estimated 
transmission parameters during the 2017 measles outbreak that occurred in the Veneto Region in Italy 
from 30 sequences sampled during this time period (29) (Figure 3D). Assuming all infections were 
detected as cases, we estimated a reproduction number R of 0.58 (95%CI: 0.29–1.18) and a dispersion 
parameter k of 0.04 (95%CI: 0.003-0.45) (Figure 3E-F, Table S4). We also conducted a sensitivity 
analysis assuming that 50% of infections may have gone undetected. We obtained an estimate of R of 
0.62 (95%CI: 0.32-1.17) and of k of 0.02 (95%CI: 0.002-0.19) (Figure 3E-F, Table S4). Our estimates of 
the reproduction number were similar to those obtained for measles outbreaks occurring in high-income 
countries in the post-vaccination era (10,30). Due to the limited number of clusters of identical sequences 
included in our analysis, the uncertainty around our estimate of the dispersion parameters remained quite 
substantial. Our results yet suggest a high degree of heterogeneity, in line with previous analyses (5,10).  
 
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission heterogeneity during a 
Zero-COVID strategy 
 
We next focused on the characteristics of the coronavirus disease 19 (COVID-19) epidemic in New 
Zealand between April 2020 and July 2021, a period during which the epidemic was mostly suppressed 
without reported community transmission. We applied our modelling framework to SARS-CoV-2 
sequences collected during this timeframe. We split the study period into 4 subperiods: April-May 2020, 
June-December 2020, January-April 2021 and May-July 2021 (Figure 3G) during which respectively 
25%, 51%, 46% and 48% of cases were sequenced. We allowed the reproduction number to vary 
between periods but assumed that transmission heterogeneity remained constant throughout. Assuming 
that 80% of infections were detected as cases, we estimated reproduction numbers below unity 
throughout the period (Figure 3H, Table S5) and a dispersion parameter k of 0.63 (95%CI: 0.34-1.56) 
(Figure 3I, Table S5), which corresponds to 23-25% (17-33%) of individuals being responsible for 80% 
of infections throughout the period. We explored the impact of our assumption regarding the fraction of 
infections detected as cases on our estimates and found that values ranging between 50 and 100% would 
not quantitatively change our findings (Figure 3H-I, Table S5). Our results are consistent with previous 
SARS-CoV-2 overdispersion estimates (31,32). 
 
In these 3 case studies, estimates of the reproduction number were little impacted by uncertainty around 
p (Figures S8-S9, Tables S3-S7). Estimates of the dispersion parameter were almost not impacted by 
uncertainty around p.  
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Figure 3: Application of our modelling framework to different pathogen genome datasets. A. 
Distribution of the size of clusters of identical sequences during the 2013-2015 MERS outbreak (25). 
Estimates for MERS of B. the reproduction number R and C. the dispersion parameter k assuming that 
all or half of infections were detected as cases. D. Distribution of the size of clusters of identical 
sequences during the measles 2017 outbreak in the Veneto region in Italy (29). Estimates for measles of 
E. the reproduction number R and of F. the dispersion parameter k assuming that all or half of infections 
were detected as cases. G. Distribution of the size of clusters of identical sequences during the COVID-
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19 pandemic in New Zealand by period. Estimates of H. the reproduction number R and I. the dispersion 
parameter k for SARS-CoV-2 in New Zealand. For B, C, E, F, H and I, the points correspond to maximum 
likelihood estimates and the vertical segments to 95% likelihood profile confidence intervals. In B and C, 
the horizontal lines (respectively the shaded area) correspond to the maximum-likelihood estimate 
(respectively the 95% confidence intervals) obtained by Kucharski and Althaus (23) from the analysis of 
the size of MERS epidemiological clusters.  
 
 

 
Figure 4: Performance of our inference framework in quantifying the transmission advantage of 
genetic variants from the size distribution of polytomies. A. We aim to compare the size distribution 
of clusters of identical sequences splitting a given pathogen between variant and non-variant subtypes. 
B. Sensitivity of the analysis of clusters of identical pathogen sequences in detecting a change in the 
transmissibility of a genetic variant. This is done for different values of the true transmission advantage 
and exploring different sizes of datasets on which the inference is based. C. Transmission advantage 
bias for different values of the true transmission advantage and exploring different sizes of datasets on 
which the inference is based. D. Impact of accounting for two genetic subpopulations on estimates of the 
dispersion parameter k. The transmission advantage bias is defined as !!

"#$

!%!
"#$ −

!!
&'()

!%!
&'() where 𝑅"#$% 

(respectively 𝑅&"#$%) is the maximum likelihood estimate for the reproduction number of the variant 
(respectively the non-variant) and 𝑅"'()* (respectively 𝑅&"'()*) is the true reproduction number of the variant 
(respectively the non-variant) used to generate synthetic cluster data. In B-D, the vertical dashed line 
delimits the regions where the reproduction number of the variant is above/below the threshold of 1/p. In 
B-D, the results correspond to scenarios where the true dispersion parameter is equal to 0.1, the 
probability that transmission occurs before mutation to 0.5 and the reproduction number of the non-
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variant to 0.75. In D, the results correspond to analyses based on 5,000 clusters of identical sequences 
for both the variant and the non-variant. 
 
 
Monitoring the transmission advantages of genetic variants 
 
In the previous sections, we looked at how we can use the size distribution of polytomies to estimate R 
and k. We now focused on how the spread of a variant characterized by a transmission advantage can 
influence the size distribution of clusters of identical sequences. More specifically, we were interested in 
whether hosts infected with a certain genetic subpopulation significantly infect more individuals than hosts 
infected with another genetic subpopulation. We aimed to quantify this transmission advantage, which 
may be impacted by the intrinsic transmissibility of the variant of interest, its ability to escape pre-existing 
immunity or certain characteristics of the host population (e.g. immunity profiles). We developed an 
inference framework based on statistical hypothesis testing (see Methods) to determine whether some 
variant and non-variant pathogens are associated with different reproduction numbers from the size 
distribution of clusters of identical sequences observed in these two genetic populations (Figure 4A). In 
the following, we will refer to variant as the more transmissible genetic subpopulation. However, the role 
of the variant and the non-variant are interchangeable, making our results hence directly applicable for a 
less transmissible one.  
 
We evaluated the ability of our statistical framework to detect the presence of a transmission advantage 
given the number of genetic clusters observed and the magnitude of this transmission advantage (Figure 
4B). We found that (i) the sensitivity of our test increased when more clusters of identical sequences 
were observed and that (ii) the detection of small transmission advantages required the analysis of a 
larger number of clusters. When the reproduction number of the variant reached the threshold of 1/𝑝, the 
sensitivity of our test decreased. We then evaluated the ability of our framework to estimate the variant 
transmission advantage. We found that we have unbiased estimates of the transmission advantage as 
long as both the reproduction number of the variant and the non-variant remained below the 1/𝑝 threshold 
(Figure 4C, Figure S10). Analyzing a greater number of clusters increased the precision of our test (Figure 
4C). Interestingly, sensitivity remained high even above the threshold of 1/𝑝 when a sufficiently large 
number of clusters were included in the analysis. We also found that failing to allow for the reproduction 
number to differ between two genetic subpopulations resulted in overestimating the extent of 
transmission heterogeneity (Figure 4D, Figure S11).  
 
Application to SARS-CoV-2 variants in Washington state 
 
To illustrate our framework, we analyzed SARS-CoV-2 sequence data collected in Washington state, in 
the United States (Figure 5A, Figure S12). Figure 5B depicts the mean size of clusters of identical 
sequences for different variants depending on the month of first detection of the cluster in Washington 
state. We found that the dynamics of the mean size of clusters of identical sequences reflected the 
dynamics of strain replacement in Washington state (Figure 5A), with greater average cluster sizes being 
observed when a given variant of concern was increasing in proportion. This pattern is expected as we 
showed that average cluster sizes can be related to the effective reproduction number. Other elements 
(such as the fraction of infections sequenced) are susceptible to impact patterns of cluster sizes. 
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Figure 5: Analysis of SARS-CoV-2 clusters of identical sequences in Washington state. A. 
Proportion of variant among sequences by month of sample collection. B. Mean size of clusters of 
identical sequences in Washington state from March 2020 across different SARS-CoV-2 clades. C. P-
values over time since collection of 10 variant sequences for different SARS-CoV-2 variants during the 
COVID-19 pandemic in Washington state assuming 50% of infections were detected as cases. In B, we 
report the mean size of clusters of identical sequences grouping clusters depending on their first detection 
date. In B, we display the mean cluster size for a given month and a given variant if at least five clusters 
of identical sequences were identified (for this variant this month). The variants dynamics were derived 
based on Nextstrain clades allocation (33,34). In C, we considered maximum likelihood estimated (MLE) 
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to be consistent with a variant transmission advantage if the estimated reproduction number of the variant 
was higher than that of the non-variant. 
 
 
In the early stages of their spread, variants of concerns (VOCs) such as Alpha, Delta or Omicron have 
been associated with initially short doubling times (35–38), corresponding to reproduction numbers above 
the threshold of 1/𝑝. This, alongside other factors such as changes in the reproduction number over time 
or the implementation of stringent control measures to slow the epidemic spread, could result in biased 
estimates of the transmission advantage. To overcome this caveat and avoid overinterpreting our results, 
we instead focused on whether we were able to detect a transmission change as we previously saw that 
sensitivity remained high for large cluster datasets. We tested a list of variants on whether they were 
associated with a transmission advantage (or disadvantage) compared to the other strains that were 
circulating at that time. For each variant, we evaluated how our conclusions were impacted by the width 
of the analysis window. In Figure 5C, we depicted the p-values for different variants as a function of the  
time before which clusters had the be first observed to be included in the analysis (39,40). This was done 
assuming that 50% of infections were detected as cases. For Alpha, Delta, and Omicron (BA.1, BA.2 and 
BA.4/BA.5), we found statistical support for their increased transmissibility compared to other lineages 
that circulated at that time. Across variants, p-values decreased with increasing time window length. For 
the Omicron sub-variants BA.1 and BA.4/BA.5, we found a strong statistical support (p-value < 10-4) for 
an increased transmissibility considering time-windows as short as 10 days. We did not find evidence for 
the D614G mutation, that occurred early on during the pandemic, to be associated with an increased 
transmissibility, which has been suggested by other studies (39,40). For the Epsilon VOC, the lowest p-
value we found equaled 4.6%. This suggests that it might be associated with an increased transmission 
intensity. We obtained similar conclusions when varying our assumption regarding the fraction of 
infections detected as cases (Figure S13). 
 
 
Discussion 
 
The extent of heterogeneity in transmission and the transmissibility of a pathogen have important 
implications regarding both its potential epidemic burden and the impact of control measures. Despite 
their epidemiological relevance, estimating these two parameters has remained delicate during most 
outbreaks. In this work, we presented a novel modelling framework enabling the joint inference of the 
reproduction number R and the dispersion parameter k from the size distribution of clusters of identical 
sequences. We evaluated the performance of our statistical framework and subsequently applied it to a 
range of epidemiological situations. Finally, we showed how it may be extended to look at the relative 
transmissibility of different genetic subpopulations. 
 
Robust estimates of key epidemiological parameters (such as the reproduction number R and the 
dispersion parameter k) are critical to ascertain epidemic risks. They can be obtained by directly analyzing 
chains of transmission (5) , though such data are generally difficult or almost impossible to collect for 
some pathogens (41). Establishing epidemiological links between cases may indeed be hampered by 
widespread community transmission, sub-clinical disease manifestation or when the infection is spread 
through a vector. Alternatively, it has been shown that the size distribution of epidemiological clusters 
can be harnessed to obtain such estimates (9,42). Beyond the potential challenges in establishing 
epidemiological links between cases, apparent epidemiological clusters may involve different 
transmission chains, that couldn’t be disentangled without further molecular investigation. This is for 
example the case in the measles outbreak reported in Pacenti et al. (29), that we analyzed here,  where 
one observed epidemiological cluster was actually constituted of two evolutionary groups. Relying on the 
size of epidemiological clusters would thus likely lead to overestimating the reproduction number. Here, 
we proposed a new approach, exploiting the relationship between epidemiological clusters and clusters 
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of identical sequences to provide robust estimates of both R and k which does not require to reconstruct 
these epidemiological relationships. Interestingly, we obtained narrower confidence intervals for MERS 
transmission parameters than the ones obtained from the analysis of the size of epidemiological clusters 
(23). This can likely be explained by the greater number of clusters (though smaller) included in our 
analysis. This suggests that even in settings where transmission chains may be reconstructed, the 
combination of case investigation with pathogen sequencing may be valuable to increase statistical 
power and our ability to estimate these key epidemiological parameters. Moreover, as estimates may be 
biased upwards for the dispersion parameter and downwards for the reproduction number when relying 
on a low number of clusters for the analysis (Figure S2-S3) (9,19), the inclusion of a larger number of 
clusters enabled by looking at genetic clusters instead of epidemiological ones can reduce biases. 
 
High-throughput sequencing has enabled the faster and cheaper generation of pathogen genome 
sequences. Current tree-based methods nonetheless require heavy computations to estimate growth 
rates from pathogen genomes. Here, we showed that the size of clusters of identical sequences directly 
contains an imprint of the underlying epidemiological processes and can be leveraged to characterize 
the intensity and heterogeneity in transmission, this without requiring the estimation of the associated 
phylogenetic tree. Moreover, the speed and ease of implementation of our method could make it valuable 
for public health professionals who may not have access to or be comfortable using scientific software 
programs currently used for phylodynamic analysis. The concept of phylodynamics has been introduced 
to describe how epidemiological, immunological and evolutionary processes shape pathogen 
phylogenies (14,15). Here, we hence introduced in essence a new phylodynamic framework describing 
how the size of polytomies is influenced by epidemic dynamics. Importantly, our approach could help to 
interpret sequence data in the early stage of an outbreak when genetic diversity is still limited (e.g. below 
the phylodynamic threshold) (43) and phylogenetic uncertainty is high. This may though require adapting 
our method to account for right-truncated clusters of identical sequences.  
 
Detecting changes in the reproduction number and in the transmissibility of genetic variants is a crucial 
element of epidemic preparedness. Former modelling efforts have underlined the value of monitoring 
anomalous epidemiological cluster sizes for epidemic surveillance (9,42). Here, we developed an 
analogous framework to determine whether a genetic variant was characterized by a different 
reproduction number. This was done by comparing the size distribution of clusters of identical sequences 
between two pathogen genetic populations. Interestingly, a simple visual inspection of these distributions 
for the Alpha, Delta and Omicron variants of concerns (VOCs) in Washington state was already 
suggesting that VOCs were associated with larger polytomy sizes (Figure S12). This means that it should 
be possible to set up a surveillance system monitoring the size of clusters of identical sequences to detect 
anomalous chains, which may be attributable to changes in the reproduction number or increased 
transmissibility of genetic variants. Our framework could also easily be adapted to assess whether a 
variant is associated with a different dispersion parameter. 
 
Our modelling framework relies on the assumption that two identical sequences are always linked within 
an epidemiological cluster. This hypothesis could be broken if an identical sequence was introduced 
multiple times in a given population. To account for such repeated introductions, our likelihood calculation 
could easily be extended to integrate over the potential sub-clusters of identical sequences by adapting 
the combinatorial approach proposed by Blumberg and Lloyd-Smith (9). We also assumed that no 
convergent evolution was occurring. Estimates could also be biased if the observed cluster size 
distribution was not representative of the true underlying cluster size distribution. For example, if larger 
clusters tended to be overrepresented in the analyzed dataset, R estimates could be biased upwards. 
This could result from case investigation favoring the detection of larger clusters or from sequencing 
biased towards individuals with lower cycle threshold (Ct) values, who might be more infectious.  
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Finally, our inference framework is based on some assumptions regarding the probability that two 
members of a transmission pair have the same consensus sequence. Here, we reduced this probability 
to the probability that a transmission event occurs before a mutation one, which should hold for pathogens 
causing acute infections with narrow transmission bottlenecks and relatively short generation times 
(Supplementary text A, Figures S17-S18). We also approximated the evolutionary time between two 
samples from a transmission pair by the generation time. For specific case studies, information regarding 
the delay between infection and sequencing, when available, could be included to compute estimates of 
p. In this work, we used a simulation approach to generate estimates of p. Alternatively, sequencing data 
in transmission pairs could directly inform estimates of p. Using deep-sequencing data from SARS-CoV-
2 and influenza household transmission pairs, we obtained slightly different estimates than from our 
simulation approach (Figure S14).  
 
Our work opens up a number of exciting research directions, such as accounting for non-stationary 
epidemic processes (e.g. with reproduction numbers and sequencing fraction varying over time) (2), 
considering more complex observation processes (e.g. for pathogens where case investigation might 
increase the likelihood of observing larger clusters) (10), evaluating how heterogeneity in infectious 
duration is susceptible to impact transmission heterogeneity estimates (44), or extending our approach 
to pathogens responsible for longer infections characterized by considerable within-host diversity (e.g. 
by assessing how the reproduction number and the dispersion parameter may impact the pathogen 
genetic diversity at the population level (45)). We also showed that when the reproduction number 
reaches the threshold of 1/𝑝, where p is the probability that transmission occurs before mutation, our 
approach was no longer valid. Previous methods relying on the size of epidemiological clusters were 
valid when R < 1 (9). Here, we have extended this threshold by looking at genomic clusters. Overall, 
future research extending our framework to values of R lying above the threshold (e.g. by analyzing the 
subset of clusters that got extinct (see Supplementary text B, Figures S19-S22), by also including the 
sequence collection date or by analyzing right truncated cluster size distributions) would be of primary 
interest. 
 
Building on the observation that clusters of identical sequences are nested within epidemiological 
clusters, we introduced a novel statistical framework to (i) infer the reproduction number and transmission 
heterogeneity from pathogen genomes and (ii) determine whether a specific variant subpopulation is 
characterized by a transmission advantage. Our method is suitable to analyse epidemics even when 
establishing epidemiological relationships is difficult (e.g. vector-borne infections), which was the 
foundation of previous methods used to quantify transmission heterogeneity, hence constituting a 
valuable new tool to study current epidemics and prepare for future ones.  
 
Material and methods 
 
Offspring with identical genomes distribution 
 
We used a branching process formulation to derive the distribution of the number of offspring with 
identical genomes. Let 𝑍 (respectively 𝑍̅) be a random variable corresponding to the number of offspring 
generated by a single infected individual (respectively the number of offspring with identical genomes). 
Let 𝑔 and 𝑔̅ denote their respective probability generating function: 
 

∀	|𝑠| < 1, 𝑔(𝑠) = 	3𝑃[𝑍 = 𝑗] ⋅ 𝑠+
+,-

 

∀	|𝑠| < 1, 𝑔̅(𝑠) = 	3𝑃[𝑍̅ = 𝑗] ⋅ 𝑠+
+,-
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We introduced p, the probability that an infected individual has the same consensus genome as their 
infector. We approximated the evolutionary time between two samples from a transmission pair by the 
generation time. For pathogens causing acute infections characterized by narrow transmission 
bottlenecks, p can be approximated by the probability that a transmission event occurs before a mutation 
event (Supplementary text A). The distribution of the number of offspring with identical genomes	𝑍̅ can 
then be related to that of the number of offspring stemming from a single infector through a binomial 
distribution: 
 

𝑍̅	~	𝐵(𝑍, 𝑝) 
 
This enabled us to derive the following relationship between 𝑔 and 𝑔̅: 
 

∀	|𝑠| < 1, 𝑔̅(𝑠) =33𝑃[𝑍̅ = 𝑗 ∣ 𝑍 = 𝑗.] ⋅ 𝑃[𝑍 = 𝑗.] ⋅ 𝑠+

+*,+

=3	3 ;𝑗
.

𝑗 < ⋅ 𝑝
+ ⋅ (1 − 𝑝)+*/+ ⋅ 𝑃[𝑍 = 𝑗.] ⋅ 𝑠+

+*,++,-+,-

 

∀	|𝑠| < 1, 𝑔̅(𝑠) = 3 𝑃[𝑍 = 𝑗.] ⋅3;𝑗
.

𝑗 < ⋅ (𝑝𝑠)
+ ⋅ (1 − 𝑝)+*/+

+*

+0-+*,-

= 3 𝑃[𝑍 = 𝑗.] ⋅ (1 − 𝑝 − 𝑝𝑠)+*

+*,-

 

 
∀	|𝑠| < 1, 𝑔̅(𝑠) = 𝑔(1 − 𝑝 − 𝑝𝑠) 
 
Following Lloyd-Smith et al.(5), we assumed that the offspring distribution (𝑍) follows a negative binomial 
distribution of mean R and dispersion parameter k. The probability generating function 𝑔 of 𝑍 thus had 
the following form: 

∀|𝑠| < 1, 𝑔(𝑠) = ;1 +
𝑅
𝑘
(1 − 𝑠)<

/1
 

 
The probability generating function 𝑔̅ of 𝑍̅ could then be derived as: 
 

∀|𝑠| < 1, 𝑔̅(𝑠) = ;1 +
𝑅 ⋅ 𝑝
𝑘

(1 − 𝑠)<
/1

 
which is the probability generating function of a negative binomial distribution of mean 𝑝 ⋅ 𝑅 and 
dispersion parameter k. Hence: 

𝑍̅	~	𝑁𝐵(𝑝 ⋅ 𝑅, 𝑘) 
 
Distribution of the size of clusters of identical sequences 
 
Nishiura et al (8) and Blumberg & Lloyd-Smith (9) developed an inference framework to estimate the 
reproduction number and the dispersion parameter from the size of epidemiological clusters. Here, we 
extended this to estimate these two parameters from the size distribution of clusters of identical 
sequences. Let 𝑟+ denote the probability for the size of a cluster of identical sequences to be equal to 𝑗. 
We have: 

∀𝑗 ≥ 1,							𝑟+ =	
Γ(𝑘𝑗 + 𝑗 − 1)
Γ(𝑘𝑗) ⋅ Γ(𝑗 + 1)	

⋅
C𝑝𝑅𝑘 D

+/2

C1 + 𝑝𝑅𝑘 D
1+3+/2 																(1) 
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Evaluating the contribution of highly infectious individuals to the size of clusters of identical sequences 
 
We quantified the contribution of a cluster’s most infectious individual to the size of that cluster of identical 
sequences. We defined the most infectious individual as the cluster member that generated the most 
offspring. To do so, we simulated a branching process with mutation. At each generation, we drew the 
number of new individuals infected by a given individual from a negative binomial distribution of 
parameters (𝑅, 𝑘). This enabled us to identify the most infectious individual in the cluster. We then drew 
whether the new infected individuals were infected by the same genotype that their infector from a 
Bernoulli distribution of parameter 𝑝.  
 
Accounting for the partial sequencing of infections 
 
In practice, clusters will only be partially observed as (i) solely a fraction of infections may be detected by 
the surveillance system (we refer to the detected infections as cases) and (ii) solely a fraction of cases 
will then be sequenced. This means that the observed distribution of the size of clusters of identical 
sequences will differ from the true underlying size distribution of clusters of identical sequences. Failing 
to account for this partial observation has been shown to lead to biased estimates of R and k when 
inferring them from the size distribution of epidemiological clusters (10). Here, we explicitly modeled the 
cluster observation process. 
 
Let 𝜌 denote the probability that a given infected individual is sequenced. Let 𝑠+ denote the probability to 
observe 𝑗 identical sequences among an arbitrary cluster of identical sequences. We have: 

∀𝑗 ≥ 0,				𝑠+ =	3𝑟4 ⋅ ;
𝑙
𝑗< ⋅

4,+

𝜌+ ⋅ (1 − 𝜌)4/+ 

As clusters of size 0 are never observed, we were interested in the probability 𝑟5H for an observed cluster 
to be of a given size 𝑗 knowing in was observed (which corresponds to the probability for an observed 
cluster to be of size 𝑗 conditional on this cluster being of size greater or equal to 1): 
 

∀	𝑗 ≥ 1, 𝑟5H =
𝑠+

1 − 𝑠-
 

 
In practice, we approximated 𝑠+ with a truncated sum, assuming cluster sizes remained below a certain 
threshold 𝑐678: 

𝑠+ =	 3 𝑟4 ⋅ ;
𝑙
𝑗< ⋅ 𝜌

+ ⋅ (1 − 𝜌)4/+
9+,-

40+

 

 
Statistical framework 
 
We used a likelihood-based approach to estimate R and k from the size distribution of clusters of identical 
sequences. Let 𝐷 denote data describing the size of clusters of identical sequences. Let 𝑁 denote the 
number of distinct clusters in 𝐷 and 𝑛+ be the number of clusters of size 𝑗. The log-likelihood of the data 
was derived as: 

𝐿𝐿( 𝑅, 𝑘 ∣ 𝐷 ) =3𝑛+ lnO𝑟5HP
+,2

															(2) 

Maximum likelihood estimates were obtained using a constrained quasi-Newton optimization approach 
imposing values of the reproduction number ranging between 0.01 and 10.0 and values of the dispersion 
parameter ranging between 0.001 and 10.0. This was done using the optim base R function (46).  
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Confidence intervals were obtained by likelihood profiling (9). Let 𝐿𝐿#$% denote the maximum log-
likelihood of the log-likelihood function of (𝑅, 𝑘) defined in (2). We introduced the profile log-likelihood of 
𝑅 as follows: 

𝐿𝐿:(𝑅) = max
1
	𝐿𝐿(𝑅, 𝑘) 

A confidence interval associated with a confidence level of 1 − 𝛼 then corresponds to values of R 
verifying: 

2 ⋅ O𝐿𝐿#$% − 𝐿𝐿:(𝑅)P < 	𝜒2;(1 − 𝛼) 
 
where 𝜒2;(⋅) is the quantile function of a chi-squared distribution with 1 degree of freedom. Confidence 
intervals for the dispersion parameter k were obtained in a similar manner, by inverting the role of R and 
k above. The bounds of the confidence intervals were considered unresolved when lying outside the 
range of 0.01-10 for R and 0.001-10 for k. 
 
Probability that transmission occurs before mutation for an exponentially distributed generation time 
 
Let 𝜇 denote the virus mutation rate (per day). Assuming a Poisson process for the occurrence of 
mutations, the waiting time before the occurrence of a mutation (𝑇6)') follows an exponential distribution 
of rate 𝜇 and mean 𝑑6)' = 1/𝜇. If the generation time (𝑇<*=) follows an exponential distribution of rate 
1/𝑑<*=, assuming that 𝑇<*= and 𝑇6)' are independent, the probability 𝑝 that a transmission event occurs 
before a mutation one is equal to: 
 

𝑝 = 𝑃Z𝑇<*= < 𝑇6)'[ = \ \
1

𝑑6)'
⋅
1

𝑑<*=
⋅ 𝑒

/
'.)/
>.)/ ⋅ 𝑒/

'+(&
>+(& ⋅ 𝑑𝑡<*= ⋅ 𝑑𝑡6)'

3?

'+(&0'.)/

3?

'.)/	0	-
 

 

𝑝 =
𝑑6)'/𝑑<*=

𝑑6)'/𝑑<*= + 1
 

 
This relationship was used to explore how the relative time scale at which transmission and mutation 
events occur impact the probability 𝑝. For the real-world analyses, we estimated the probability that 
transmission occurs before mutation without assuming an exponentially distributed generation time (see 
paragraph below).  
 
Simulation approach to estimate the probability that transmission occurs before mutation using a more 
flexible framework for the generation time  
 
The generation time can often not be approximated using an exponential distribution (e.g. its variance is 
generally not equal to its mean). We relaxed this assumption and empirically derived the probability that 
a transmission event occurs before a mutation one using a simulation approach for the following 
pathogens: mumps virus, MERS-CoV, SARS-CoV, Ebola virus, mpox during the 2022-2023 outbreak, 
measles virus, RSV, Zika virus, influenza A (H1N1pdm and H3N2) and SARS-CoV-2. For SARS-CoV-2, 
we accounted for a reduction in the generation time for Omicron variant (47,48). For each pathogen, we 
identified relevant parameters describing the mean and the standard deviation of the generation time of 
these pathogens. The generation time describes the average duration between the infection time of an 
index case and the time at which this primary case infects a secondary case. We then drew nsim = 107 
generation intervals from a Gamma distribution parametrized with the same mean and standard 
deviation. We also drew nsim = 107 delays until the occurrence of a first mutation for these different 
pathogens from an exponential distribution of rate the mutation rate obtained from the literature. We then 
computed the proportion of simulations for which the generation time was shorter than the delay until the 
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occurrence of a first mutation to obtain an estimate of the probability that transmission occurs before 
mutation.  
 
We explored how uncertainty around the mean generation time and the pathogen’s mutation rate 
impacted estimates of p. Uncertainty in the mutation rate (respectively the mean generation time) was 
accounted for by fixing the mean generation time (respectively the mutation rate) to the central estimate 
and using the lower and upper bound for the mutation rate (respectively the generation time) reported in 
the different studies. From this, we obtained 4 values for the probability that transmission occurs before 
mutation. We reported the lowest and the highest of these 4 estimates as our lower and upper bound 
estimates for p.  
 
Parameters used in the simulations along the resulting probability estimate are detailed in Tables S1-S2. 
A visual comparison of the distribution of the delay before a mutation and a transmission event is available 
in Figure S15.  
 
Using transmission pair data to estimate the proportion of transmission pairs with identical consensus 
sequences 
 
We compared the estimates we obtained for the probability p from our simulation approach with those 
stemming from the analysis of household transmission pair data (for both seasonal influenza (49) and 
SARS-CoV-2 (50)). From the data publicly available associated with the work of McCrone et al. (49), we 
identified 38 H3N2 transmission pairs (23 had identical consensus sequences). Re-analyzing the data of 
Bendall et al. (50), we identified 79 pre-Omicron transmission pairs (47 had identical consensus 
sequences) and 53 transmission pairs infected by the Omicron variant (47 had identical consensus 
sequences). 
 
Simulation study 
 
To evaluate the performance of our novel method, we applied our inference framework to synthetic 
clusters of identical sequences. Each simulation scenario was characterized by: 

- the probability 𝑝 that transmission occurs before mutation (38%, 50% and 83% which correspond 
to values of the ratio 𝑑6)'/𝑑<*= defined above of 0.6, 1 and 5 respectively), 

- the proportion of infections sequenced 𝜌 (50%, 10% or 1%), 
- the reproduction number R (ranging between 0.5 and 3.0), 
- the dispersion parameter k (ranging between 0.01 and 1.0). 

 
Clusters of identical sequences were generated using a branching process in which the number of 
offspring with identical sequences was drawn from a negative binomial distribution of mean 𝑅 ⋅ 𝑝 and 
dispersion parameter 𝑘. As some clusters may never get extinct, clusters were simulated until reaching 
a size of 10,000. We then accounted for the partial sequencing of infections by drawing the observed 
cluster sizes from a binomial distribution with probability parameter 𝜌. 
 
For each parameter combination, we generated datasets comprised of 50, 100, 1000 or 5000 clusters of 
identical sequences. For each of these datasets, we then jointly inferred the value of the reproduction 
number and the dispersion parameter k using our inference framework. The estimated values were then 
compared with the ones used to generate the clusters.  
 
Inference framework to quantify the transmission advantage of genetic variants 
 
We next extended our inference framework to study the transmission advantage of a specific genetic 
variant. This was done by performing a likelihood ratio test to determine whether the size distribution of 
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clusters of identical pathogen sequences for a specific variant (superscript 𝑉) corresponds to a different 
reproduction number than the size distribution of clusters of identical pathogen sequences for non-variant 
sequences (superscript 𝑁𝑉). Similar methods have been used to monitor changes in the reproduction 
number from epidemiological cluster data (9). We assumed that the variant and the non-variant pathogen 
had the same dispersion parameter 𝑘.  
 
More specifically, let 𝐷" (respectively 𝐷&") denote the data describing the size of cluster of identical 
sequences for the variant (respectively the non-variant). We first computed the log-likelihood of the 
combined dataset 𝐷9A6BC=*> = (𝐷" , 𝐷&") assuming that the variant and the non-variant were both 
characterized by the reproduction number R and the dispersion parameter k: 𝐿𝐿9A6BC=*>(𝑅, 𝑘	|𝐷9A6BC=*>). 
We then estimated the maximum-likelihood estimates of this combined likelihood (𝑅9A6BC=*>#$% , 𝑘9A6BC=*>#$% ).  
Second, we computed a splited log-likelihood, this time assuming that the variant and the non-variant 
were respectively characterized by the reproduction numbers 𝑅" and 𝑅&": 
 

𝐿𝐿DE4C'(𝑅" , 𝑅&" , 𝑘	|	𝐷" , 𝐷&") = 𝐿𝐿(𝑅" , 𝑘	|𝐷") + 	𝐿𝐿(𝑅&" , 𝑘	|𝐷&") 
 
We then estimated the corresponding maximum likelihood estimates (𝑅",#$% , 𝑅&",#$% , 𝑘DE4C'#$% ). As the 
combined model is nested within the split one, we performed a likelihood ratio test by computing the 
following test statistic:  
 
𝜆$!G =	−2 ⋅ Z𝐿𝐿9A6BC=*>O𝑅9A6BC=*>#$% , 𝑘9A6BC=*>#$% 	|	𝐷9A6BC=*>P − 𝐿𝐿DE4C'O𝑅",#$% , 𝑅&",#$% , 𝑘DE4C'#$% 	a	𝐷" , 𝐷&")	[ 

 
We then derived the corresponding p-value under a chi-squared distribution with 1 degree of freedom. In 
all the analyses reported in the manuscript, we used a type I error (Alpha risk) of 5%. 
 
Simulation study to evaluate the performance of our inference framework 
 
We used a simulation study to ascertain the performance of our inference framework. Synthetic cluster 
data were generated from a branching process and exploring a range of assumptions regarding: 

- the variant transmission advantage (defined as !
!

!%!
− 1) 

- the probability that transmission occurs before mutation 
- the dispersion parameter 
- the reproduction number of the non-variant 
- the number of clusters simulated for both the variant and the non-variant (50, 100, 1000, 5000) 

 
For each combination of parameters, we evaluated the sensitivity of our statistical framework in detecting 
a difference between the reproduction numbers of two genetic subpopulations. This was done running 
our inference framework on 100 different datasets generated using the same set of parameters. For each 
combination of parameters, we then computed the sensitivity as the fraction of simulations for which we 
were able to detect a transmission advantage using a significance level of 5%. We also computed the 
absolute transmission advantage bias as the difference between the estimated transmission advantage 
(maximum-likelihood estimate) and the true one.  
 
Application to different epidemiological situations 
 
We applied our novel frameworks to the following datasets:  

- Sequence data from the 2013-2015 Middle East respiratory syndrome outbreak (25) 
- Sequence data from the 2017-2018 measles outbreak in the Veneto region (Italy) (29) 
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- Sequence data from the COVID-19 pandemic in New Zealand during the Zero COVID era (April 
2020-July 2021) obtained from the GISAID EpiCoV database (51,52). 

- SARS-CoV-2 sequence data from Washington State obtained from the GISAID EpiCoV database 
(51,52). We applied our transmission advantage framework to this dataset.  

 
A detailed description of these datasets and of the different scenarios explored is available in the 
Supplementary Information (section Supplementary methods – Application to different epidemiological 
situations). 
 
Defining clusters of identical sequences 
 
For each dataset, we computed a pairwise distance matrix between aligned sequences using the ape R 
package (53). If there weren’t any missing data (sites) in the sequences, this matrix would directly enable 
to reconstruct clusters of identical sequences. In practice, this is not the case. We thus defined clusters 
of identical sequences as maximal groups of sequences for which all sequences were at a null distance 
to all other sequences within the cluster. The difference between pairwise distances and clusters of 
identical sequences is illustrated in Figure S16 for MERS-CoV. The cluster generation was done using 
the R igraph package (54). 
 
Due to the large number of sequences available for SARS-CoV-2, generating a single pairwise genetic 
distance matrix would be computationally and memory intensive. Instead, we grouped sequences by 
Pango lineage assigned with Nextclade (33,34) and generated a pairwise genetic distance matrix for 
each Pango lineage.  
 
Data and code accessibility 
 
Code and data used in this paper can be found at https://github.com/blab/size-genetic-clusters. The 
MERS-CoV aligned sequences used in the analysis were directly extracted from the aligned sequence 
data available at (55) for human infections. The GISAID accession numbers associated with the SARS-
CoV-2 sequences used in this analysis (both for New-Zealand and Washington state) are provided at 
https://github.com/blab/size-genetic-clusters/tree/main/data. The size distributions of clusters of identical 
sequences used to run the different analyses are available in the associated GitHub repository. We 
provide scripts to ingest FASTA files to produce cluster distributions and scripts to estimate R and k from 
an input cluster distribution. 
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