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Abstract

Background: Multivariable Mendelian randomization (MVMR) is a statistical
approach using genetic variants as instrumental variables to estimate direct causal
effects of multiple exposures on an outcome simultaneously. In univariable MR findings
are typically illustrated through plots created using summary data from genome-wide
association studies (GWAS), yet analogous plots for MVMR have so far been
unavailable due to the multidimensional nature of the analysis.
Methods: We propose a radial formulation of MVMR, and an adapted Galbraith radial
plot, which allows for the direct effect of each exposure within an MVMR analysis to be
visualised. Radial MVMR plots facilitate the detection of outlier variants, indicating
violations of one or more assumptions of MVMR. In addition, the RMVMR R package
is presented as accompanying software for implementing the methods described.
Results: We demonstrate the effectiveness of the radial MVMR approach through
simulations and applied analyses, estimating the effect of lipid fractions on coronary
heart disease (CHD). We find evidence of a protective effect of high-density lipoprotein
(HDL) and a positive effect of low-density lipoprotein (LDL) on CHD, however, the
protective effect of HDL appeared to be smaller in magnitude when removing outlying
variants. In combination with simulated examples, we highlight how important features
of MVMR analyses can be explored using a range of tools incorporated within the
RMVMR R package.
Conclusions: Radial MVMR effectively visualises causal effect estimates, and provides
valuable diagnostic information with respect to the underlying assumptions of MVMR.
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Introduction 1

Mendelian randomization (MR) is a methodological framework in which genetic 2

variants- often single nucleotide polymorphisms (SNPs)- are used as instrumental 3

variables to estimate causal relationships in the presence of unmeasured confounding [1]. 4

MR analyses are often performed using summary data from publicly available 5

genome-wide association studies (GWAS), reflecting the ease with which such data can 6

be accessed in contrast with individual-level data [2, 3]. 7

A typical summary MR study begins with identifying a set of SNPs associated with 8

the exposure of interest, after which SNP-exposure and SNP-outcome association 9

estimates for each SNP are obtained [2, 3]. Individually, dividing the SNP-outcome 10

association by the SNP-exposure association yields a Wald ratio estimate for the effect 11

of the exposure on the outcome corresponding to each SNP [2,4]. When multiple SNPs 12

are used ratio estimates are typically combined using inverse variance weighting (IVW), 13

producing an average causal effect estimate. SNPs are often weighted by the inverse of 14

the variance of their SNP-outcome association, though a range of weighting 15

specifications can be applied [2, 5, 6]. 16

The extent to which MR causal effect estimates are unbiased is largely determined 17

by three key assumptions. SNPs serving as instruments must be robustly associated 18

with the exposure of interest (IV1), independent of confounders of the exposure and 19

outcome (IV2), and independent of the outcome when conditioning on the exposure 20

(IV3) [7]. Assumption IV1 requires the denominator (the SNP-exposure association) to 21

be non-zero, ensuring the ratio estimate is defined. Assumptions IV2-3 require the 22

SNP-outcome association to be the product of the SNP-exposure association and causal 23

effect of interest, such that the association between the SNP and outcome is entirely 24

mediated by the exposure of interest (see supplementary material). As ratio estimates 25

using valid (IV1-3 satisfying) SNPs would asymptotically converge towards the causal 26

effect of interest, observed heterogeneity in effect estimates using many SNPs can 27

potentially serve as an indicator of IV2-3 violation. 28

The value of estimated heterogeneity as an indicator of IV2-3 violation serves as the 29

motivation for conducting summary MR analyses within a radial framework, previously 30

described in Bowden et al (2018) [6]. Radial MR adapts the original summary MR 31

regression model such that causal estimates are a function of the ratio estimate and 32

weighting corresponding to each SNP. Radial IVW, for example, regresses the product 33

of the ratio estimate and square root weighting for each SNP upon the set of square 34

root weightings, omitting an intercept. This produces an IVW causal effect estimate 35

identical to the standard IVW approach, while allowing effects to be visualised using an 36

adapted Galbraith radial plot [10,11]. Importantly, such plots show the weighting 37

attributed to each SNP on the x-axis, while the contribution to global heterogeneity is 38

proportional to the distance of each data point from the superimposed regression line, 39

or its estimated residual. This facilitates outlier detection, highlighting SNPs which may 40

violate the underlying MR assumptions. Finally, as the weighting applied to each SNP 41

is always positive, and the ratio estimates themselves are independent of allele coding, 42

there is no need to reorient SNP-exposure associations [6]. 43
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SNP-outcome associations which violate assumptions IV2-3 can potentially be 44

mediated through additional phenotypes for which measures are available, and in such 45

cases multivariable Mendelian randomization (MVMR) approaches can be used to 46

estimate the direct effect of multiple exposures on an outcome simultaneously through a 47

generalisation of the univariable IVW model [3, 12–14]. Such analyses are particularly 48

valuable where SNPs selected as instruments in univariable analyses violate assumptions 49

IV2 or IV3 through a measured phenotypic pathway, as such associations can be 50

accounted for when estimating causal effects. In the summary data setting, Burgess et 51

al (2015) demonstrate how MVMR estimates can be obtained using a generalisation of 52

the IVW model, specifically by regressing SNP-outcome associations upon 53

SNP-exposure associations obtained for each included exposure [3, 12]. Sanderson et al 54

(2019) further develop these methods, proposing a range of sensitivity analyses specific 55

to MVMR. This includes methods to assess conditional instrument strength (an 56

extension of IV1 necessary for MVMR analyses) and horizontal pleiotropy (IV3) [13, 14]. 57

However, while several pleiotropy robust methods for MVMR have been proposed, there 58

is an absence of approaches to effectively visualise MVMR analyses [15,16]. 59

In this paper we present a radial MVMR approach which allows for important 60

features of conventional MVMR analyses to be highlighted, in particular SNPs which 61

violate the underlying assumptions of MVMR. Radial MVMR addresses two key 62

limitations of existing approaches, providing a means with which MVMR analyses can 63

be visualised and a process through which outliers can be detected after conditioning on 64

additional exposures. Initially, we demonstrate how univariable radial MR can be 65

extended to incorporate multiple exposures, creating a radial analogue of the IVW 66

MVMR model. With this complete we describe how MVMR estimates can be visualised 67

using radial plots, and crucially, how including an adjustment to ratio estimates to 68

account for additional exposures included in the MVMR model facilitates the detection 69

of pleiotropic SNPs. Specifically, outliers in a radial MVMR analysis can be formally 70

and visually identified through an evaluation of their contribution to global 71

heterogeneity, indicating likely violations of assumption IV3. Through simulated 72

analyses we also highlight the extent to which pruning for such outliers can greatly 73

improve causal effect estimation, both in terms of reducing observed bias and increasing 74

the precision of MVMR estimates. 75

To demonstrate the application of radial MVMR we present an applied example 76

evaluating the effects of low-density lipoprotein (LDL), high-density lipoprotein (HDL), 77

and triglycerides on coronary heart disease (CHD). Using publicly available summary 78

data from the Global Lipids Genetics Consortium (GLGC) and 79

CARDIoGRAMplusC4D Consortium we find evidence of a protective effect of HDL, 80

and a positive causal effect of LDL in relation to CHD [17,18]. When pruning for 81

identified outliers the effect of HDL decreases in magnitude, and we find evidence of a 82

positive association with both LDL and triglycerides. We also illustrate how pleiotropic 83

bias appears likely when conducting univariable analyses, and how such bias is 84

potentially mitigated when including additional exposures. Throughout we perform all 85

analyses using the RMVMR R package for the R software environment, which has been 86

developed to facilitate the application of radial MVMR analyses. The RMVMR R 87

package is freely available from https://github.com/WSpiller/RMVMR. 88
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Methods 89

Univariable summary Mendelian randomization 90

In univariable MR analyses one or more SNPs are used as instruments to estimate the 91

causal effect of a single exposure X upon an outcome Y . Let Gj represent the jth 92

independent SNP from a set of j ∈ {1, 2, . . . , J}, and let U denote one or more 93

unmeasured confounders. A SNP is considered valid provided it satisfies assumptions 94

IV1-3, with assumed relationships depicted in Fig 1. Letting i ∈ {1, 2, . . . , N} index 95

subjects: 96

Xi = γ0 +
J∑

j=1

γjGj + γJ+1Ui + ϵXi (1)

Yi = β0 + β1Xi +
J∑

j=1

αjGj + β2Ui + ϵY i (2)

Fig 1. Directed acyclic graph (DAG) illustrating the assumptions of MR.
Associations required to be zero for the MR assumptions to be satisfied are shown as
dashed lines. Specifically, IV2 is satisfied when θj is zero, and IV3 is satisfied when αj

is zero.

If all confounders of the exposure and outcome were measured, an unbiased estimate 97

for the effect of X upon Y (β1) could be estimated by performing a multivariable 98

regression of Y upon X including all confounders in the set U . As information on U is 99

unavailable by definition, summary MR uses SNP-exposure and SNP-outcome 100

associations obtained for each SNP to estimate the effect of X on Y in a manner robust 101

to confounding bias. SNP-exposure and SNP-outcome associations are estimated using 102

the following simple regression models (excluding variables commonly included in 103

GWAS such as principal components or age). 104

Xi = γ0 + γjGji + ϵXji (3)

Yi = Γ0 + ΓjGji + ηY ji (4)
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Using the estimated total effect of Gj on X (γ̂j) and the estimated total effect of Gj 105

on Y (Γj), the ratio estimate for a given SNP (β̂1j) using estimated parameters γ̂j and 106

Γ̂j can be written as: 107

β̂1j =
β̂1γ̂j + αj

γ̂j
=

Γ̂j

γ̂j
(5)

Assumptions IV1-3 imply γj ̸= 0 and αj = 0, and consequently the ratio can be 108

shown to be a consistent estimator of the effect β1 provided assumptions IV1-3 hold 109

(see supplementary material). Using wj to represent the weight applied to each SNP j, 110

the IVW estimate using multiple uncorrelated SNPs is given by 111

β̂IVW =

∑J
j=1 wj β̂1j∑J
j=1 wj

, wj =
γ̂2
j

σ̂2
Y j

(6)

Note that in Eq 6 inverse variance weights are used, though a wide-range of 112

weightings are available. As described in Bowden et al (2018), an equivalent IVW 113

estimate in Eq 6 can be obtained by fitting a radial regression model, regressing the 114

product of the ratio estimate and square root weight attributed to each SNP against the 115

set of square root weights across all SNPs [6]. 116

β̂1j
√
wj = βIVW

√
wj + ϵj (7)

Constructing a scatter plot with
√
wj and β̂1j

√
wj on the y-axis, and superimposing 117

the regression line from Eq 7, the distance of each observation from the regression line is 118

equal to its square-root contribution to Cochran’s heterogeneity statistic,
√

Qj , where 119

Q =
∑

Qj =

J∑
j=1

wj (β1j − βIVW )
2

(8)

As previously described in Bowden et al (2018), the global Q-statistic follows a 120

chi-squared distribution with J − 1 degrees of freedom, and individual estimates Qj 121

have a chi-squared distribution with 1 degree of freedom [6]. This allows p-values to be 122

used as a threshold for identifying outlying SNPs. Fig 2 shows an example radial plot 123

constructed using previously published GWAS summary data from Do et al, included 124

within the RadialMR R package [17]. This data contains information on LDL from the 125

Global Lipids Genetics Consortium (GLGC), and CHD data from the CARDIoGRAM 126

study [19,20]. Considering the effect of LDL upon CHD, variants identified as outliers 127

are highlighted in yellow and the IVW estimate is represented by a black regression line 128

through the origin. 129
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Fig 2. A scatter plot showing a radial IVW estimate using data from Do et
al. Here the x-axis represents the square root of the weight applied to each SNP, while
the y-axis shows the product of the ratio estimate and square root of the weight given
to each SNP. Outliers are identified using Cochran’s Q-statistic and a p-value threshold
of 0.05/number of SNPs has been used to correct for multiple testing.

Multivariable Mendelian randomization 130

MVMR extends the univariable MR framework to include multiple potentially 131

correlated exposures, leveraging the entire set of SNPs associated with at least one 132

included exposure [13,14]. This allows for the direct effect of each exposure to be 133

consistently estimated, (that is, the effect of an exposure holding the others fixed), 134

provided the total set of SNPs G is: 135

• Strongly associated with each exposure when conditioning on remaining exposures 136

(MVMR1) 137

• Independent of all confounders of any individual exposure and the outcome 138

(MVMR2) 139

• Independent of the outcome when conditioning on all included exposures and all 140

confounders (MVMR3) 141

The previous data generating model can readily be generalised to include an 142

arbitrary number of SNPs and exposures, though there needs to be at least as many 143
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SNPs as exposures for the MVMR model to be identified [13]. For i ∈ {1, 2, . . . , N} 144

observations including j ∈ {1, 2, . . . , J} SNPs, a set of SNPs l ∈ {1, 2, . . . L} where j ̸∈ l, 145

a set of exposures k ∈ {1, 2, . . . ,K}, and a set of exposures m ∈ {1, 2, . . . ,M} for which 146

k ̸∈ m: 147

Xki = γk0 +
J∑

j=1

γkjGj + γk(J+1)Ui +
M∑

m=1

δkmXm + ϵXki (9)

Yi = β0 +
K∑

k=1

βkXk +
J∑

j=1

αjGj + β(K+1)Ui + ϵY i (10)

The set of relationships between variables is illustrated in Fig 3. 148

Fig 3. A DAG illustrating associations described in equations 1-2 and 9-10
for an arbitrary number of SNPs and exposures. Dashed lines represent
associations which would violate assumptions MVMR2-3.

Using equations (9) and (10) the univariable estimand can be derived. For clarity, 149

we denote the total effect of an instrument Gj on an exposure Xk as γ∗
kj , while γkj 150

represents the direct effect of Gj on Xk conditioning on all relevant exposures on the 151

pathway from Gj to Xk. This allows us to define the univariable ratio estimand as: 152

γ∗
kj = γkj +

M∑
m=1

δkmγmj (11)

Γj =
K∑

k=1

βkγ
∗
kj + αj (12)
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Γj

γ∗
kj

= βk +

( ∑M
m=1 βmγ∗

mj + αj

γkj +
∑M

m=1 δkmγ∗
mj

)
(13)

A derivation of this result is provided in the supplementary material. If the MVMR 153

assumptions are satisfied, and independent SNPs are used, Eq 13 simplifies to 154

Γj

γ∗
kj

= βk +

(∑M
m=1 βmγ∗

mj

γ∗
kj

)
(14)

Note that the term in parentheses in Eq 14 represents the effect of the additional 155

exposures Xm, and including ratio estimates for all additional exposures Xm within a 156

multivariable regression will yield marginal effects of each exposure, adjusting for this 157

term in each case. In univariable MR, pleiotropic effects violating IV3 would likely be 158

present when βmγ̂mj ̸= 0. The direct effect of each exposure can be estimated by 159

regressing instrument-outcome associations upon instrument-exposure associations for 160

each exposure simultaneously [2], such that: 161

Γ̂j = βIVW1γ̂1j + βIVW2γ̂2j + . . .+ βIVWkγ̂kj + ϵj (15)

MVMR relies upon a sufficient proportion of instruments being strongly associated 162

with each exposure, conditional on remaining included exposures. This can be evaluated 163

by calculating the conditional F-statistic for each exposure using a conventional 164

threshold of 10 [14]. In terms of ratio estimates the conditional instrument strength of 165

instrument Gj can be thought of as the extent to which γ̂kj ̸= 0, and the conditional 166

independence of the genetic instruments with respect to the outcome (MVMR3) can be 167

evaluated by estimating observed heterogeneity across the set of ratio estimates, as 168

described in Sanderson et al (2021) [14]. 169

Radial MVMR 170

The univariable radial MR model can be readily extended to include multiple exposures, 171

creating an analogue of the MVMR regression model shown in Eq 16: 172

β̂1j(
√
w1j) = βIVW1(

√
w1jsgn(γkj)) + βIVW2

√
w2j + . . .+ βIVWK

√
wKj + ϵj (16)

where wkj represents the weighting for each SNP with respect to exposure k. For 173

example, w1j is equal to
γ̂2
11

σ2
Y

when first order weights are used. It is important to note 174

that the SNP-exposure associations must be re-oriented so as to match the direction of 175

the SNP-exposure associations contributing to the regressand, in contrast to univariable 176

radial MVMR which does not require SNP-exposure associations to be reoriented. This 177

does not alter effect estimates obtained, and they remain equal to those obtained using 178

conventional MVMR. 179

An immediate benefit of conducting MVMR within a radial framework is plotting 180

β̂kj
√
wkj against

√
wkj can be accomplished using generalised axes scales, allowing ratio 181

estimates for each exposure to be projected onto the same scatter plot simultaneously. 182

The RMVMR plot has the same x-axis scale as the univariable Radial MR plot, plotting 183√
wj values. The y-axis of the RMVMR plot, however, represents the product of the 184

ratio estimate and weighting for the reference exposure. As all instruments associated 185

with at least one exposure are used to estimate causal effects, an RMVMR plot will 186

have K × J observations, including a set of weightings for each included exposure k. 187

For clarity, while all weightings are used to estimate causal effects it is often 188

appropriate to limit the number of observations represented on an RMVMR plot to 189
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instruments exceeding a given weighting threshold. For example, points corresponding 190

to an exposure X1 would be shown on the RMVMR plot provided they have an 191

F-statistic greater than 10. This omits clusters of instruments with negligible weightings 192

which are unlikely to be of interest, while improving the readability of the plot. 193

RMVMR plots are particularly useful as a tool for highlighting the extent to which 194

individual SNPs contribute towards global heterogeneity with respect to each included 195

exposure. Following the the data generating model given in equations Eq 9-10 196

performing a univariable MR analyses will result in biased estimates where SNPs are 197

associated with multiple causally relevant phenotypes. This is primarily because the 198

sum of associations
∑M

m=1 βmγ̂mj represent pleiotropic pathways through the omitted 199

exposures, resulting in increased heterogeneity provided such effects are not identically 200

distributed across the set of SNPs (see Eq 14). If this is the case, then it follows that 201

adjusting for such associations would result in a decrease in effect estimate heterogeneity, 202

with estimates converging towards the MVMR estimate once the univariable pleiotropic 203

bias is corrected. The radial analogue for Eq 14 can be written as: 204

Γj√
wkj

= βk +

(∑M
m=1 βm

√
wmj

√
wkj

)
(17)

This result has important implications in terms of visualising heterogeneity in 205

RMVMR analyses. In an RMVMR plot we plot the product of the ratio estimate and 206

corresponding square root weighting against each set of weights on a generalised x-axis 207

(
√
wj). However, as the univariable ratio estimate for each instrument is used, 208

superimposed regression lines representing the RMVMR estimate for each exposure will 209

not represent the best fit through the plotted observations. This is because the ratio 210

estimates do not account for the adjustment from other exposures. We can write the 211

position of each data point on the y-axis as: 212

βkj
√
wkj = βk

√
wkj +

(∑M
m=1 βm

√
wmj

√
wkj

)
√
wkj = βk

√
wkj +

M∑
m=1

βm
√
wmj (18)

Eq 18 highlights how, by subtracting
∑M

m=1 βm
√
wmj from the y-axis value of each 213

data point, an adjustment can be performed to account for exposures included in the 214

RMVMR model. Crucially, though the true value of βm is unknown in Eq 18, an 215

adjustment can be made using the estimate of βm obtained from the RMVMR model, 216

that is, βIVWm in Eq 16. 217

When the MVMR assumptions are satisfied MVMR ratio estimates will be unbiased. 218

This means that adjusted ratio estimates should converge towards their corresponding 219

estimated effect, for example, βk in equation (17). Consequently, observed heterogeneity 220

in MVMR ratio estimates can be indicative of violations of MVMR3. This can be 221

formally evaluated through an adapted form of Cochran’s Q-statistic calculated for each 222

exposure: 223

Qk =
J∑

j=1

Qkj =
J∑

j=1

wkj

(
βkj −

(∑M
m=1 βm

√
wmj

√
wkj

)
− βIVWk

)2

(19)
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As in the univariable Radial MR setting, the square root contribution of each 224

instrument to global heterogeneity with respect to an exposure k is equal to: 225

√
Qkj = βkj

√
wkj −

M∑
m=1

βm
√
wmj − βIVWk

√
wkj (20)

Equation (20) describes how the square root contribution to heterogeneity with 226

respect to exposure k is represented by the distance from each adjusted point to the 227

superimposed regression line for βIVWk, evaluated at
√
wkj . 228

To visualise the extent to which the addition of an exposure minimises effect 229

estimate heterogeneity, a pair of RMVMR plots can be constructed. Initially an 230

RMVMR plot is created including regression lines showing the MVMR estimate for each 231

exposure. For the first plot, each data point shows the the square root weighting for 232

each instrument (
√
wkj), and the product of the square root weighting and unadjusted 233

ratio estimate for each exposure. The second RMVMR plot includes the adjustment to 234

each univariable ratio estimate, described in equation (18). An example of such plots 235

using simulated data is presented in Figure 4. 236

Fig 4. A pair of RMVMR plots using two exposures presented for
illustration. In this case, both exposures have a non-zero effect on the outcome, and
10 instruments are associated with both exposures simultaneously. Fig 4a uses ratio
estimates prior to adjusting for the additional exposure, resulting in substantial
observed heterogeneity. Fig 4b shows a substantial reduction in observed heterogeneity
when adjusting for the additional exposure.

In this simulated example a total of 30 instruments are used, of which 10 are 237

associated with exposure X1, 10 are associated with exposure X2, and a final 10 238

instruments are associated with X1 and X2 simultaneously. In univariable analyses, 239

provided both exposures have an effect on the given outcome 10 instruments will violate 240

IV3 through the omitted exposure. This is shown by the degree of observed 241

heterogeneity in Figure 4a prior to using adjusted ratio estimates. As shown in Figure 242

4b, where the inclusion of an additional exposure accounts for remaining pleiotropic 243

effects, the resulting adjusted ratio estimates will converge to the MVMR estimate, that 244

is, the direct effect of each exposure on the outcome of interest. 245
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A number of important features of can be discerned from Figure 4 which warrant 246

consideration. Initially, the degree to which the position of data points changes can serve 247

to indicate whether the inclusion of an additional exposure within an RMVMR model is 248

appropriate. Specifically, if omitting an exposure induces bias when calculating ratio 249

estimates, we would expect the vertical position of data points to change when applying 250

an adjustment. In cases where data points do not appreciably change in position, this 251

can imply either that the additional exposure has no effect on the outcome (βm = 0), 252

that instruments are exposure specific such that wmj = 0, or an unlikely scenario where 253

the adjustments across all exposures are balanced such that
∑M

m=1 βm
√
wmj = 0. 254

A second benefit of RMVMR plots is the ability to visually identify the relative 255

exposure-specific weighting of each instrument. In Figure 4 the position of each 256

instrument on the x-axis reflects its weighting (
√
wj) with respect to each individual 257

exposure. It should be noted, however, that this does not reflect the conditional 258

instrument strength of each instrument. 259

Finally, as highlighted in equation (20) the vertical distance of each data point in 260

Figure 4b from their corresponding superimposed regression line is equal to their square 261

root contribution to heterogeneity with respect to the given exposure. This can be 262

indicative of invalid instruments, and would warrant further follow-up using external 263

data. It is, however, critical to note that the adjustments made to each exposure are 264

reliant upon initial estimates for the direct effect of each exposure β̂IVWk. In cases 265

where these estimates are initially biased an iterative process can be applied, identifying 266

and removing outliers and repeating effect estimation until no outliers exceeding a given 267

Q-statistic threshold are present. However, as in univariable MR, this is reliant upon 268

such outliers being invalid. In cases where the majority of instruments are pleiotropic 269

with a similar distribution of pleiotropic effects, it is possible that valid instruments will 270

be identified as outliers. In these cases, the removal of outliers can lead to estimates 271

converging towards biased estimates of β̂IVWk. 272

The RMVMR R package 273

The RMVMR R package is a tool designed to facilitate the implementation and 274

visualisation of RMVMR analyses. RMVMR analyses should ideally be performed in 275

five stages. First, summary GWAS data need to be obtained for a set of instruments, 276

including instrument-exposure associations for all included exposures, 277

instrument-outcome associations, and corresponding standard errors. With this 278

complete, the data are formatted for downstream analyses using the format rmvmr() 279

function, and conditional instrument strength is evaluated using the strength rmvmr() 280

function. Causal effect estimates and tests for pleiotropic instruments can then be 281

performed using the ivw rmvmr() and pleiotropy rmvmr() functions. Finally, the 282

plot rmvmr() function can be used to construct RMVMR plots. A flow chart showing 283

each step for applying RMVMR using the RMVMR software package is provided in the 284

supplementary material. 285

Outliers are detected based on their contribution to heterogeneity after adjustment, 286

and are calculated with respect to each individual exposure. The significance level for 287

identifying outliers can be defined by the user, and a data frame containing the 288

Q-statistics for each individual variant is provided as an output from the 289

pleiotropy rmvmr() function. Identified outliers can then be followed up using external 290

sources such as PhenoScanner or the MR Base online software platform [21,22]. The 291

RMVMR package builds upon the RadialMR and MVMR R packages, and can be used 292

in conjunction with data obtained using the MR Base platform. Further details for the 293

RMVMR software and installation instructions are available at 294

https://github.com/WSpiller/RMVMR. 295
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Results 296

Demonstrating the implementation of RMVMR through 297

simulation 298

To demonstrate the implementation and advantages of RMVMR a simulation study is 299

presented comprised of two components (simulations 1 and 2). In simulation 1 a single 300

data frame is generated and analysed. This serves to illustrate how RMVMR analyses 301

are implemented and interpreted in an individual case, including outlier detection and 302

plot construction. Simulation 2 considers estimates of causal effect obtained from 1,000 303

data frames, highlighting broader features of RMVMR. Code for replicating the 304

analyses is provided in the supplementary material, and the data set used in simulation 305

1 is the last of 1,000 generated for simulation 2. All RMVMR analyses are performed 306

using the RMVMR R package. 307

Each data frame is simulated so as to include N = 200, 000 observations of J = 240 308

instruments Gj , three exposures X1−3, a single unmeasured confounder U and an 309

outcome Y . The data were generated using a data generating model conforming to 310

equations (9 and 10). The set of instruments were generated so as to represent eight 311

equal groups based on their association with one or more exposures, and were assigned 312

arbitrary identification (rsid) numbers. Simulated groups of instruments include: 313

• Instruments associated with X1 only (group 1: rs1-30) 314

• Instruments associated with X2 only (group 2: rs31-60) 315

• Instruments associated with X3 only (group 3: rs61-90) 316

• Instruments associated with X1 and X2 (group 4: rs91-120) 317

• Instruments associated with X1 and X3 (group 5: rs121-150) 318

• Instruments associated with X2 and X3 (group 6: rs151-180) 319

• Instruments associated with X1, X2 and X3 (group 7: rs181-210) 320

• Instruments associated with X1, X2 and X3 with a direct effect on Y (group 8: 321

rs211-240) 322

Non-zero associations between instruments and exposures were randomly sampled 323

from a normal distribution with mean 0 and standard deviation 10. To ensure strong 324

instruments were used in the analysis, values with an absolute value less than 2 were 325

resampled. The effects of X1, X2 and X3 upon Y were defined as β1 = 1, β2 = 0.2, and 326

β3 = −0.5 respectively. Exposures were also simulated so as to be correlated, with a 327

correlation coefficient ranging from −0.5 to 0.5. 328

Instrument group 8 was subdivided into three equal groups, wherein instruments 329

with a direct effect on Y are associated with one of the three exposures X1−3. The 330

direct effects of instruments in group 8 were sampled from a normal distribution with 331

mean 10 and standard deviation 5, resampling to ensure parameters had an absolute 332

value greater than 2. Finally, each set of instrument-exposure estimates, as well as 333

instrument-outcome associations, were obtained from separate non-overlapping samples. 334
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Simulation 1: Demonstrating the application of RMVMR using a single data frame 335

Initially, univariable radial IVW models are applied using only instruments robustly 336

associated with each exposure (F-statistic > 10). Radial MR estimates for each 337

individual exposure are presented in Table 1, while univariable radial plots are provided 338

in the supplementary material. 339

Table 1. Causal effect estimates1 obtained using radial MR and RMVMR models
with differing exposure combinations2.

Model Estimate (se) p-value Q-statistic (p-value)
Univariable Radial IVW

X1 1.051 (0.041) < 0.001 9242.04 (< 0.001)
X2 0.697 (0.069) < 0.001 24012.2 (< 0.001)
X3 0.342 (0.076) < 0.001 29652.94 (< 0.001)

RMVMR (X1,X2)
X1 0.971 (0.045) < 0.001 623.81 (< 0.001)
X2 0.142 (0.046) 0.002 621.41 (< 0.001)

RMVMR (X1,X2,X3)
X1 1.098 (0.039) < 0.001 544.08 (< 0.001)
X2 0.311 (0.041) < 0.001 554.90 (< 0.001)
X3 -0.422 (0.040) < 0.001 557.61 (< 0.001)

Pruned RMVMR (X1,X2,X3)
X1 1.001 (0.010) < 0.001 23.66 (> 0.999)
X2 0.201 (0.011) < 0.001 26.46 (> 0.999)
X3 -0.497 (0.011) < 0.001 22.90 (> 0.999)

1 True effects of each exposure: β1 = 1, β2 = 0.2, β3 = −0.5.
2 Sample size N = 200, 000

In Table 1 we can see that effect estimates exhibit substantial bias when estimated 340

using univariable radial IVW. The high Q-statistics estimated for each exposure provide 341

evidence of heterogeneity in estimates obtained using each instrument individually, 342

suggesting potential violations of assumption IV3. When using a two exposure RMVMR 343

model including exposures X1 and X2, there continues to be evidence of bias. In this 344

case the observed bias is smaller in magnitude, reflecting how adjustment for both X1 345

and X2 accounts for a proportion of the pleiotropic bias observed in univariable 346

analyses. This is expected given instrument groups 4, 7, and 8 are simultaneously 347

associated with exposures X1 and X2. This interpretation is further supported by a 348

notable decrease in observed heterogeneity for each exposure. For reference, the 349

estimated conditional F-statistics for X1 and X2 were 111.32 and 112.22 respectively. 350

The inclusion of exposure X3 adjusts for associations between instruments and the 351

outcome through X3 which are not mediated downstream by either X1 or X2. This 352

again results in a substantial decrease in heterogeneity, although the continued presence 353

of instruments from group 8 has the effect of inducing pleiotropic bias. The conditional 354

F-statistics for each exposure were 105.94, 98.21, and 103.46 respectively. 355

By removing instruments identified as outliers on the basis of their contribution to 356

global heterogeneity, it is possible to perform a pruned analysis using the iterative 357

approach previously described. Calculating the individual Q-statistic for each 358

instrument with respect to each exposure, a total of 16 SNPs are identified as outliers 359

using a p-value threshold of 0.05, shown in Figure 5. From Figure 5 it can be seen that 360

all identified outliers correspond to group 8 (rs211-240); instruments generated so as to 361

violate assumption MVMR3 by having a direct effect on the outcome Y . Consequently, 362

removing these instruments will have the effect of reducing pleiotropic bias in RMVMR 363

analyses. In Table 1 estimates obtained using the pruned RMVMR approach show no 364
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evidence of bias or substantial heterogeneity. The conditional F-statistics for the pruned 365

analysis were 115.56, 107.42, and 114.11 for exposures X1, X2, and X3. 366

Fig 5. Scatter plot showing instruments which are identified as outliers
using the p-value for their contribution to observed heterogeneity. A dotted
line is shown representing the p-value threshold for identifying outliers (p < 0.05). All
instruments correspond to Group 8 (rs211-240) for which a directional pleiotropic effect
is present.

Fig 6 shows RMVMR plots corresponding to the models adopted in simulation 1. In 367

Fig 6s observations do not appear to converge towards their respective effect estimates, 368

instead forming two widely dispersed clusters. The extent to which observations diverge 369

from their corresponding direct effect estimate is representative to their contribution to 370

global heterogeneity, and consequently serves as an indicator of MVMR3 violation. 371

In Fig 6b the inclusion of exposure X3 has the effect of substantially reducing global 372

heterogeneity. In this case, a pattern emerges where it is possible to visually identify 373

valid instruments defined in the simulation. The inclusion of instruments from group 8, 374

however, induces pleiotropic bias in causal effects. The continued presence of pleiotropic 375

instruments is indicated by the continued presence of substantial heterogeneity. 376

Following the systematic pruning of outliers, Fig 6c shows how remaining 377

instruments converge towards unbiased estimates of direct effect for each exposure. 378

Notably, the change of scale on the y-axis reflects the reduction in relative distance from 379

each observation to their respective superimposed regression line, and the absence of 380

substantial heterogeneity suggests an absence of pleiotropic bias. It is, however, 381

important to once again emphasise that such an interpretation is predicated on 382

MVMR3 violating instruments being identified as outliers, and care should be taken 383

when considering outlier removal. 384
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Fig 6. Panel showing radial MVMR plots corresponding to each of the
simulated analyses presented in Table 1. Fig 6a represents the two-exposure
model, while Fig 6b includes all measured exposures. Fig 6c, shows a plot generated
after pruning pleiotropic SNPs identified in Fig 5.

Simulation 2: Evaluating the performance of RMVMR over multiple iterations 385

In simulation 1 attention was given to the implementation and interpretation of 386

RMVMR using a single data set. To provide a more concrete demonstration of how 387

RMVMR can lead to an overall reduction in pleiotropic bias, we repeat the previous 388

analyses using a total of 1,000 independent data sets. Mean effect estimates, standard 389

errors, and F-statistics are presented in Table 2, and illustrated in Fig 7. 390

When evaluating the performance of RMVMR across multiple iterations, we can see 391

that identifying and pruning outliers in this case consistently leads to a reduction in 392

pleiotropic bias. It is also interesting to highlight that conditional instrument strength 393

for each exposure is greater after removing outlying instruments. This is a consequence 394

of removing noise from instruments in group 8, such that the reduction in heterogeneity 395

affords more accurate prediction of each exposure using the remaining instruments. 396
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Table 2. Mean causal effect estimates1 obtained using RMVMR models across 1,000
independent data sets2) from simulation 2.

Model Mean estimate Mean std.error Mean F-statistic3

RMVMR (X1,X2,X3)
X1 1.010 0.038 107.30
X2 0.311 0.041 98.12
X3 -0.418 0.040 103.50

Pruned RMVMR (X1,X2,X3)
X1 0.999 0.010 117.01
X2 0.206 0.011 107.77
X3 -0.486 0.010 115.24

1 True effects of each exposure: β1 = 1, β2 = 0.2, β3 = −0.5.
2 Sample size N = 200, 000
3 Conditional F-statistic

Fig 7. Forest plot showing mean effect estimates and 95% confidence
intervals for the effect of exposures X1, X2, and X3 following simulation 2.
Vertical dashed lines depict defined true effects, coloured by exposure. Initial estimates
indicate RMVMR estimates obtained prior to outlier pruning.

When evaluating the performance of RMVMR across multiple iterations, we can see 397

that identifying and pruning outliers in this case consistently leads to a reduction in 398

pleiotropic bias, as well as a substantial increase in estimate precision. It is also 399

interesting to highlight that conditional instrument strength for each exposure is greater 400

after removing outlying instruments. This is a consequence of removing noise induced 401

by instruments in group 8, such that the reduction in heterogeneity affords more 402

accurate prediction of each exposure using the remaining instruments. 403
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Applied analysis: Lipid fractions and coronary heart disease 404

To demonstrate the RMVMR approach in an applied setting we consider the effects 405

of lipid fractions, specifically HDL, LDL, and triglycerides, upon CHD. SNP-exposure 406

estimates were obtained from previously published GWAS summary data, using data 407

from the Global Lipids Genetics Consortium presented in Willer et al [19]. Each lipid 408

fraction was recorded in mg/Dl, and standardised before GWAS were performed. 409

SNP-outcome associations were obtained from the CARDIoGRAMplusC4D Consortium 410

as presented in Nikpay et al [18]. CHD associations are presented on a log-odds scale, 411

and were obtained using logistic regression. All SNP associations were obtained using 412

the MRBase online platform [21]. For each exposure, univariable radial MR analyses are 413

performed, after which radial MVMR models including all exposures are fit to the data. 414

Univariable radial MR analyses were performed for HDL, LDL, and triglycerides, 415

using only SNPs identified as robustly associated with each exposure (p < 5× 10−8). 416

Independent SNPs were selecting using a linkage disequilibrium clumping threshold of 417

R2 < 0.001, and palindromic SNPs were also removed prior to performing analyses. 418

This resulted in a total of 87 SNPs for HDL, 67 SNPs for LDL, and 40 SNPs for 419

triglycerides being selected for subsequent analyses. Effect estimates in Table 3 have 420

been transformed so as to be interpreted on an odds ratio scale. Mean F-statistics for 421

SNPs used in univariable analyses are presented in Table 3, and corresponding plots for 422

univariable analyses are provided in the supplementary material. 423

Table 3. Causal effect estimates obtained using radial MR and radial MVMR models,
estimating the effect of lipid fractions (HDL, LDL, and triglycerides) on CHD.

Model Estimate (se) p-value Q-statistic (p-value) F-Statistic
Univariable Radial IVW

HDL1 0.829 (0.058) 0.001 444.90 (< 0.001) 121.6
LDL1 1.499 (0.055) < 0.001 229.35 (< 0.001) 100.1

Triglycerides1 1.255 (0.062) < 0.001 162.81 (< 0.001) 170.3
RMVMR
HDL 0.899 (0.053) 0.046 144.24 (0.004)2 42.9
LDL 1.408 (0.057) < 0.001 109.36 (0.020)2 39.2

Triglycerides 1.123 (0.064) 0.074 84.13 (0.055)2 29.1
Pruned RMVMR

HDL 0.939 (0.042) 0.135 74.39 (0.910)2 43.6
LDL 1.399 (0.050) < 0.001 40.13 (0.997)2 32.2

Triglycerides 1.146 (0.055) 0.014 46.16 (0.869)2 24.9
1 Estimates obtained using univariable radial MR.
2 Calculated using corrected ratio estimates

Considering the univariable radial IVW analyses there appears to be evidence of a 424

positive association of LDL and triglycerides with CHD, in contrast to HDL which 425

shows evidence of a protective effect. However, evaluating heterogeneity across the 426

range of individual ratio estimates for each exposure indicates that one or more SNPs 427

may be pleiotropic, potentially violating assumption IV3. This is indicated by high 428

Q-statistics for each exposure, as seen in Table 3. 429

Previous research has highlighted how individual SNPs simultaneously associated 430

with multiple lipid fractions, coupled with an observed strong correlation between 431

phenotypes, can result in pleiotropic bias. To account for such relationships, it is 432

possible to fit a radial MVMR model incorporating each exposure simultaneously. 433

Radial MVMR estimates for each exposure are shown in Table 3, showing the effect of 434

each lipid fraction to be directionally consistent, though smaller in magnitude, 435

compared to univariable estimates. Assuming that the observed heterogeneity in 436
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univariable analyses is the result of omitting one or more lipid fractions, performing a 437

correction for each observation and re-evaluating heterogeneity using radial MVMR 438

should show evidence of a substantial Q-statistic decrease. Table 3 shows a substantial 439

decrease in observed heterogeneity when fitting the radial MVMR model, though HDL 440

and LDL still show evidence of significant global heterogeneity using a Q-statistic 441

p-value threshold of p < 0.05. 442

As in the previous simulation analyses, it is possible to identify and remove SNPs 443

which contribute a substantial degree of heterogeneity within analyses. For this analysis, 444

SNPs with a significantly high Q-statistic for either HDL, LDL, or triglycerides were 445

omitted, subsequently estimating causal effects through an iterative process until no 446

outliers were detected. These results are shown in Table 3, where effect estimates 447

remain directionally consistent with the initial radial MVMR analysis. Performing the 448

pruned analysis results in effects of smaller magnitude for HDL and LDL, and the 449

effects of all exposures are estimated with greater precision. Importantly, the 450

conditional F-statistic for each exposure remains at a similar level to the initial radial 451

MVMR analysis, limiting the extent to which differences in estimation are the result of 452

bias due to weak instruments being used after pruning. 453

Removing SNPs which exhibit heterogeneity does not necessarily imply that 454

estimates will be less biased. If the majority of SNPs exhibit pleiotropic effects in a 455

similar direction and magnitude, it is possible that SNPs satisfying the MVMR 456

assumptions will be removed. To consider this possibility it is important to follow-up 457

identified outliers using external data, focusing on associations with phenotypes for 458

which a pleiotropic association is plausible. In the pruned analysis, a total of 17 SNPs 459

were identified and removed as outliers (see supplementary material). Using the 460

PhenoScanner online platform to evaluate potential pleiotropic pathways, there did not 461

appear to be a consistent pattern across the set of removed SNPs, though phenotypes 462

such as diastolic blood pressure are present [22]. 463

The radial MVMR estimates are visualised in Figure 8, and adjusted Q-statistics are 464

presented in Table 3. The reduction in observed heterogeneity suggests that univariable 465

analyses exhibit bias when failing to account for pleiotropic associations through other 466

lipid fractions. A multivariable model would therefore appear to be a more effective 467

approach in this instance. The plots shown in Figure 8a and 8b show the estimates 468

obtained without pruning SNPs based on their heterogeneity contribution, while plots 469

8c and 8d show the plots constructed after removing observed outliers. In this case, the 470

reduction in global heterogeneity is clear and primarily reflected by the change of scale 471

on the y-axis, in combination with the data points for each exposure being substantially 472

closer to their corresponding superimposed regression lines. 473

When pruning for outliers the effect of HDL is greatly attenuated, showing no 474

evidence of an effect on CHD. LDL and triglycerides continue to show evidence of a 475

positive association, with LDL having the most substantial impact on CHD risk. 476

Provided a majority of valid SNPs with respect to their weighting have been used, this 477

would suggest that LDL and triglycerides represent promising targets for CHD 478

prevention. 479
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Fig 8. Panel showing RMVMR plots for applied analysis using HDL, LDL,
and triglycerides. Observations correspond to ratio estimates and weightings with
respect to each exposure. Regression lines represent MVMR causal effect estimates
coloured by exposure. Fig 8a-8b correspond to the radial MVMR estimates prior to
performing heterogeneity pruning, while Fig 8c-8d are constructed using heterogeneity
pruned summary data.

Discussion 480

Radial MR and MVMR approaches facilitate the assessment of pleiotropic associations 481

between genetic variants and phenotypes using GWAS summary data. Conducting 482

analyses within a radial framework allows for outliers to be effectively visualised, and 483

MVMR analyses allow for the direct effects of multiple exposures to be estimated 484

simultaneously. Radial MVMR builds upon both these existing methods, providing a 485

means for visualising MVMR approaches absent until this point, and justifying the use 486

of MVMR where relevant exposure data are available. We propose that the radial 487

MVMR approach be used to assist in communicating key findings as a visual aid, and 488

also as a sensitivity analysis for identifying pleiotropic bias using adjusted heterogeneity 489

statistics. 490

Radial MVMR builds of existing work which leverages publicly available genetic 491

data to correct for pleiotropic bias. The work in this paper differs in providing further 492

diagnostic tools, as well as a means of visualising MVMR analyses. In this way, it is 493

potentially easier to identify specific SNPs which may serve as outliers in an analyses, 494
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warranting subsequent follow up. 495

When implementing the radial MVMR approach it is crucial to consider the 496

underlying assumptions of MVMR. Instruments selected should be sufficiently strong so 497

as to overcome substantial weak instrument bias, estimated using the conditional 498

F-statistic. Specific to radial MVMR, the correction of individual ratio estimates is 499

reliant upon unbiased estimates of the direct effect of each exposure. As demonstrated 500

in the simulation study, in cases where direct effects exhibit biases the subsequent 501

correction for each SNP will be incorrect. However, this is unlikely to result in a 502

substantial reduction in heterogeneity unless the distribution of pleiotropic associations 503

is similar, and will likely still indicate that pleiotropic bias may be present. This is due 504

to the differing contribution of each SNP towards heterogeneity, as a consequence of 505

differences in their relationship within one or more pleiotropic pathways. 506

As previously emphasised, care should be taken to consider identified outliers and 507

phenotypic associations which could plausibly form horizontal pleiotropic pathways. If a 508

majority of instruments have direct effects upon an outcome, and the distribution of 509

such direct effects is similar, it is likely that SNPs satisfying the MVMR assumptions 510

will be identified as outliers. As a consequence, the removal of such SNPs would result 511

in estimates converging toward the biased estimate produced by such pleiotropic SNPs. 512

Decisions to down weight or remove outliers during an analysis should be made with 513

consideration of the biological mechanisms underlying observed SNP-phenotype 514

associations, and adequate justification. It is with this in mind that a general 515

heterogeneity pruning function has not been incorporated within the RMVMR R 516

package, though code for performing such analyses is provided in the supplementary 517

material and is available at https://github.com/WSpiller/RMVMR Analyses. 518

A further issue related to the applied analysis is the use of binary outcomes in 519

summary MR analyses. When using SNP-outcome associations estimated on a log-odds 520

scale, it is possible that causal estimates will be correlated with their precision, 521

introducing heterogeneity which is not a consequence of pleiotropic associations [6, 23]. 522

This issue, which is a wider issue within the summary MR literature, warrants careful 523

consideration prior to performing analyses, and care should be taken in evaluating as an 524

indicator of pleiotropy when a binary outcome is used [23]. 525

Finally, it should be noted that while first-order weights have been used throughout 526

this paper, radial approaches allow for a wide-range of weighting options to be used. As 527

arbitrary weights can be used, should be possible for modified second order weights to 528

be incorporated with a radial MVMR model. Such weights may prove more effective 529

than first-order weights, as they incorporate the precision of SNP-exposure estimates 530

mitigating violations of the NO-Measurement Error (NOME) assumption in summary 531

MR [5]. Future work will explore how differing weight specifications can improve 532

estimation using radial MVMR. 533
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