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Abstract 

Cerebral palsy (CP) is the most common cause of physical disability during childhood. Early 

diagnosis is essential to improve functional outcomes of children with CP. The General Movements 

Assessment (GMA) is a strong predictor of CP, but access is limited by the need for trained GMA 

assessors. Using 503 infant movement videos acquired at 12-18 weeks’ term-corrected age, we 

developed a framework to automate the GMA using smartphone videos acquired at home. We 

trained a deep learning model to label and track 18 key body points, implemented a custom pipeline 

to adjust for camera movement and infant size and trained a convolutional neural network to predict 

GMA. Our model achieved an area under the curve (mean ± S.D.) of 0.80 ± 0.08 in unseen test data 

for predicting expert GMA classification. This work highlights the potential for automated GMA 

screening programs for infants. 
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Introduction 

Cerebral palsy (CP) refers to a group of disorders that affect motor development, movement and 

posture and are attributed to non-progressive disturbances or injuries to the developing brain 

before 1 year of age1. Cerebral palsy is the most common cause of physical disability during 

childhood, occurring at a rate of  2.1 per 1000 live births worldwide2. While those born preterm or 

with low birthweight are at greater risk of having CP, almost 50% of infants with CP are born at 

term without overt risk factors3,4.  

Early diagnosis is essential to improve clinical and functional outcomes of children with CP5. 

Detecting abnormal motor development within the first 6 months after birth allows targeted 

interventions, coincident with periods of rapid neurodevelopmental plasticity and musculoskeletal 

development. It has been shown that early intervention improves children's motor and cognitive 

development as well parental wellbeing5,6. However, the average age of CP diagnosis is 19 

months3, and only 21% of infants with CP are diagnosed before 6 months3,7, thus many infants 

miss a crucial window for early intervention.  

The General Movement Assessment (GMA) can accurately predict those at highest risk of CP 

within the first few months after birth8,9. General movements are spontaneous movements  

involving the whole body with a changing sequence of arm, legs neck, and trunk movements10. 

Between 9 and 20 weeks of age, spontaneous movements are characterised by continuous small 

movements with moderate speed and variable acceleration, termed ‘fidgety’ movements11. These 

‘fidgety movements’ are typically recognised using a trained assessor's gestalt perception, while 

the infant is lying awake on their back with no direct handling or interaction11. This assessment is 

best completed from video recordings of the infant and has high predictive validity for 

neurodevelopmental outcomes and excellent inter-rater reliability9,12,13. The GMA when used during 

the ‘fidgety period’ has the potential to be an important screening tool in the diagnosis of CP.  

The specialized training required by GMA assessors means that many primary care services and 

hospitals do not offer routine GMA, which limits the widespread adoption of GMA as a screening 

tool16. The ability to perform the GMA using video recordings has raised the potential to improve 

equitable healthcare access for those living in remote regions or in low-resource settings. Recently, 

the development of smartphone apps that allow the standardised recording of video by an infant’s 

primary carers using a hand-held device, have been shown to improve access to the GMA and 

allow identification of high-risk infants outside of clinical settings12–15. Automated scoring of the 

GMA from video can provide a mechanism to overcome these bottlenecks and enable high-

throughput assessment for screening programs.   

Recent advantages in computer vision and deep learning have led to the emergence of pose 

estimation techniques, a class of algorithms designed to estimate the spatial location of a set of 
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body points from videos or pictures, and track movements with high accuracy17–20. Pose estimation 

tools do not require any specialised equipment, movement sensors or markers, and can be readily 

applied to track movement in new videos once trained. Several open-source pose estimation tools, 

pre-trained on large databases of human movement, are available for direct application to new 

datasets17,21–23. However, the standard implementation of such algorithms has been found to 

perform poorly in videos of infants, likely due to significant differences in body segment size and 

scale24,25. Thus, fine-tuning or re-training of pose estimation models is required to accommodate 

the unique characteristics of infant movement data24. Further, videos acquired outside of 

controlled, clinical or research laboratory settings may vary significantly in terms of camera angle, 

length, resolution, and distance to subject, requiring additional processing steps before 

analysis24,26. 

Several recent studies have yielded promising results predicting motor outcomes in infants using 

movement tracking data from pose estimation tools24,26–30.  Using a semi-automated approach with 

manual key point annotation of clinical videos, Ihlen et al. demonstrated computer-based 

movement assessments can perform comparably with observation-based GMA in predicting CP 

(area-under-ROC-curve, (AUC) = 0.87)29. Using videos acquired in a specialised laboratory setting 

and an infant-adapted OpenPose model, Chambers et al. employed a Bayesian model of joint 

kinematics to identify infants at high-risk for motor impairment24. Recent applications of deep 

learning models to classify movement data have also reported good performance, with one 

example detecting the presence or absence of fidgety movements in 5-second video clips with 

88% accuracy in a laboratory setting (n=45 infants)28. In a large, multisite study of high-risk infants 

(15% with CP) Groos et al. reported a positive predictive value of 68% (negative predictive value of 

95%) for later CP diagnosis using an ensemble of Graph Convolutional Networks (GCN) applied to 

clinical videos27. Similarly, Nguyen-Thai et al. applied GCNs to OpenPose tracking data to create a 

spatiotemporal model of infant joint movement in 235 smartphone videos, reporting an average 

AUC of 0.81 for the prediction of abnormal fidgety movements26.  

Despite initial progress, significant challenges remain for the application and uptake of this 

technology. Many studies to-date have been limited by small sample size (typically < 100 infants) 

and few have been conducted outside of clinical or laboratory settings30. In this study, using a large 

cohort of infant movement videos (n=503) captured remotely via a dedicated smart phone app, we 

test the efficacy of automatic pose estimation and movement classification using deep learning 

methods to predict GMA classification. In addition, we design a custom processing pipeline to 

accommodate video capture from hand-held devices, identify factors that adversely affect 

automatic body point labelling accuracy and locate salient movement features that predict 

abnormal outcomes in individuals.  
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Results 

Automated body point labelling with human-level accuracy 

We acquired 503 3-minute videos from 341 infants at 12 to 18 weeks’ term-corrected age using 

Baby Moves, a dedicated smartphone app12. To fine-tune a pose estimation model for infant 

videos, we created a training dataset using a random selection of n=500 frames from 100 videos (5 

frames per video, see Methods). We manually annotated eighteen body points (crown, eyes, chin, 

shoulders, elbows, wrists, hips, knees, heels and toes; Supplemental Figure S1) and trained a 

fully-customisable pose estimation model, Deep Lab Cut (DLC)31 to automatically detect each body 

point (Figure 1 ;Supplemental Video 1). Body point labelling using the trained DLC model was 

highly accurate (Figure 1e) achieving an average root mean square difference (RMSD) between 

manual and automatic annotations of 6.78 pixels (SD: 6.60).  DLC performance was comparable to 

inter-rater reliability (IRR) of two annotators (average ± SD RMSD 6.90 ± 7.29 pixels; Figure 1e). 

Labelling accuracy varied moderately across body points, with the highest accuracy for the eyes 

(average ± SD RMSD: manual/auto Left 3.04 ± 2.24 pixels, right 3.61 ±  2.63 pixels; IRR Left  1.80 

± 0.86 pixels, right 2.32 ±  1.22 pixels) and lowest accuracy for the hips (average ± SD RMSD: 

manual/auto Left 10.37 ± 6.13 pixels, right 12.02 ±  8.41 pixels; IRR Left  10.05 ± 7.20 pixels, right 

14.14 ±  8.85 pixels) (Supplemental Figure S3). There was no significant difference in RMSD 

between different video resolutions (Supplemental Table S2).  

During labelling, the DLC model assigned each point a measure of prediction confidence. After 

removing points labelled with low confidence (see Methods), we found that the percentage of 

frames labelled on average was 92% (SD: 16%). The percentage of frames in which each point 

was confidently labelled was lowest for the wrists (average ± SD Left: 81 ± 21%, Right 78 ± 24%) 

and heels (average ± SD: Left: 69 ± 24%, Right 77 ± 20%) (Supplemental Figure S4), due in part 

to these body points being occluded by other body parts at instances throughout the video and 

exhibiting a greater range of movement. We conducted a sensitivity analysis to determine potential 

factors that related to labelling failures (see Methods). We found that the amount of clothing worn 

by the infant moderately affected model performance with outfits that covered the hands and feet 

adversely affecting labelling of the extremities (F=5.180, p=0.006; Supplementary Table S4). As a 

quality control step, only videos where on average at least 70% of body points per frame were 

confidently labelled were included for further analysis. After quality control, our final cohort 

comprised n=484 videos from 327 unique infants. 
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Figure 1: Data acquisition and analysis pipeline. a. Acquisition of 503 videos using the dedicated Baby Moves 

smartphone app12. b. 100 videos were selected for DLC training, stratified by age at video acquisition, sex and GMA 

classification. c. From each of the 100 training videos, five frames were selected for manual labelling using a k-means 

clustering algorithm (see Methods; total DLC training dataset: 500 frames). d. The trained DLC model was used to label 

all frames in all videos. This constitutes the full dataset with body point positional data used for GMA classification e. 

Labelling accuracy was evaluated in a subset of 50 frames not included in the training dataset. Root mean square 

difference (RMSD) in pixels was calculated between manual and automatic labelling (Manual/auto) and inter-rater 

reliability (IRR) of two annotators. 

 

Predicting GMA from video data 

As videos were not acquired in standardised clinical or experimental settings, positional data were 

pre-processed using a custom pipeline to account for different video acquisition parameters and 

potential camera movements relative to the subject, prior to classification. This consisted of outlier 

removal, gap filling, adjusting for camera movement, scaling to unit length based on infant size and 

framerate normalisation (see Methods). After pre-processing, each video was represented as a 46 

× 4500 feature-by-frame matrix comprising standardised 𝑥 and 𝑦 coordinates of each body point 

and 2D joint angles of 10 joints in each frame.   

Abnormal movements may occur at any point during the video and occur with different frequencies, 

therefore we aimed to identify short periods where discriminant movements were present using a 

sliding window approach (Figure 2). We trained a convolutional neural network to predict GMA 

based on short instances of positional data over time (Figure 2c), calculating video-level 

predictions by integrating over all clips for a given video.  

Averaged over 25 cross-validation repeats (70% train/15% validation/15% test), the trained model 

achieved an AUC (mean ± S.D.) of 0.795 ± 0.080 in unseen test data (Figure 2d) and balanced 

accuracy of 0.703 ±  0.083 (Figure 2e). For abnormal/absent GMA, the positive predictive value 

(PPV) was 0.277 ± 0.077 and the negative predictive value (NPV) was 0.941 ± 0.035. Sensitivity 

and specificity were 0.755 ± 0.150 and 0.651 ± 0.078, respectively (Figure 2e). 

Performance was consistent over a range of model parameters, including batch size, learning rate 

and weight regularisation (Supplementary Figure S5). The inclusion of video metadata, age at 

video acquisition and birth cohort (extremely preterm or term-born infants) improved model 

performance significantly (Supplementary Figure S5), compared with classification using video 

data alone (AUC = 0.749 ± 0.077). Taking advantage of multiple model instances trained across 

different cross-validation repeats, we found that individual predictions were generally stable when 

videos were included in the held-out test set for a given repeat (Figure 2d-e, Figure 3Error! R

eference source not found.). 
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We compared performance with an alternative baseline model: an 𝑙2-regularised logistic regression 

applied to a set of timeseries features extracted from each video32. The baseline model achieved 

an AUC of 0.706 ± 0.098 (0.604 ± 0.106 without video meta-data). A nonlinear, kernelized logistic 

regression model achieved cross-validated AUC = 0.720 ± 0.100. 
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Figure 2: GMA prediction from movement data. a. Framewise positional data from DLC labelled videos were 

preprocessed to derive a set of feature timeseries (46 features × 4500 frames) per video. b. The classification model 

was trained on 128-frame clips for the full timeseries (top). Data augmentation steps (magnitude scaling and time 

warping; bottom middle and right) were applied to each clip during training. For each augmentation method, dashed grey 
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lines indicate timeseries position prior to the augmentation step. c. Model architecture. 1D convolutional layers were 

combined with an attention module to classify normal and abnormal/absent GMA. Causal convolutions (inset) were 

applied to account for the temporal structure of the data. d. Receiver-operator curves (ROC) for each of the 25 cross-

validation repeats. The mean curve is overlaid in teal. e. Model performance statistics for each of the cross-validation 

repeats. Mean and standard deviation across repeats are overlaid in black. AUC = area under the ROC; NPV = negative 

predictive value; PPV = positive predictive value. 

 

Figure 3: Variation in classifier prediction values. Classifier prediction values from 25-fold cross validation. Prediction 

values reported when infant movement included in held out test set, ordered by median prediction value. Top (orange) 

infant videos scored as abnormal/absent general movement assessment (GMA) by expert rater, n=73 infant videos. 

Bottom (blue) infant videos scored as normal GMA by expert rater, n=396 infant videos. Boxes with horizontal line 

represent interquartile range and median respectively, error bars represent 95% confidence interval and dots represent 

outliers. Dashed line at 0.5 represents cut-off value for classifier between abnormal/absent GMA prediction and normal 

GMA prediction. 

 

Examining spatial and temporal model attention during prediction 

To identify potential features that were important to model prediction, we computed spatiotemporal 

saliency maps for each video33, (Figure 4a). This value highlights features (for a given body point 

in a single video frame) where changes in input would elicit the largest change in model prediction 

and can be used as a measure of model sensitivity to input data33,34. An example saliency map is 

shown for a single subject in Figure 4a. Saliency varied across the length of the video, 

corresponding with variations in model attention (white line, Figure 4a bottom). Clips with high 
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saliency, relative to all subjects in the test set, are highlighted with yellow bars on the input feature 

timeseries, illustrating model attention to periods of different length spread throughout the video. 

Averaging total saliency across all clips for each body point reveals higher model sensitivity to 

position of the lower body points (Figure 4a middle), including movement of the knee and ankle 

joints.  

Similar patterns of model saliency were observed across all participants. A map of group average 

feature saliency (averaged across clips, participants and cross-validation repeats) is shown in 

Figure 4b. Model saliency was highest in the lower body. This pattern was consistent across 

cross-validation repeats (Supplemental Figure S7) and between normal and abnormal/absent 

GMA predictions (Supplemental Figure S6). 

To further characterise features to which the model prediction was sensitive, we compared 

timeseries data in clips with high (90th percentile) and low (10th percentile) total saliency (Figure 

4c-d). The number of high saliency clips did not differ between normal (mean ± S.D. = 55.21 ± 

33.93) and abnormal/absent (51.74 ± 35.56) GMA videos (Supplemental Figure S8). For each 

clip, we calculated the mean (absolute) displacement of body points from the average position, as 

well as the standard deviation of displacements over frames. We found that, high saliency clips 

were characterised by body point positions closer to the average body position (Figure 4c) and by 

a lower standard deviation of joint displacements over time compared to clips with low saliency 

(Figure 4d).  
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Figure 4:  Sensitivity of model predictions to input features. a. Feature timeseries (top) and saliency map (bottom) 

for a single, correctly-classified video from an infant with normal GMA. Timeseries are shown for each feature (n=46), 

across the length of the video. Yellow bars indicate clips with high model attention (75th percentile across all subjects). 

Saliency was calculated for each feature in each frame and summed over frames within each clip (n=547 clips). The map 

has been upsampled and smoothed to match the length of the timeseries (frames=4500). Lighter colours indicate higher 

saliency (arbitrary unit). Clip attention derived from the attention module (upsampled and smoothed) is overlaid in white. 

Average saliency across the full video is shown for each body point (middle) and joint angle (right). The model prediction 

is shown top right, where 0 indicated normal GMA prediction. b. Body point saliency averaged across all participant 

videos. Lighter colours and larger size reflect higher saliency. c. Left, mean absolute distances between each body point 

and their respective average position during clips of high (solid line, filled) and low (dashed line) saliency. Density plots 

show the distribution of displacements for high and low clips over all videos and cross-validation repeats. Right, median 

difference between displacement in high and low clips. d. Left, standard deviation (std) of displacements from the 

average position in high and low saliency clips, over all videos and cross-validation repeats.  Right, median difference in 

standard deviation distributions.  
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GMA prediction and development at 2 years 

We compared our model predictions with participant’s motor, cognitive and language outcomes at 

2-years corrected age as assessed by the Bayley Scales of Infant and Toddler Development-3rd 

edition (Bayley-III) (Figure 5; Supplemental Figure S9, Figure S10). We found strong evidence 

for differences in 2-year motor composite scores between infants with different predicted GMA 

classifications (normal vs abnormal) when metadata (age at acquisition and birth cohort; extremely 

preterm or term-born infants) were included in the model, mean difference 11.35 (95%CI = [8.41, 

14.30], t(439)=7.574, p<0.001). These differences were diminished when using movement data 

alone, mean difference 2.33 (95%CI = [-0.88, 5.54], t(439)=1.426, p=0.1555) (Figure 5a). There 

was also strong evidence for differences in 2-year cognition and language composite scores 

between predicted GMA classifications (Supplemental Figure S9, Table S4).  

As preterm birth is associated with both higher risk of abnormal GMA and poor 

neurodevelopmental outcomes, we conducted a secondary analysis to identify associations 

between birth cohort, GMA prediction and 2-year outcomes. We found a significant main effect of 

birth cohort (F=8.775, p=0.003) but not GMA prediction (F=1.762, p=0.185) on motor composite 

scores. The interaction between birth group and GMA prediction was not significant (F=1.181, 

p=0.278). Stratifying by birth cohort, there was weak evidence for differences in motor composite 

scores between GMA classification categories in term born infants, mean difference 9.52 (95%CI = 

[-1.16, 20.20], t(225)=1.756, p=0.080). In preterm infants, these differences were lower 2.09 

(95%CI: = [-5.11, 9.29], t(212)=0.573, p=0.568) (Figure 5b). Similar results were observed in 

cognitive and language composite scores (Supplemental Figure S10, Table S6). 
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Figure 5: GMA prediction and motor development at 2 years: a. Bayley-III motor outcome stratified by GMA 

prediction (n=441 infant videos) and model variants trained using video movement and metadata (both = age at 

acquisition and birth cohort) and movement data alone (none).  Blue indicates GMA prediction = 0 (normal) and orange 

indicates GMA prediction = 1 (abnormal/absent) for all graphs. * Indicates strong evidence for differences between GMA 

prediction groups from independent two-sample t-test. b. Top, density function of motor outcome by birth cohort and 

GMA prediction. Bottom, Peak of density function. Term infants are represented by dashed lines and preterm infants by 

solid lines.  

 

Discussion 

Using deep learning applied to smart phone videos, we tracked infant movements at 12-18 weeks 

of age, predicting GMA ratings outside of a controlled clinical setting. Our paper illustrates the 

potential for early automated detection of abnormal infant movements implemented through at-

home video acquisition. 

Our best performing model for predicting expert GMA ratings, was a deep learning model, 

consisting of 1D convolutions and an attention module. Our model achieved an AUC 0.80 (SD: 

0.08), comparable to results obtained from Ihlen et al. and Groos et al. in cohorts of high-risk 

infants using video recordings from stationary cameras in clinical settings27,29.  Our model 

outperformed alternative baseline models and was robust over various hyperparameter settings. 

We demonstrated that including participant metadata is crucial to improving model predictions, 

highlighting the increased risk for abnormal movements in preterm born individuals8. Of the 41 

infants with abnormal GMA as scored by trained GMA assessors 35 (85%) were from preterm 

infants and 6 (15%) from term-born infants. We found that including metadata (birth cohort and 
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age) improved model performance from an AUC=0.70 based on movement data alone to 

AUC=0.80. Notably, classifying on birth cohort alone would result in an AUC of 0.69, quantifying 

the added value of the movement data. 

GMA model predictions were associated with poorer neurodevelopmental outcome at 2 years of 

age. We found that this effect was largely dependent on preterm birth, although infants with 

abnormal GMA predictions scored lower on average regardless of birth cohort. The association 

between preterm birth and poor neurodevelopmental outcomes is well established8,13 and this 

finding reflects the relatively lower predictive validity of GMA ratings, and therefore model 

predictions, for motor and cognitive outcomes at 2 years. 

GMA is a strong predictor of CP8,9. We used abnormal or absent GMA ratings as a surrogate 

measure for CP risk. Fidgety movements can be classified as abnormal or absent during this 

developmental window, both of which are associated with neurodevelopmental impairment8,13. 

Combining abnormal and absent groups, who may have different movement signatures, into a 

single cohort may have affected model performance but numbers were too small to further split the 

groups (n=40 and 36 respectively). Similarly, only 6 infants in the current cohort were diagnosed 

with CP by 2-year follow-up, precluding the use of our model framework to predict CP diagnosis in 

this group.   

To track infant movement, we used a pose-estimation algorithm, Deep Lab Cut31,35, which has the 

advantage of being customisable across species, age and features of interest using a minimal 

training dataset35. Our model achieved human-level labelling accuracy of body parts with a RMSD 

of 6.78 pixels (SD: 6.60). Due to the non-controlled settings in which videos were acquired, we 

performed a sensitivity analysis, identifying video features that could affect labelling accuracy in at-

home video recordings.  Body point labelling was robust to background and video lighting but 

moderately affected by clothing worn by the infant, specifically clothing covering hands or feet. Use 

of at home video recordings introduced additional data processing challenges, including camera 

movement relative to the infant and different video formats (frame rate, resolution, distance from 

infant). To accommodate this, we developed a novel framework, that is versatile and supports 

videos taken outside a standardised clinical setting. Future work could focus on more detailed 

anatomical annotations for labelling, particularly relating to the hands and feet in recognition of the 

role those body parts play in identification of fidgety movement during the GMA11.  

We used 5 second clips to train our model, this allowed us to identify periods of movement that 

were informative to the model prediction. By analysing model saliency, we were able to extract 

information about which movement features were attended to by the model, discriminating 

between abnormal and normal movements. We identified that lower limb movements contributed 

more to the classifier’s output, with higher saliency attributed to video clips where infant position 

was closer to the average position, ignoring periods where the infant has moved significantly from 

the supine position (i.e.: out-of-frame movement, rolling). Other studies have used high-resolution 
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video annotations identifying periods of abnormal movement within videos29. While this approach is 

likely to improve automated movement identification it requires a significant amount manual 

annotation and labelling that would be difficult to achieve in larger cohorts.  

Several recent studies have yielded promising results predicting motor outcomes in infants. 

However, to date these studies have been limited by small sample size (typically < 100 infants), 

only including high-risk infants and few have been conducted outside of clinical or laboratory 

settings30. A strength of our study is the inclusion of both extremely preterm and term born infants 

within our dataset. Our study offers an automated approach to perform GMA ratings, that is 

capable of accommodating videos recording outside the clinical setting. Our work highlights the 

potential for automated approaches to screen for CP at a population level, which would enable 

increased access to early interventions for these children.  

 

Methods 

Participant data 

Videos were recorded using the Baby Moves smart phone app by the parent/caregiver on their 

personal device between April 2016 and May 201712. Videos were acquired from n=155 (77 female 

[50%]) extremely preterm infants (<28 weeks’ gestation) and 186 (91 female [49%]) term-born 

control infants, Supplementary Table S1. In total, 503 videos from n=341 infants aged between 

12- and 18-weeks term corrected age were available. For a subset of n=160 (75 preterm, 85 term), 

two videos were collected per infant during this period. Full details of the study protocol can be 

found in Spittle et al., (2016)12. The study was approved by the Royal Children’s Hospital Ethics 

Committee (HREC35237). 

Video capture 

To facilitate video recording outside of clinical or laboratory settings, the Baby Moves app provides 

detailed instructions and a dotted outline overlay to improve positioning of the infant in the video 

frame12. Guidance was given to parents/caregivers to perform the video while the infant was lying 

quietly and not fussing with minimal clothing, consisting of singlet and nappy only. Subsequently, 

videos were securely uploaded to a REDCap database36,37 at the Murdoch Children’s Research 

Institute for remote review. The GMA was scored according to Prechtl’s GMA11 by two independent 

assessors that were unaware of participants’ neonatal history. General movements were classified 

as normal if fidgety GMs were intermittently or continuously present, absent if fidgety GMs were 

not observed or were sporadically present, or abnormal if fidgety GMs were exaggerated in speed 

and amplitude. If there was disagreement between the two assessors, then a third experienced 

GMA trainer and assessor made the final decision. Any videos rated as unscorable were not 

evaluated in this study.  
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All videos were submitted in MP4 format. Due to differences in device model and settings, three 

video resolutions were present in the dataset: 480 x 360 (n=366 videos), 640 x 480 (13 videos) 

and 720 x 480 (126 videos) with a median frame rate of 30 frames per second (range: 15 to 31). 

Each video was 3 minutes in length resulting in mean (SD) 5100 (497) frames per video.  

Automated body point labelling 

We trained a deep learning model using Deep Lab Cut, version 2.1 (DLC)31 to label and track key 

body points. To train the DLC model, we formed a training dataset consisting of a subset of 100 

videos from our dataset stratified for age, sex, birth cohort (preterm or term) and video resolution. 

Only one video per infant was allowed in the training set. For the training dataset, five frames from 

each video were manually labelled with 18 key body points: crown, chin, eyes, shoulders, elbows, 

wrists, hips, knees, heels and big toes (Figure 1; Supplemental Figure S1). Manual labelling was 

performed via the DLC graphical user interface. To ensure diversity of movements in the frames 

selected for labelling, we used a k-means clustering algorithm implemented in DLC to select five 

frames from different clusters within each video for labelling. We implemented a DLC model with a 

pre-trained ResNet-50 backbone and trained for 1 million iterations on a NVIDIA TITAN Xp using a 

training/validation fraction of 0.95/0.05 (see Supplemental Figure S2 for training performance).  

Once trained, the DLC model was used to automatically label the 18 body points for all videos in 

the dataset. For each frame, the DLC model returned the x- and y-coordinates in pixels of the body 

points relative to the corner of the video image and its prediction confidence. Body points with a 

prediction confidence below 0.2 were removed. Labelling accuracy of the DLC model was 

evaluated on an independent sample of 50 random frames not included in the training dataset 

using the root mean square difference (RMSD) between predicted labels and manual labels. To 

evaluate inter-rater reliability (IRR) for body point labelling a second human annotator repeated 

labelling on the same 50 frames. The RMSD between labels for the two annotators were 

calculated. Additional metrics of DLC model performance included the number of unlabelled body 

points per video. As videos were collected outside of a controlled clinical setting, we conducted a 

sensitivity analysis to determine whether variability in certain factors across the individual videos 

may influence model performance. Each video not included in the training dataset (n=403) was 

categorised by the following factors: Lighting (Dark/Okay/Bright), clothing (Bodysuit/Nappy & 

singlet/Nappy only), skin tone (Light/Fair/Medium/Dark), infant in frame entire video (Yes/No), 

background (Pattern/Solid Colour – Dark/Solid Colour – Light), extra items in view (No/Another 

Child/Recorder’s feet/Toys/Other). We tested if model performance was affected by the listed 

factors using a mixed model Analysis of Variance (ANOVA).  
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Pre-processing pipeline 

Data pre-processing consisted of quality control, outlier removal, gap filling, adjustment for camera 

movement, scaling and feature extraction (Figure 6). 

Quality control 

To ensure high-quality movement data from each video was available for further analysis, we 

established a quality control measure based on body point labelling. Only videos in which more 

than 70% of body points were labelled on average across all frames were used. This resulted in 

the exclusion of 21 videos from further analysis, resulting in a final dataset of 484 videos from 327 

infants.  

Outlier removal 

Body point outliers were removed in a two-step process. First, outlying labels were removed using 

an ellipse envelope centred in the centre of the torso (mid-point of hips and shoulders). The ellipse 

was scaled relative to infant size, with unit length set to distance between the infant’s crown and 

hip midpoint. The ellipse was scaled to 3 times unit length in the proximal to distal direction and 

two times unit length in the medial to lateral direction. Body point labels lying outside of the ellipse 

were removed. Following this, a similar process was applied to each body point using an ellipse 

envelope centred at the body point’s framewise median position. Each ellipse was again scaled by 

unit length with the proximal-distal and medial-lateral scaling set based on observed body point 

variance from the complete dataset. Body point labels lying outside of their respective ellipses 

were removed.  

Gap filling 

Where gaps in body point data existed due to missing, removed, or occluded body point labels, 

linear interpolation was used for gaps of five frames or less. For gaps greater than five frames we 

used an iterative multivariate imputation38, implemented in scikit-learn39 (v1.3.0).  

Adjusting for camera movement 

As videos were recorded on hand-held devices, camera movement relative to the infant was 

apparent during the three-minute video. To account for angular rotations, all points were rotated on 

a frame-by-frame basis so the mid-line of the body (mid-shoulder to mid-hip), was aligned to the 

vertical in each frame. In addition, body point position in each frame was normalised to infant unit 

length, measured as distance from crown to mid-hip. 

Framerate normalisation 

All pre-processed movements data were normalised to the same length. Due to variation in video 

frame rate, the number of frames in each 3-minute video varied. To account for this, all videos 
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were interpolated to 4500 timepoints in length or a framerate of 25 frames per second using cubic 

1D interpolation as needed. 

Feature extraction 

For each frame, we extracted each body point’s 𝑥, 𝑦 position in addition to 10 joint angles (left and 

right shoulders, elbows, hips, knees and ankles; in radians, resulting in 𝑝 = 46 features per frame 

(𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠 ×  {𝑥, 𝑦} + 𝑗𝑜𝑖𝑛𝑡 𝑎𝑛𝑔𝑙𝑒𝑠). 

 

 

Figure 6: Preprocessing piepline. a. Quality control, videos with less than 70% of body points labelled on average 

were excluded from further analysis. b. Outlier removal, outlier body points were removed (denoted by x) when outside of 

ellipical envelope for the whole body or each body point indiviudally. c. Gap filling using linear interpolation for gaps less 

than 5 frames, or a multivariate imputer for gaps larger than 5 frames. d. Body points were rotated on a frame by frame 

basis ensuring midline of body is aligned to the vertical. e. Body point position was scaled to unit length based on infant 

size, unit length distance crown to mid hip. f. For each frame x- and y-coordiates and additional features consisting of 

joint angles from the left and right shoulder, elbow, hip, knee and ankle were extracted. 
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Prediction of GMA from movement data 

As abnormal general movements can occur at any point during each video, may last for different 

lengths of time, and occur with different frequencies, we aimed to identify short periods of time 

where abnormal movements were present in each video and use a sliding window approach to 

generate subject-level predictions. During model training, each subject’s pre-processed timeseries 

data was split into short clips of 𝑡 = 128 frames in length (approximately 5 sec.) with 𝑠𝑡𝑟𝑖𝑑𝑒 = 8. In 

each training epoch, we randomly sampled 𝑠 = 1 clip per video, selecting more than one clip per 

video per epoch did not offer an improvement in model performance and cost more memory and 

computation (Supplemental Figure S5). 

Model architecture 

The model architecture is shown in Figure 2c. Each subject’s data is represented as a tensor 𝑆 ∈

ℝ𝑠 × 𝑡 × 𝑝 where 𝑠 is the number of sampled clips per video, 𝑡 is the number of frames per clip and 𝑝 

is the number of features per frame. We employ three 1D convolutions applied along the temporal 

dimension (𝑓𝑖𝑙𝑡𝑒𝑟𝑠 =  64; 𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒 =  3) with causal padding and 𝑅𝑒𝐿𝑈 activations. After each 

convolutional layer, we applied batch normalisation (Figure 2c). Each convolution was followed by 

max pooling along the temporal dimension with 𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 = 4 and 𝑠𝑡𝑟𝑖𝑑𝑒 = 4. After the final 

convolution, features of each clip were concatenated across the remaining timesteps to form 

feature matrix 𝑀 ∈ ℝ𝑠 × 128 (Figure 2c). Clip features are then passed through a single fully-

connected layer (𝑢𝑛𝑖𝑡𝑠 = 64, 𝑅𝑒𝐿𝑈). We applied dropout with a rate of 0.5 before and after the 

connected layer.  

To identify features that discriminate subjects with or without abnormal movements, we passed 

each clip through a sigmoid attention module40 (Figure 2c). In this context, clips with feature 

vectors that discriminate between classes are given a larger weight. A clip level context vector, 𝑢, 

is assigned to measure the importance of each clip to the final model output. First, each clip, 𝑚𝑐 ∈

ℝ1 × 64, is passed though a single fully connected layer with weights and bias, 𝑊 and 𝑏, and a 𝑡𝑎𝑛ℎ 

activation to create clip level representation, 𝑢𝑐: 

𝑢𝑐 =  tanh(𝑊𝑚𝑐 + 𝑏) 

 

The similarity between each clip’s representation and that of a context vector, 𝑢 is calculated and 

scaled: 

 

𝛼𝑐 =
1

1 +  exp (−𝑢𝑐
𝑇𝑢)
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Where 𝛼𝑐 ∈ [0,1] and represents the importance of each clip to the final model output. A final 

representation is calculated though a weighted average of clip features: 

 

𝑣 =
1

𝑛
∑ 𝑎𝑐𝑚𝑐

𝑛

𝑐=1

 

 

Where 𝑣 is a feature vector representing the sampled clips from each video. The context vector, 𝑢, 

and the layer weights and biases are randomly initialised and jointly learned with other model 

parameters during training. The context vector, 𝑢, can be considered a ‘signature’ that identifies a 

discriminative movement within a clip. The resulting weighted outputs form a final feature vector, 𝑣. 

We apply a final dropout (0.5) to this vector and pass to a fully connected layer with one unit and 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 activation to predict the class label of each subject.  

We used binary cross entropy (BCE) as the loss function with Stochastic Gradient Descent as the 

optimiser (Nesterov momentum = 0.9)41. As not all randomly sampled clips may contain abnormal 

movement patterns during each training epoch, we employed label smoothing of 0.1 to account for 

uncertainty in the assigned sample labels of each batch42. The learning rate was set to 0.005, 

batch size was set to 8 and we added 𝑙2-regularisation of 0.005 to all weight kernels.  We trained 

for a maximum of 10000 epochs, evaluating loss in the validation set and stopping training once 

validation loss had stopped improving for 100 epochs, retaining the model with minimum loss for 

testing.  

Data augmentation 

Data augmentation is a common processing step in various image recognition and classification 

tasks and provides additional protection against overfitting in small sample settings43,44. We 

employed data augmentation methods for timeseries data including random magnitude scaling and 

time warping43 (Figure 2b). We used cubic splines to generate a series of random, smooth 

sinusoidal curves (knots = 3 – 15; mean value = 1.0; sigma = 1.0). During training: i) the timeseries 

in each clip were multiplied with a randomly generated curve to smoothly scale magnitude across 

the clip’s length and ii) time warping was applied by smoothly distorting the time interval between 

points based on another randomly generated curve, shifting the temporal position of adjacent 

points closer or further apart43 (Figure 2b). 

Model calibration and class imbalance 

To account for the difference in class frequencies between normal and abnormal GMA (normal = 

408 videos; abnormal/absent = 76 videos), we oversampled the minority class by a factor of 5 

during training. For each video in the training sample with an abnormal GMA rating we sampled 5 
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sets of clips during each training epoch, resulting in approximately equal number of training 

samples from each group.  

While resampling methods can improve model performance in imbalanced datasets, they can 

result in miscalibrated models due to the difference in class frequencies between the original 

sample population and the oversampled training set45,46. We employed Platt scaling47 as a post-

training method to calibrate model predictions. Model calibration was performed by fitting a logistic 

regression over model predictions in the validation dataset, the parameters of which are used to 

transform model outputs to calibrated probabilities at inference. 

Metadata 

Age at video acquisition and birth cohort (extremely preterm or term-born) are both potential 

confounders that can affect GMA ratings13. To incorporate metadata into the model, we applied an 

additional 1D convolution (𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 4, 𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒 = 1) to a feature vector of age at video 

acquisition and categorical group membership (preterm or term-born). The outputs were 

concatenated with the video features prior to the final layer for classification (Figure 2c). 

Model evaluation 

At inference, each test subject’s timeseries data were split into 547 overlapping clips (𝑡 =  128, 

𝑠𝑡𝑟𝑖𝑑𝑒 =  8) which were passed with associated metadata through the trained and calibrated 

model to generate the final model output from the attention-weighted sum of all clips.  

To evaluate model performance, we performed cross-validation by splitting the data into three 

subsets: train (70%), validate (15%) and test (15%), ensuring that the proportion of infants with 

abnormal movements were similar across subsets and, for infants with more than one video, that 

both videos were included in the same subset. Model performance was evaluated in the test set 

using the area under the receiver operating curve (AUC), balanced accuracy (BA), specificity, 

sensitivity and positive and negative predictive values (PPV; NPV). Cross-validation was repeated 

25 times, each with random splits of the dataset. Performance metrics in the test set are reported 

as average values across the 25 cross-validation repeats. We explore the impact of different 

parameter choices on model performance in the Supplemental Material (Figure S5; Figure S6). To 

examine important model features, we calculated model saliency for each test output using vanilla 

gradient maps41. 

Baseline model 

We compared model performance to alternative models based on logistic regression. For each 

video, we extracted a set of dynamical features previously shown to perform well in timeseries 

classification tasks32, resulting in 𝑝 = 24 features per timeseries. We concatenated timeseries 

features for each body point coordinate and joint angle along with associated meta data (age and 

birth cohort) into a single feature vector of length = 1014. Using this data, we trained an 𝑙2-
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regularised logistic regression model to predict GMA. As with the convolutional model, we 

performed 25 cross-validation repeats, splitting the data into 85% training and 15% testing sets. 

Regularisation strength was set using a grid search (10-3 – 103) in a nested 5-fold cross-validation 

of the training data. To enable additional flexibility in the model, we also implemented a nonlinear 

kernelised logistic regression using Nystroem kernel approximation48. The baseline models were 

implemented in scikit-learn39 (1.0.2), timeseries features were extracted using pycatch2232 (0.4.2). 

GMA prediction and development at 2 years 

Participants were followed up at 2-years’ corrected age and their development assessed using the 

Bayley Scales of Infant and Toddler Development-3rd edition (Bayley-III) for motor, cognitive and 

language domains. Bayley-III scores were available for 292/327 infants (441 infant videos) for 

motor and cognitive domains and 262/327 infants (400 infant videos) for the language domain13. 

Each video was assigned a single GMA prediction label based on the GMA prediction label most 

frequently assigned during the 25-fold cross validation. This was done for each variant of model 

metadata inputs: movement data only (none), birth cohort, age at acquisition and combined birth 

and age (both). For each model variant we compared 2-year outcomes between GMA-prediction 

groups using an independent two sampled t-test (two-sided). To determine the association of birth 

cohort and GMA prediction with 2-year outcomes we performed a two-way ANOVA (factors: birth 

cohort and GMA prediction group, interaction birth cohort*GMA prediction group). As 2-year 

outcomes are likely confounded by birth cohort, we stratified by birth cohort and performed 

independent two-sample T-tests (two-sided) between GMA prediction groups. 

Data availability 

The data that supports the findings of this study are available from the corresponding author upon 

reasonable request. The data is not publicly available due to privacy and ethical restrictions.  

Code availability 

We used DeepLabCut to track body points in videos. Code for pre-processing body point data after 

DeepLabCut, training machine-learning models, analysis of the results are available in our GitHub 

repository https://github.com/epassmore/infant-movements. 
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