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Abstract 23 

Background: Long term outcomes of allograft recipients are compromised by the development of 24 
chronic lung allograft dysfunction (CLAD) promoting bronchiolitis obliterans syndrome (BOS). We 25 
established baseline transcriptomic profiles of both the large and small airway epithelial cells (referred 26 
as LAEC and SAEC, respectively) to identify regional differences irrespective of initiating disease. 27 
Methods: We obtained matched primary LAEC and SAEC from lung allograft recipients (n=4, 42.5 ± 28 
4.2 years) and established primary cultures. Bulk RNA sequencing was performed to determine 29 
differentially expressed genes. 30 

Results: We observed differences in the transcriptional program between LAEC and SAEC 31 
Transcription factors (TF) were ranked within the top ten differentially regulated genes. The most 32 
abundant TF families included C2H2-ZF, homeobox and bHLH. Upstream regulator analyses 33 
identified homeobox genes being significantly in LAEC. Protein-protein interaction network analysis 34 
emphasised the role of TFs (ISL1, MSX1, HOXA1, GATA6, ZNF423) in airway modulation. 35 
Additionally, functional enrichment analysis revealed the activation of chemotaxis, 36 
metalloendipeptidase/metallopeptidase activity and pro-inflammatory signatures (IL17 signalling and 37 
RAGE), in LAEC, while SAEC were characterised by elevated expression of surfactant metabolism 38 
related genes. Moreover, alveolar and club cells-related genes were expressed in SAEC, suggesting a 39 
lower airway-specific signature. 40 

Conclusion: Our analysis shows robust transcriptional differences between LAEC and SAEC. We 41 
suggest a potential role for homeobox TF family as well as the activation of the immune system in the 42 
biology of LAEC. Conversely, we observed an alveoli-like transcriptional signature in SAEC, 43 
including gas-exchange signals and surfactant metabolism; pathways involved in lung homeostasis. 44 
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 46 

Introduction 47 

Chronic allograft dysfunction (CLAD) due to bronchiolitis obliterans syndrome (BOS) is a major 48 

complication following pulmonary transplantation whose aetiology is not fully understood1. Recent 49 

findings indicate that the pathology of CLAD is not only limited to the small airways, but also manifests 50 

in  the proximal airways2. The underlying mechanism of BOS is suggested to involve injury and 51 

inflammation of epithelial and subepithelial cells, which in turn stimulates wound repair and epithelial 52 

to mesenchymal transition signaling3. Thus, understanding the pathological mechanisms contributing 53 

to the onset of BOS, could facilitate tailored interventions aimed at preventing this pathology. 54 

For the purpose of tracking the different processes that might lead to the onset of BOS, we conducted 55 

a baseline study, to compare matched samples of proximal and distal lung airways, without any sign 56 

of disease. We did RNA-seq to explore regional transcriptional differences in epithelial cultures 57 

established from large/proximal and small/distal airway epithelial cells (referred as LAEC and SAEC) 58 

from Lung Transplant recipients. Here, we observed that distal airways culture expressed genes related 59 

to surfactant metabolism. Whereas proximal airways cultures displaying two proinflammatory 60 

pathways and fibrosis pathways that might be related to early dysregulation of BOS; providing 61 

evidence that alterations in gene expression begin in the proximal airways. 62 

Materials and Methods 63 

Patient and sampling procedures 64 

Matched samples from proximal and distal lung biopsies were obtained from lung allograft recipients 65 

during the routine surveillance bronchoscopy (Figure S1A). Patients did not present symptomatology 66 

indicative of bronchiolitis obliterans syndrome (BOS), transplant rejection or infections at the time of 67 

sample collection. Specimens were obtained from four patients (3 females, age range 38-47) that 68 

underwent double lung transplantation as previously described4. The reasons for lung transplantation 69 
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were cystic fibrosis (3 cases), and congenital heart disease (1 case). Both, LAEC and SAEC were 70 

grown as a monolayer to confluency and cells then harvested for transcriptomics analysis (Figure S1B). 71 

The study was approved by the Royal Perth Hospital, Ethics Committee (Registration: EC2006/021) 72 

and written consent was obtained from each participant after being fully informed about the premise 73 

and purpose of the study. A summary that outlines the analyses performed here is presented in Figure 74 

S2. 75 

Total RNA extraction, library preparation and sequencing 76 

Total RNA was extracted using the PureLink® RNA kit (Life Technologies) following their 77 

instructions and treated with RNase Inhibitor (Applied Biosystems™) and DNase I (Invitrogen™). 78 

RNA concentration and integrity were then determined using a NanoDrop system and an Agilent 79 

Bioanalyser, respectively. Libraries were generated using TruSeq Stranded mRNA (Illumina) kit and 80 

Poly(A) enrichment. Sequencing was performed using 100 bp single-end configuration (SE; 100 bp; 81 

20 M).  82 

Bioinformatic and statistical analyses 83 

FASTQ files were quality controlled using FastQC 84 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were trimmed and adapters 85 

removed with Trimmomatic5 (Figure S3A and S3B). High-quality reads were then mapped to human 86 

reference genome (hg19/GRCh37, Ensembl) using Spliced Transcripts Alignment to a Reference 87 

(STAR)6. Gene-level quantification of raw counts was performed using High-Throughput Sequencing7 88 

(HTSeq; Supplementary Materials S1) and post-alignment stats were generated with MultiQC8 (Figure 89 

S3C and S3D). Gene expression analysis was done using EdgeR9 and limma10. Latent variance was 90 

treated with removeBatchEffect function from limma10. Expression values were used for cluster 91 

analysis using pvclust R package11 (Figure S4; Supplementary Materials S2). P-values were corrected 92 

for multiple-testing using the Benjamini-Hochberg's method, False Discovery Rate (FDR)12. Ranking 93 
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metric for top regulated genes was calculated as follow: [Rank = -sign(log2FC) * log10(FDR)]. 94 

Differentially expressed genes (DEGs) were then filtered considering an FDR £0.05 and a Fold-Chance 95 

(FC) ³|1.5| and annotation was added using the org.Hs.eg.db R package13 (Supplementary Materials 96 

S3). Volcano plot was generated using EnhancedVolcano R package14. 97 

Mining of transcription Factors (TF) in our data was done following the pipeline described by Lambert 98 

et al.,15 (Supplementary Materials S4) Analysis of upstream transcriptional regulators was performed 99 

with ChEA316 (Supplementary Materials S5). Protein-protein interaction networks were generated 100 

using NetworkAnalyst17 and subsequently analysed using NetworkAnalyzer App with 101 

NetworkAnalyzer App (Supplementary Materials S6). Enrichment analyses of gene ontology (GO), 102 

KEEG and Reactome databases were done using ClusterProfiler18 (Supplementary Materials S7). The 103 

RNA-sequencing data have been deposited in the National Center for Biotechnology Information’s 104 

Bioproject PRJNA885405 and Gene Expression Omnibus (GEO) under accession number GSE214434 105 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE214434). 106 

Results 107 

To determine any regional transcriptional differences between the lung airways, LAEC were compared 108 

to SAEC. Hereafter, up-regulated genes will be referred as active in LAEC and down-regulated genes 109 

as active in SAEC. 110 

Gene expression differences between lung regional comparison. 111 

After filtering, a total of 355 differentially expressed genes (DEGs), 188 up-regulated and 167 down-112 

regulated genes were identified (Figure 1A). A volcano plot shows the bidirectional distribution 113 

patterns of up- and down-regulated genes along with the top genes (Figure 1B). Among the top 10 114 

ranked genes, two transcription factors (TFs) (ZFHX4 and MSX1) belonging to homeobox family were 115 

found to be up-regulated, and ZNF730 belonging to C2H2 Zinc Finger (ZF) which was down-regulated.  116 
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Transcript Factors modulation underlies gene expression differences between lung airways 117 

Knowing the essential role TF have in gene modulation, we explored their potential contribution 118 

towards the differences seen between the LAEC and SAEC gene transcriptional profiles. For this 119 

purpose we made used of the human TFs catalogue15. We detected a total of 26 TF belonging to eight 120 

TF families and the three most abundant including C2H2 ZF (34.6 %), homeobox (26.9 %) and bHLH 121 

(11.5 %) families (Figure 2A; Supplementary Materials S4). Using Venn diagram analysis, two 122 

overlapping families were identified from up- and down-regulated genes comparison (C2H2 ZF and 123 

homeobox) (Figure 2B). More interesting, four TFs families were uniquely identified in LAEC (BED 124 

ZF, DM, Fox and T-box), and two specifics in SAEC (bHLH and GATA) (Figure 2B). Bar plots 125 

summarise the 14 up- and 12 down-regulated TFs (Figure 2C). 126 

Homeobox genes represent central modulators of gene expression in the proximal airways 127 

To gain insight into the gene regulatory network of the airways and identify upstream modulators 128 

linked to the observed DEGs, we performed a TF enrichment analysis (TFA). We retrieved 161 129 

upstream regulators significantly associated with the up-regulated genes, of which eight TF belonging 130 

to homeobox family were observed in the top ten upstream regulators (Figure 3A). In contrast, no 131 

upstream regulators for the down-regulated genes were identified. To better understand the interaction 132 

between TFs and modulated genes, we then generated networks based on the relevant associations 133 

(Figure 3B; Supplementary Materials S5). Interaction between six upstream regulators explained the 134 

activation of 18 genes. HOXD10 and HOXD9 represented central modules explaining differences in 135 

gene expression of five genes, three of which are TF (MSX1, TBX3 and FOXD1) (Figure 3B). Lastly, 136 

topological analyses were used to identify hub genes from the DEGs. This network analysis employed 137 

823 nodes with at least one connected component, where 97 annotated genes belong to our DEG core. 138 

Hub genes were extracted by filtering nodes above 14 degrees, which resulted in a set of 24 genes (17 139 

up-regulated and 7 down-regulated genes) (Figure 3C) and the top five hubs are SPP1, HOXA1, 140 
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S100A8, KRT14 and ID2. Besides, several TFs were identified as hub genes, three up-regulated (ISL1; 141 

MSX1; HOXA1) and two down-regulated (GATA6; ZNF423). Again, the three hub TFs from up-142 

regulated genes belong to homeobox family. 143 

Functional enrichment shows a pro-inflammatory signature in proximal airway and pulmonary 144 

surfactant metabolism in the distal airway 145 

We next performed functional enrichment to determine the biological pathways associated with the up- 146 

and down-regulated genes. Specifically, we utilised pathway over-representation analysis using GO, 147 

Reactome and KEGG databases followed by a category-gene network (Figure 4A-B, Supplementary 148 

Materials S7). Several categories were identified enriched from the up- and down-regulated gene list. 149 

The top two more statistically significant pathways were taxis/chemotaxis and activity of 150 

metalloendipeptidase/metallopeptidase. Besides two pro-inflammatory pathways (RAGE receptor 151 

biding and IL17 signalling pathways) were also enriched. Conversely, two pathways representing the 152 

down-regulated genes were observed: benzaldehyde dehydrogenase activity and surfactant 153 

metabolism. 154 

Discussion 155 

The study of the transcriptional lung regional differences in lung allograft recipients provides an 156 

excellent tool to understand baseline molecular mechanisms/signatures that may drive chronic allograft 157 

rejection. With this objective in mind, we analysed transcriptional differences between LAEC and 158 

SAEC from lung allograft recipients. Our results support the hypothesis that airway transcriptional 159 

regional differences exist, where TF genes, specifically homeobox TF may have a potential role in 160 

establishing these differences. Protein-protein interaction network analysis emphasised the role of 161 

ISL1, MSX1, HOXA1 in LAEC, and GATA6, ZNF423 in SAEC. Furthermore, functional enrichment 162 

analysis identified activation of chemotaxis, metalloendipeptidase/metallopeptidase and two pro-163 

inflammatory categories in DEGs from LAEC and surfactant metabolism in SAEC DEGs. 164 
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Several TF (~7%) were noticed in the top ten genes of the DEG (Figure 1). Detailed analysis about TF 165 

families’ composition in the airways found homeobox and C2H2 ZF in common (Figure 2). Homeobox 166 

is related with patterning in lung branching19, and although C2H2 ZF plays important roles in 167 

development and disease, still remain poorly characterized20. Four unique TF families were up-168 

regulated, including BED-ZF, DM, FOX, and T-box, which are involved in development, among other 169 

functions. Several TF identified in these families serve primary roles in the lung. For instance, ZBED2 170 

has been predicted to promote the keratinocyte basal state, inducing differentiation21. In addition, 171 

DMRT2 is involved in establishing left–right asymmetry and somitogenesis; whereas DMRTA2, also 172 

known as DMRT5, has been reported in anterior neural tissue development 22. Moreover, FOXD1 has 173 

been linked as a marker for lung pericytes and FOXC2 in vascularisation23. Finally, TBX3 has been 174 

found to be involved in lung branching morphogenesis with expression in the lung mesenchyme 24. In 175 

contrast, two specific TF families, bHLH and GATA, were identified in the down-regulated genes. The 176 

bHLH family is important in regulating embryonic development, and NPAS1 has been reported to 177 

regulate branching morphogenesis in the embryogenic lung25. Furthermore, the GATA family plays an 178 

important role in both epithelial and smooth muscle cell linage diversity in the lung. Specifically, 179 

GATA6 has been found to induce differentiation of primitive foregut endoderm into respiratory 180 

epithelial cell linages, in addition to regulating surfactant protein genes19. 181 

Next, upstream regulator enrichment analysis of the up-regulated genes predicted that HOXD9 and 182 

HOXD10 homeobox genes activate MSX1, TBX3 and FOXD1 (Figure 3B). Interestingly, MSX1 and 183 

TBX3 are expressed in mesenchyme cells in the single cell (sc) lung map website26 (LungGENS, 10X 184 

sc 24-years-old), and have been shown to be regulated by Hedgehog and Wnt signalling pathways24,27. 185 

Network analyses identified 24 hub genes (Figure 3C); from the up-regulated hubs we found a 186 

conserved signature (CSF1R; MMP1; CD8A; PLAT; S100A8; SPP1) similar to that of the tracheal / 187 

proximal airway28, with genes involved in a variety of processes including cell migration, inflammation 188 
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response and chemokine production. Moreover, the three TF detected in the up-regulated gene hubs 189 

are related to morphogenesis; two specific to mesenchyme development and the other to proximal 190 

airways development27,29. 191 

Interestingly, several pathways were statically significative in a functional enrichment analysis (Figure 192 

4). From the up-regulated gene list, taxis/chemotaxis processes had the most statistical significative 193 

values. Chemotaxis, defined as the directed migration of cells towards a specified entity, are important 194 

for cellular pattering and development30. In drosophila, chemotaxis has been detected in the tracheal 195 

epithelium31. Likewise, the metalloendipeptidase activity pathway was also observed to be activated 196 

through two matrix metalloproteinase (MMP) genes (MMP1, MMP13). In skin repair, MMP1 alters 197 

the migratory substratum driving the forward movement of the repairing cells by allowing them to 198 

attach, dislodge, then reattach to the wounded matrix32. Interestingly, MM13 has been shown to play a 199 

role in the pathogenesis of liver and lung fibrosis 33–35. Additionally, two proinflammatory (IL17 200 

signalling and RAGE receptor binding) plus an antimicrobial pathway were enriched in the up-201 

regulated genes. Amongst these genes, S100A7 and S100A8 are known to expressed in the trachea36 202 

and have been reported to have a role in innate immune responses to pathogens37. Both have gained 203 

research interest because they exhibit selectivity towards pathogenic bacteria, while having no effect 204 

on beneficial commensal bacteria38,39. 205 

Interestingly, the up-regulated enriched categories are also related to epithelial repair and innate 206 

immunity and may suggest that their activation after lung transplantation may help prevent the entry 207 

of undesirable microorganisms via the production of chemokines and antimicrobial peptides32. The 208 

inflammation category activation also supports this hypothesis, since it can act as a defence mechanism 209 

to abiotic40 and biotic41 insults. However, a fibrosis-related gene was also observed within the LAEC 210 

signature, which in the long term could function to compromise lung allograft outcomes33–35. 211 
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Two hub upstream regulators from the up-regulated genes, HOXD9 and HOXD10, are known to 212 

activate TF involved with the chemotaxis process (FOXD1; ISL1) (Fig 3B and 4B) and genes related 213 

to mesenchymal cells (ISL1; MSX1; TBX3). In adults, directional movement of chemotaxis modulates 214 

different responses depending on whether it is infectious or injurious. In the first, immune cells would 215 

be activated and, in the latter, wound healing and tissue regeneration responses are activated. The latter 216 

is provided by the regional stem cells that move into damaged areas, produce connective tissue and 217 

maintain tissue homeostasis30. It is unclear whether this proximal airway signature from LTx patients 218 

could be due as part of healing/regeneration response after the lung transplantation, or as part of the 219 

immune response linked with the proinflammatory processes previously reported30,42. Conversely, only 220 

two pathways were enriched from the down-regulated gene list. The first, surfactant metabolism,  is 221 

essential in small airways because it regulated alveolar surface tension and plays a role in protection 222 

against oxidants and infection43. The second, NAD- and NADP-dependent benzaldehyde 223 

dehydrogenase (ALDH) are involved in detoxification and prior work has reported ALDHA1 and 224 

ALDH3A1 to be involved in the host defence response to toxins in smokers44. 225 

We acknowledge a number of limitations to this research. Firstly, due to the precious nature of the 226 

samples involved, this pilot study has a limited number of biological replicates from LTx recipients. 227 

Despite this, there was sufficient sensitivity to obtain DEG using the rigorous analysis pipeline 228 

outlined. Also, the limited expansion potential of primary AEC is a limitation45 and its effects remain 229 

unknown at the transcriptomic level. Nevertheless, we believe that the utilisation of ‘unaltered primary 230 

airway cells’ are a significant strength of this study. Likewise, monolayer cultures may oversimplify 231 

the multicellular interactions, but a robust and repeatable model with low methodological variation is 232 

important. All together, we are confident that limitations are minor and that our results provide new 233 

insight into the transcriptional regional differences. For prospective studies, these limitations could be 234 

solved with the use cell culture of specialized cells. 235 
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In conclusion, the data presented here suggests distinctive signatures from LAECs and SAECs at a 236 

transcriptomic level, establishing new insights into regional gene expression in the airways of lung 237 

transplant recipients (Figure 4C). Proximal airway gene expression changes included a 238 

proinflammatory signature which may indicate a defence mechanism since it is the first barrier of 239 

defence, as well as a fibrotic signature which may initiate downstream complications such as BOS 240 

establishment. In contrast, the small airways reflect a characteristic alveoli’s hallmark, including gas-241 

exchange signals and secretion of pulmonary surfactant proteins. These results will seed future large 242 

scale works to determine the predictive value of these genes as potential biomarkers aimed at 243 

maintaining baseline lung health of allograft recipients. 244 
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Figure legend 264 

Figure 1. Transcriptomic signatures between proximal and distal lung regions. (A) Bar plot 265 

summarises the number of DEGs (FC ³ |1.5| and FDR < 0,05) of the regional comparison on the y-266 

axis and direction of the change on the x-axis, divided in up- and down-regulated genes, up (red) and 267 

down (blue), respectively. (B) Volcano plot displays bidirectional log2 FC on the x-axis and absolute 268 

Log10 FDR on the y-axis. Top 10 ranked genes for up- and down-regulated genes are labelled in each 269 

case and bold letter highlight Transcription Factor (TF) genes. 270 

Figure 2. Identification of Transcription Factors (TF) regulating proximal and distal lung 271 

regions. (A) Pie plot represents the percentage of TF families from the TF in DEGs. (B) Venn diagram 272 

highlights the common and uniquely TF families between LEAC and SAEC. Blue and pink represent 273 

proximal/LAEC and distal/SAEC samples. (C) Bar plots depict the TF signature found between up- 274 

and down-regulated as LAEC and SAEC, respectively. Colour palette refers to the TF families.  275 

Figure 3. Upstream regulator enrichment and transcriptional network analyses of significantly 276 

differentially expressed genes. (A) Bar plot visualisation of TF enrichment analysis (TFEA) shows 277 

the top upstream regulators enriched from the DEGs core using a Fisher's exact test (FET) from ChIP-278 

X Enrichment Analysis 3 (ChEA3)16. Up- and down-regulated genes are represented in red and blue, 279 

respectively. Dash line represents the FDR 5% limit. (B) Network analysis of upstream regulators and 280 

associated regulated genes from up-regulated genes. Network was clustered using an Edge-weighted 281 

Spring-Embedded Layout method46. Brighter colours illustrate upstream regulators. Shapes depict 282 

genes and TF as circles and diamonds, respectively. (C) Protein-protein interaction network of the 283 

differentially expressed genes (DEG) was calculated from IMEx Interactome database of InnateDB 284 

(https://www.innatedb.com) using NetworkAnalyst17, it was analysed and visualised in Cytoscape46. 285 

Colour intensity displays the fold change value (red; up-regulated genes and blue; down-regulated 286 

genes), edges are show in light grey; beside node size represents the degree centrality as 287 

interconnection. 288 
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Figure 4. Functional enrichment analyses and transcriptional hallmarks of the proximal and 289 

distal airways from lung transplant (LTx) recipients. (A) Scatter plot represents the significant 290 

categories enriched in up- and down- regulated genes. Bar side row represents databases used (DB), 291 

adjusted P-value (False Discovery Rate, FDR) colours the significance and dot size the numbers of 292 

genes involved in each category. (B) Category-gene network associations of enriched terms. Up-293 

regulated genes in red and down-regulated genes in blue. (C) Transcriptional hallmarks overview of 294 

the airways. Samples from the proximal airways were collected close to the trachea (1). This region is 295 

constantly exposed to abiotic (allergens, cigarettes) and biotic (virus, bacteria, fungi) factors (2). Two 296 

proinflammatory pathways (IL-17 signalling and RAGE receptor binding) associated with defence 297 

mechanisms were found activated in this region (3). Distal airways specimens were collected near the 298 

alveoli (4), where the gas-exchange occurs (5). In agreement, these samples demonstrated abundance 299 

of transcripts related to surfactant metabolism, which is crucial to lower the alveolar surface tension 300 

during expiration (6). Figure created with BioRender.com. 301 
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