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ABSTRACT
Background: Many research studies seek to improve vital sign monitoring to enhance the
conditions under which doctors and caregivers track patients’ health. Non-invasive and
contactless monitoring has emerged as an optimal solution for this problem, with telemedicine,
self-monitoring, and well- being tools being the next generation of technology in the biomedical
field. However, there is worldwide concern about the general purpose and bias towards a
certain demographic group of these techniques. In particular, skin tone and the accuracy of
monitoring dark skin tone groups have been key questions among researchers, with the lack of
results and studies contributing to this uncertainty.

Methods: This paper proposes a benchmark for remote monitoring solution against a medical
device across different skin tone people. Around 330 videos from 90 different patients were
analyzed, and Heart Rate and Heart Rate Variability were compared across different subgroups.
The Fitzpatrick scale (1-6) was used to classify participants into three skin tone groups: 1 and 2;
3 and 4; 5 and 6.

Results: The results showed that our proposed methodology was able to estimate heart rate
with a mean absolute error of 3 bpm across all samples and subgroups. Moreover, for Heart
Rate Variability (HRV) metrics, we achieved the following results, in terms of Mobility Assistive
Equipment (MAE): HRV-IBI (Inter-Beat-Interval) of 10 ms; HRV-SDNN (Standard Deviation of
Normal to Normal heartbeats) of 14 ms and HRV-RMSSD (Root Mean Square of Successive
Differences between normal heartbeats) of 22 ms. No significant performance decrease was
found for any skin tone group, and there was no error trend towards a certain group.

Conclusions: The study showed that our methodology meets acceptable agreement levels for
the proposed metrics and is well-suited for users who want to understand their general health
and wellness. Furthermore, the experiments showed that skin tone had no impact on the
results, which remained within the same range across all groups.

Keywords: Remote-Photoplethysmography, Skin tone, Artificial Intelligence.

1. Introduction

Non-invasive vital sign monitoring is an important aspect of healthcare as it allows doctors and
caregivers to track a patient’s vital signs without the need for invasive procedures.
Well-established methods for capturing physiological data include the use of the
electrocardiogram (ECG), photoplethysmography (PPG), and bioelectrical impedance analysis
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(BIA), all of which require the use of contact sensors. These methods can measure several
different physiological parameters, such as heart rate (HR), respiration rate (RR), oxygenation
(SpO2), and blood pressure (BP) through their physiological signals [1–3].

Although these techniques have greatly increased the capabilities of not only doctors and
physicians but also normal users, they still require contact with the patient through the use of
sensors placed on the patient. However, researchers have introduced a technology that has
shown promising results in this area: remote photoplethysmography (rPPG). This technology
uses images from a regular camera combined with machine learning algorithms to estimate the
same vital signs as contact-based methods.

The information acquired through rPPG reflects variations in blood volume in skin tissue, which
are modulated by cardiac activity. The reflection of light is influenced by changes in blood
volume and movement of the wall of blood vessels, and this phenomenon is visible through
frame-to-frame changes in an RGB camera [4].

One key advantage of rPPG is that it is non-invasive and can be performed remotely, making it
well-suited for monitoring patients in a variety of settings, including hospitals, homes, and the
field. Additionally, rPPG is relatively low-cost, making it accessible to a wide range of healthcare
providers.

However, there are several challenges to extracting an optimal rPPG signal. Distortions in the
signal may be caused by low illumination, significant head movement, and device properties in
low-end cameras such as frame rate and resolution. Moreover, pigmentation of the skin has
been a major concern due to the light-based nature of the rPPG technique and the lack of
studies involving participants with different skin tones.

To build an rPPG system, a four-step methodology is required, which can be summa- rized as
frame-to-frame extraction, region of interest (ROI) detection, signal processing, and vital sign
estimation. These steps are divided into blocks, all of which are based on well-established,
state-of-the-art concepts such as face detection, landmark positioning, frequency spectrum
analysis, and digital signal processing.

First, the video obtained from the camera is separated into several frames, with the number of
frames per second denoted as the frame rate (FPS). One constraint of rPPG systems is the
minimum FPS required to pick up fast changes in the cardiac cycle. As the heart rate increases,
so does the required FPS, but this is usually not an issue for most existing smartphone
cameras.

The next step is to find ROIs, which are usually extracted from the user’s face and theoretically
compared to small sensors placed on the face. The position of the ROIs can vary among
authors, but a common approach is to detect face regions in each video frame using face
tracking algorithms such as the Viola-Jones method [5]. Once the ROIs are selected, pixel
intensity components are extracted in the RGB color space. Furthermore, the RGB components
are spatially averaged over all pixels in the ROI to yield a red, blue, and green component for
each frame, forming the raw signals.

Additionally, signal processing is applied to the raw signal, which is also known as the "rPPG
Core". The rPPG Core has been the subject of various studies in the last decade, resulting in
multiple methods that aim to extract a clean rPPG signal from the RGB components. There are
many approaches in the literature to achieve this, such as those that rely on Blind Source
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Separation (BSS) methods [6,7]. These methods can retrieve information by de-mixing raw
signals into different sources, including Principal Component Analysis (PCA)-based and
Independent Component Analysis (ICA)-based techniques, which use different criteria to
separate temporal RGB traces into uncorrelated or independent signal sources. Other authors
have tried to improve the quality of the signal by changing the color space to a
chrominance-based domain [8].

In a more recent study, Wang et al. [9] introduced a new alternative to process RGB
components into rPPG signals, the "plane-orthogonal-to-skin" (POS) algorithm. In short, the
POS method seeks to filter out intensity variations by projecting RGB components onto a plane
orthogonal to a normalized skin tone vector. A 2-D signal referencing the projections is obtained
and then combined into a 1-D signal, which is one of the input signal dimensions that is
weighted by an alpha parameter. The alpha parameter is the quotient of the standard deviations
of each signal.

Despite the successful results achieved by all of the aforementioned authors, none of them
have evaluated or investigated the impact of skin tone on the results.

In this paper, we propose to evaluate rPPG Software Development Kit (SDK) version 3.0
against medical devices for participants with different skin tones. This SDK can be integrated
into Android and iOS mobile apps as well as web applications and provides estimations of
physiological assessments for a variety of vital signs, with Heart Rate and Heart Rate Variability
(HRV) selected as the main features for this benchmark. The initial hypothesis of our
methodology is to achieve a Heart Rate error within 3 bpm, HRV-IBI within 50 ms, and
HRV-SDNN within 15 ms. Additionally, this paper

seeks to address the assumption that rPPG technology suffers from bias when used on people
with dark skin tones.

The remainder of this paper is structured as follows: Section 2 provides complete description of
the methodology used in this study. Section 3 presents the obtained results for Heart Rate and
Heart Rate Variability against medical devices for participants with different skin tones.
Moreover, section 4 includes a discussion of the presented results and analyses that seek to
evaluate the proposed methods. Lastly, section 5 revisits the most important points of this work
and presents a conclusion.

2. Materials and Methods

In this chapter, we present an overview of rPPG technology, covering its most important aspects
and blocks. Additionally, the methodology used in this study will be addressed. Fig. 1 shows the

block diagram of the proposed study.

Figure 1. Block diagram of study methodology.
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2.1. rPPG Processing

In this section, a detailed description of the rPPG core method will be provided. The aim of this
method is to extract an optimal rPPG signal, which is as clean as possible and can contain the
same physiological information as a PPG signal from a contact sensor. This signal reflects the
cardiac cycle and body hemodynamics. The method is depicted in Fig.2.

The RGB components were extracted from the ROIs using the landmark detection algorithm
from the OpenCV library [10]. In a previous work [11], we proposed using three ROIs from the
forehead, left cheek, and right cheek, which have shown to provide the best performance in
internal experiments. Once the raw signal was collected, a version of the POS algorithm
proposed by [9] is applied, and the resulting signal is further sent to a filtering stage based on
convolutional filters. This stage aims to enhance the quality of the rPPG signal by denoising it as
a sinusoidal wave.

Figure 2. rPPG extraction method [11].

2.1.1. POS Algorithm

Originally proposed by Wang et al. [9], the POS algorithm seeks to mix RGB channels into a
single-channel rPPG signal. According to the authors, the input RGB signal channels are mixed
on the time interval t as following:

Figure 2. rPPG extraction method [11].

2.1.1. POS Algorithm

Originally proposed by Wang et al. [9], the POS algorithm seeks to mix RGB channels into a
single-channel rPPG signal. According to the authors, the input RGB signal channels are mixed
on the time interval t as following:

The subscript n stands for normalized, representing the instant color values divided by the mean
value of the color channel.

The rPPG signal on this interval is constructed as denotes Eq.3:
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where α is the ratio between the standard deviation of U(t) and V(t) calculated on the interval.

2.1.2. Convolutional Filter

The goal of this step is to enhance the signal quality by minimizing noise as much as possible,
achieved by applying a convolutional filter (ConvFilter). The ConvFilter involves performing the
convolution operation between the input single-channel signal, s_orig, which is extracted after
the POS algorithm, and a template that represents a single heartbeat peak of the same signal.
To construct the template, segments of s_orig signal around the detected peaks are averaged.
Additionally, since s_orig signal could contain some noise, a band-pass filter with a bandwidth
from 0.7 Hz to 7.0 Hz was also applied to facilitate peak detection.

The cleaner “s_heart” signal is obtained through convolution Eq.4 or the equivalent correlation
Eq.5 with this template t[k]:

2.2. UCLA Dataset

In the past decade, rPPG technology has grown significantly with the advancement of
computational power and the use of Machine Learning algorithms in various fields, including the
biomedical field, where researchers have been improving non-invasive and contactless
techniques for measuring physiological data. However, the increasing demand for benchmark
datasets to evaluate these methods has also highlighted some concerns.

While many efforts have been made to collect rPPG datasets for more accurate physiological
sensing, these datasets may have limitations, such as a small number of subject participants
and biases toward certain demographic groups. Furthermore, few studies have explored the
technology’s boundaries and limitations, such as its accuracy in darker skin tone populations,
which remains largely unexplored due to the lack of proper datasets. For instance, Dasari et al.
[12] proposed a dataset that only contains dark skin tones, but the actual videos are not shared,
only the color space values of the skin region of interest.

Despite these challenges, Wang et al. [13] recently proposed the largest known rPPG dataset,
which includes a variety of participants with different skin tones. The dataset comprises 98
subjects and 489 videos of various skin tones, ages, genders, ethnicities, and races. The skin
tone of each subject was determined using the Fitzpatrick (FP) skin type scale [14], which
ranges from 1 to 6. For each subject, five videos of approximately 1 minute were recorded at 30
frames per second (about 1800 frames), resulting in uncompressed videos with a total size of 2
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gigabytes. All videos in the dataset are synchronized with ground truth heart rate and PPG
signals extracted from a pulse oximeter placed on the subject’s finger.

2.3. Metrics

As mentioned earlier, the goal of this work is to evaluate the proposed method of remote health
screening using rPPG signals extracted from video files. To assess the performance, heart rate
and HRV features were used. Heart rate is a well-established parameter that is familiar to most
people and ranges from low to high. In contrast, HRV may sound unfamiliar to many, but it can
provide important insights into a person’s health. HRV-SDNN was used to assess health status,
while HRV-LF and HRV-HF were correlated

to the autonomic nervous system through the sympathetic and parasympathetic branches
[15,16].

As heart rate was analyzed, the GT value provided in the dataset was compared to the
estimated heart rate. For the HRV assessment, the comparison was made with the HRV
features calculated using the PPG GT signal. Thus, physiological features were taken from both
contact and remote signals and compared.

The RR Interval, also known as pulse-to-pulse interval, was the main tool used to calculate
those features. It is the time difference between two peaks in milliseconds (ms) (Eq.6).
Furthermore, the following features were used: Inter-Beat-Interval (IBI) (Eq.7), Root Mean
Square of Successive Differences between normal heartbeats (RMSSD) (Eq.8), and the
Standard Deviation of Normal to Normal heartbeats (SDNN) (Eq.9), all of which are in the time
domain. In the frequency domain, the power from the low-frequency band (LF) [0.04; 0.15]Hz
and high-frequency band (HF) [0.15; 0.4]Hz was measured. All comparisons were conducted in
terms of Mean Absolute Error (MAE), Mean Error (ME), and 2-D plots.

3. Results
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In this study, video files from UCLA dataset [13] were used to extract physiological in- formation
from individuals. Each video is processed using the proposed method described in section 2.1,
which returns the rPPG signal. Furthermore, the information obtained through the rPPG signal is
compared with the GT heart rate, as well as HRV features extracted from the contact PPG
signal. The goal of this study is to not only benchmark the overall results but also assess the
impact within certain groups based on skin tone and gender.

Firstly, after extracting the rPPG signals, it was necessary to remove some samples. However,
the criteria differed for HR and HRV due to their different sources. Since HR was obtained
directly from the sensor and HRV was calculated from the PPG signal, some samples might be
useful for one benchmark but not for the other. The following issues were identified:

Some samples had no GT HR and were characterized by constant values of 255 and 129,
which caused their exclusion from the dataset.

In addition, some samples were manually checked and three cases were observed: poor PPG
GT quality, PPG GT discontinuity (probably caused by interference or sensor displacement),
and increasing heart rhythm. Samples from the first two cases were removed from the HRV
benchmark but not from HR, as long as the GT HR presented reasonable values (HR < 200
bpm).

Lastly, some samples presented an irregular heart rhythm, with an increase of up to 10 bpm at
some point during the experiment. This might be caused by several factors such as not being at
rest when taking the measurement, participants speaking or moving during the reading, or
deliberately increasing heart rate. Additionally, a less likely cause could be a correlation with
cardiac diseases. These samples were not removed from the dataset, as this work understands
that the technology should be able to pick up these changes as well. However, this represents a
bigger challenge.

Additionally, samples that could not have their HR estimated were also removed, as this work
understands that there is no point in outputting a value if there is no certain confidence.

As a result, the dataset for HR benchmarking contained 339 samples from 90 unique
participants, while the HRV dataset contained 332 and 94 samples, respectively. Fig. 3 shows a
histogram of GT HR for all remaining samples.
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Figure 3. Ground Truth Heart Rate distribution.

For this study, subgroups were created to enhance the understanding of the results. Firstly, we
evaluated the results from a signal quality perspective in terms of Signal to Noise Ratio (SNR),
measured in decibels (dB). Three groups were used: SNR > 5 dB, which is classified as the
minimum required, SNR > 8 dB as optimal signals, and SNR > 10 dB considered perfect signal
quality. Regarding skin tone groups, based on the Fitzpatrick skin type [14], three other groups
were considered: light skin tones related to values 1 and 2 of the scale, medium skin tones,
consisting of skin tones with values 3 and 4 of the scale, and dark skin tones, consisting of skin
tones 5 and 6 of the scale. Additionally, this study chose to split gender into two groups: male
and female. For the skin tone and gender groups, no exclusion was performed based on
minimum SNR.

Tab.1 shows the results for Heart Rate estimation for all samples as well as each one of the
subgroups in terms of mean absolute error and mean error.

Metrics (bpm)

Group N. Samples N. Subjects MAE ME

All samples 339 90 3 2

SNR > 5 326 88 3.01 2
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SNR > 8 308 87 3.02 2.03

SNR > 10 248 80 2.89 1.86

Fitzpatrick [1,2] 104 27 2.53 1.58

Fitzpatrick [3,4] 183 48 3.05 1.82

Fitzpatrick [5,6] 52 15 3.79 3.46

Male 116 29 3.24 2.01

Female 223 61 2.88 1.99

Table 1: Heart Rate evaluation across different subgroups

Additionally, Fig.4 presents two scatter plots: Fig.4a with all available samples (after filtering),
and Fig.4b, which only includes samples with perfect signal quality (SNR > 10 dB). The figures
depict the best fit line (black) and the perfect line (red).

Figure 4. Scatter plot of HR across all samples and optimal signal quality.

Additionally, Fig.5 shows a similar plot for different skin tone groups. Fig.5a depicts people with
light skin tones, defined by Fitzpatrick scale values 1 and 2, while Fig.5b displays the impact on
medium skin tones for Fitzpatrick values 3 and 4. Finally, Fig.5c presents the results for dark
skin tones, categorized as 5 and 6 on the Fitzpatrick scale.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 3, 2023. ; https://doi.org/10.1101/2023.04.02.23288057doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.02.23288057
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5. Scatter plot of HR for various skin tones according Fitzpatrick scale. a) skin tones 1
and 2; b) skin tones 3 and 4; c) skin tones 5,6.

Despite scatter plots being a fair representation of the distribution of errors, Bland Altman plots
bring the results in terms of the mean value versus the difference between the ground truth (GT)
and estimation. Fig.6 shows the Bland Altman plot for heart rate estimation across samples with
SNR > 10 dB, where the skin tones were highlighted for each group.
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Figure 6. Bland Altman plot for Heart Rate estimation across samples with SNR > 10 dB.

Although heart rate is a reliable feature to benchmark physiological data extraction, heart rate
variability (HRV) can provide a more in-depth analysis of someone’s current health status. As
stated previously, both time and frequency domain HRV features can reveal important health
insights. Similar to the heart rate analysis, Tab.2 and Tab.3 show an overview of the results,
respectively, for the time and frequency domains, for all samples as well as for each subgroup.

Metrics (ms)

MAE ME

Group
Sample

s
Subject

s IBI SDNN RMSSD IBI SDNN RMSSD

All samples 332 94 9.49 14.35 22.49 -5.29 1.6 1.38

SNR > 5 298 89 7.87 13.57 21.96 -5.06 1.87 2.4

SNR > 8 265 84 7.14 12.88 20.79 -4.92 2.14 3.14

SNR > 10 207 75 6.94 12.59 21.19 -5.03 1.82 3.69

Fitzpatrick [1,2] 96 27 8.91 14.53 24.14 -7.72 2.96 4.39

Fitzpatrick [3,4] 173 48 8.6 14.13 22.37 -4.25 1.16 1.15

Fitzpatrick [5,6] 63 19 12.82 14.69 20.31 -4.42 0.71 -2.58
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Male 111 30 9.62 15.54 21.29 -4.67 3.88 1.23

Female 218 63 9.43 13.89 23.34 -5.55 0.44 1.43

Table 2: Heart Rate Variability time domain evaluation across different subgroups

Metrics (s2/Hz)

MAE ME

Group Samples Subjects LF HF LF HF

All samples 329 94 16.2 34.09 -5.26 9.67

SNR > 5 295 89 15.97 33.8 -5.57 8.78

SNR > 8 262 84 15.16 32.71 -5.78 9.28

SNR > 10 205 75 15.66 33.49 -6.48 9.32

Fitzpatrick [1,2] 96 27 17.34 28.02 -4.68 8.53

Fitzpatrick [3,4] 170 48 14.62 35.93 -6.2 7.39

Fitzpatrick [5,6] 63 19 18.69 38.38 -3.6 17.56

Male 108 30 15.84 31.76 -1.9 1.39

Female 218 63 16.37 35.43 -7.19 13.69

Table 3: Heart Rate Variability frequency domain evaluation across different subgroups

This work proposes two main analyses of heart rate variability (HRV) for a more in- depth
assessment of participants’ health status. Firstly, an analysis of the inter-beat-interval (IBI)
across all samples is presented in Fig.7, which highlights the mean IBI and thus the cardiac
rhythm.
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Figure 7. Scatter plot of Inter-Beat-Intervals across all samples.

Secondly, the study has chosen SDNN as the main HRV metric for in-depth analysis, as SDNN
has been used as a fitness and health score. Fig.8 shows a scatter plot of SDNN across all
samples (Fig.8a) as well as for samples with perfect signal quality (Fig.8b). For these plots, the
skin tone groups were highlighted in different colors to identify the impact of skin tone on the
presented errors. Similarly, Fig.9 shows the scatter plots for each skin tone group separately.
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Figure 8. Scatter plot of SDNN across all samples and optimal signal quality.

Lastly, the Bland Altman plot for SDNN across samples with SNR > 10dB is presented in Fig.10.
As with the previous plots, skin tone groups based on the Fitzpatrick scale are highlighted in
different colors to facilitate the identification of samples with higher errors.

Figure 9. Scatter plot of SDNN for various skin tones according to Fitzpatrick scale. a) skin
tones 1 and 2; b) skin tones 3 and 4; c) skin tones 5,6.
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Figure 10. Bland Altman plot for SDNN estimation across samples with SNR > 10 dB.

4. Discussion

In this work, video files of 98 participants were extracted from the UCLA dataset, resulting in a
total of 498 videos, each lasting 1 minute and captured at a frequency of 30 Hz. For each video,
contact PPG and heart rate were synchronously measured using a pulse oximeter, and the skin
tone was classified using the Fitzpatrick scale. After verifying the integrity of the data and
removing erroneous samples, around 330 samples from 90 patients were retained.

The benchmark was conducted in terms of heart rate and heart rate variability, which are
well-established metrics used to assess an individual’s health status. This work pro- posed
dividing the samples into subgroups to enhance the analysis perspective. First, in terms of
signal quality, three groups were created for minimum, optimal, and perfect

conditions. Additionally, the samples were divided into three skin tone groups based on the
Fitzpatrick scale, as well as two gender groups.

The aim of the first experiment was to evaluate the accuracy of the algorithm for heart rate
estimation. Tab.1 shows that across all samples, the MAE error was 3 bpm, which meets the
initial hypothesis. Moreover, the performance was stable across samples with SNR > 5 and 8
dB, as can be seen in Fig.4. This indicates that even with lower signal quality, the algorithm can
still estimate HR accurately. When taking into account signals with perfect quality, there is a
slight improvement to 2.89 bpm. It is worth noting that more than half of the samples had perfect
signals, as well as 80 out of 90 patients. Despite the fact that the dataset was collected in a
good setting, signal quality is also a direct result of power on calibration of light changes and
movement compensation to enhance the extracted signal.
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With regard to skin tone groups, most of the participants (48) were in the medium skin tone
group (FP 3,4), which achieved an MAE of 3.05 bpm. The dark skin tone group had a slightly
higher MAE of 3.79 bpm, but it was less than 1 bpm from the original mark. Through the
comparison between Fig.5c and Fig.5b, it is possible to see the difference in the relationship
between the 1:1 line and the best fit line, where in the former, the greatest differences remain
when the estimated value was smaller than the actual value.

Despite the initial results showing a slight decrease in performance, this may be due to other
factors, such as signal quality and an increase in heart rate throughout the reading. The
Bland-Altman plot presented in Fig.6 corroborates this hypothesis, as it shows all readings with
SNR 10+ and no correlation can be seen between skin tone group and errors. The blue dots
represent light skin tones, yellow for medium, and green for dark skin tones. Additionally, the
plot shows a mean error of 1.86 bpm across all the readings with SNR > 10 dB.

Moreover, out of the 98 participants, 61 were women and 29 were men. There was no major
discrepancy in the results between the two gender groups, indicating no bias towards gender.

Regarding the HRV experiments, this work extracted results from five different fea- tures, three
of which are from the time domain (IBI, SDNN, and RMSSD), and two are from the frequency
domain (LF and HF). In the overview results presented in Tab.2, it is possible to see that IBI
displays the lowest error range within 10 ms, which is a significant result and far exceeds the
initial hypothesis of 50 ms. If we consider that IBI ranges from 500 to 1500, 10 ms would reflect
an average error of 1 bpm. Moreover, SDNN, as previously stated, has been used to determine
the fitness score and shows an average error of 14 ms, which also meets the proposed value of
15 ms. Normal ranges of SDNN vary from 30 to 150.

Through the analysis of HRV, conclusions can be drawn about the previous experi- ment as
well, since HRV can provide additional insight into the cardiac rhythm. While IBI displays an
almost perfect correlation, as observed in Fig.7, SDNN shows some discrep- ancies, often
related to high SDNN values as can be seen in Fig.8a, 9a, and 9c, where the ground truth (GT)
SDNN was above 100 ms. These values are highly associated with the increasing heart rhythm
previously discussed, which can be hidden in some metrics but clear in the standard deviation.
While these values are not wrong in terms of metrics, they do not reflect the rhythm conditions,
most likely because they were not at rest. Thus, these samples should be considered as
outliers, and their exclusion would result in a decrease in MAE SDNN to around 9 ms.

Regarding subgroups, the overview results show that MAE was consistent across all Fitzpatrick
groups (around 14 ms). The plots show sparse estimations, and once again, no correlation
between the skin tone group and the errors can be seen. The Bland-Altman analysis in Fig.10
shows a mean SDNN error across samples with SNR 10+ of 1.56 ms, and most differences
remain within +- 20 ms.

Additionally, an increase in the MAE of the male group to 15.54 ms can be observed. This
phenomenon can be explained because most of the samples with an increasing heart rhythm
were from men, which directly affects the SDNN and RMSSD metrics.

Regarding RMSSD, although most of the MAE results remain stable around 22 ms, it is
noticeable that the lowest MAE is observed in the dark skin tone group, with 20.31 ms.

Finally, acceptable results were also obtained in the frequency analysis. The normal- ized power
of the low and high frequency bands was extracted from contact and remote signals for
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comparison. As shown in Tab.3, the MAE for the low frequency band is within 16 s2/Hz, while
for the high frequency band it is within 38 s2/Hz. The normal ranges for LF and HF are
respectively 0-70 s2/Hz and 10-175 s2/Hz. Through the LF and HF features, correlations with
the Autonomic Nervous System can be inferred.

5. Conclusions

In this paper, a benchmark of our methodology using the largest known rPPG dataset was
proposed. Approximately 340 video files from 90 patients were analyzed, and from these, rPPG
signals, heart rate, and heart rate variability were extracted and compared to ground truth
information obtained from a pulse oximeter. The aim of this study was to address the lack of
results of rPPG technology in a population of individuals with different skin tones, as well as to
mitigate concerns about the accuracy of the method in people with dark skin tones.

Heart rate and heart rate variability were chosen as the main features to evaluate similarity due
to their ease of extraction, well-known features, and ability to potentially reflect health and
fitness insights about the user.

The analysis was carried out within subgroups based on skin tone, with three groups created
based on the Fitzpatrick scale. The results have shown that the heart rate meets the initial
hypothesis of a mean absolute error of 3 bpm. Within the skin tone subgroups, no significant
performance glitches were observed. Moreover, the HRV results have shown an almost perfect
correlation with IBI, with a mean absolute error within 10 ms (around 1 bpm). Similarly, SDNN
has shown acceptable results within 14 ms, although some samples presented an increasing
cardiac rhythm during the reading, which drove the HRV metrics towards deceptive values.

The study has shown that our methodology meets acceptable agreement levels for mean
absolute error for HR, HRV-IBI, HRV-SDNN, HRV-RMSSD, HRV-LF, and HRV-HF. Furthermore,
the experiments have shown that skin tone had no impact on the results, which all remained
within the same range. Moreover, this work has demonstrated through its results that rPPG
technology can be used and has no significant accuracy impact on dark-skinned people. This
shows that the proposed methodology is acceptable for users who want to understand their
general health and wellness.
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Abbreviations

The following abbreviations are used in this manuscript:

AI: Artificial Intelligence
HR: Heart Rate
HRV: Heart Rate Variability
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IBI: Inter-Beat-Interval
PPG: Photoplethysmography
RMSSD: Root Mean Square of Successive Differences between normal heartbeats
SDNN Standard Deviation of Normal to Normal heartbeats
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