Comparison of subjective motor imagery abilities in CRPS compared to chronic limb pain and healthy controls: a cross sectional study ==================================================================================================================================== * Gabriel Cohen-Aknine * Alexis Homs * Denis Mottet * Thibault Mura * François Jedryka * Arnaud Dupeyron ## ABSTRACT Complex Regional Pain Syndrome (CRPS) is a chronic pain syndrome that affects brain structure and function such as motor imagery. However it is not known whether CRPS patients have a subjective MI deficit. In this single-center observational study, 123 patients were recruited (CRPS = 40, chronic limb pain, CLP = 40 and healthy individuals = 43). Participants completed the Motor Imagery Questionnaire - Revised Second (MIQ-RS) once on each side to assess their subjective kinesthetic (KMI) and visual (VMI) MI abilities. MIQ-RS total score and KMI and VMI subscores were compared between groups and between healthy and painful sides. There was no difference between or within groups (p>0.05; 95% CI) for all scores. Bayesian analysis suggested moderate evidence that CRPS patients had the same MI abilities as healthy individuals for the KMI scores (BF01 > 3), and that CLP patients had the same subjective MI abilities as healthy participants for all scores. This approach allowed us to conclude that CRPS patients are probably not deficient in their MI abilities despite a possible lack of power, however motor imagery training appears to be effective in rehabilitation programs, but not to improve a deficit. ## INTRODUCTION Complex regional pain syndrome (CRPS) is a chronic pain condition characterized by multiple categories of symptoms with sensory, motor, vasomotor, and sudomotor disorders 1,2. The long duration of symptoms represents a high cost to the health care system3. The mechanism of CRPS is not fully understood, although there is an international consensus to explain the symptoms by both central and peripheral processes 2,4. Movement is impaired early in CPRS and as a part of motor planning 5,6. Chronic pain seems to modify brain structure and function7. Some studies appear to show changes in brain structure and function on both affected and unaffected sides, but the results are not consistent 8–10. However, abnormal neuroplasticity 11 in the central nervous system has been demonstrated, accounting for reductions in higher-order motor control and dysfunction of intentional movements 12, and altered body perception called “neglect-like syndrome” 13,14. Furthermore, a reduced activation of cortical areas during the motor imagery (MI) task in the affected side 15 has been observed, and changes in motor areas such as the premotor cortex that is involved in MI abilities 8,12,16. MI is a dynamic state whereby subjects mentally simulate specific actions17, and precedes motor execution in the premotor cortex 18. Subjective MI abilities can be assessed using questionnaires, most often assessing two distinct parts of subjective MI abilities: visual motor imagery (VMI) and kinesthetic motor imagery (KMI) 19,20. VMI can be considered as external imagery (performing the movement as a viewer) and KMI as internal imagery (performing the movement in the first person with kinesthetic sensations). Chronic low back pain (CLBP) reduction in their subjective MI abilities using questionnaire 21. Currently, MI training is a recommended technique and effective therapy in chronic pain and CRPS 22–25. In addition, people with chronic pain as chronic limb pain shows impairments in Laterality judgment performance 26,27. However, it is difficult to determine whether the changes observed, particularly in MI tasks, are specific to CRPS or to chronic pain. 7,28 The aim of this study was to compare MI abilities between patients with CRPS, patients with chronic limb pain (CLP) and healthy subjects. We hypothesized that individuals with CRPS will have lower abilities than controls and at least equal to those of individuals with chronic limb pain. Secondarily, we aimed to compare MI abilities of participants’ affected side to their unaffected side in both chronic pain groups. We hypothesized that the painful side would be more affected than the healthy side. ## MATERIALS AND METHOD ### Design This was a prospective, single-center, cross-sectional study conducted at the University Hospital of Nîmes (France). The study was approved by the local ethics committees (2020-A02281-38) and registered on [clinicaltrials.org](http://clinicaltrials.org) ([NCT04703348](http://medrxiv.org/lookup/external-ref?link_type=CLINTRIALGOV&access_num=NCT04703348&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F06%2F2023.04.02.23288051.atom)). All patients received an information letter and provided written consent. ### Participants and setting Patients with CRPS were recruited from January 2021 to October 2022 in the pain medicine department (CHU Nîmes, France). Healthy participants were recruited from hospital employees using a poster campaign. Patients with CLP were recruited in the physical medicine and rehabilitation department and were included if they experienced limb pain lasting more than 3 months including musculoskeletal disorders, chronic post-traumatic pain, or post-surgical pain regardless of etiology. Inclusion criteria were: age above 18, less than 150 minutes of moderate-to-intense physical activity per week, and education until A level of baccalaureate / high school diploma or equivalent. CRPS patients had to have a CRPS diagnosis by validated Budapest criteria 22,29,30, and CLP patients’ CLP must have arisen secondary to trauma, surgery, or musculoskeletal disorders. Additionally, patients were excluded if CRPS was secondary to stroke, stellate block injection performed 3 weeks before the questionnaire, presence of central neurological disease, patients with chronic fibromyalgia or low back pain, patient pregnancy/parturition/breastfeeding, visual blindness, amputation, or previous experience with MI practice. ### Intervention Questionnaires were originally planned to be performed during consultation. However, due to the Covid-19 pandemic, some participants (60%) completed the questionnaire over a video conference with an investigator. The questionnaires were audio recorded on REDCap© (online questionnaire) 31. Patients completed the MIQ-RS (Movement Imagery Questionnaire - Revised Second Edition) twice, starting with the right side and followed by the left side (non-randomized running order based on the difference in laterality between the upper and lower limb) with a pause if necessary. Age, sex, body mass index (BMI), upper and lower dominant limb, education level, pain duration and physical activity level were recorded. ### Outcome measures The MIQ-RS is a validated questionnaire for assessing subjective MI 32,33, with a validated French translation 34, but it has not yet been used in patients with CRPS. It is a practitioner-administered questionnaire (done by 2 administrators), comprising 14 tasks in which patients first perform a movement such as a knee raise, then imagine it visually and kinesthetically. Patients evaluate their abilities on a 7-point Likert scale ranging from “very easy to see/feel” (1 point) to “very hard to see/feel” (7 points). A total score and two sub scores (KMI and VMI) are calculated on a scale of 7. There is no official cutoff available. The primary outcome was the difference in MIQ-RS total score and sub scores between the groups; the secondary outcome was the difference in scores between the healthy and painful side in the CRPS and CLP groups. ### Data analysis No published results were available in this population to perform a sample size calculation. Based on the assumption that CRPS patients experience abnormal plasticity of the central nervous system, we used a population of stroke patients 35 to estimate the expected deficit (score of 29 for the VMI, and 25 for the KMI with standard deviations around 10 for both measures). The expected scores in the control group were based on the study by Loison et al. 34 (40 for the VMI and 33 for the KMI with standard deviations around 10). Thus, the inclusion of 40 patients seemed reasonable to highlight the smaller of the two expected differences (25 vs 33 for the KMI score with a SD=10) with a power of 90% and an alpha risk at 5%. MI abilities were compared between the three groups to explore the effect of pain on subjective abilities to determine whether MI was different in CRPS or whether pain could account for this difference. The mean scores of the total MIQ-RS and both sub scores were recorded. Then, an intragroup comparison of MI abilities was performed between the painful side and the healthy side for CRPS and CLP patients to address whether pain affected the subjective ability to perform MI. We performed a second analysis with a Bayesian statistical approach to test for an effect of CRPS on MI subjective abilities 36–38. This approach determines the degree of evidence to reject the hypothesis. A Bayes factor between 5 and 10 is considered moderate evidence 37. JASP version 0.16.4© and R Studio 2023.03.1© software was used to perform statistical analyses. Because of a skewed distribution, a non-parametric approach was performed. Quantitative variables were expressed as median and IQR (Inter Quartile Range), and compared between groups (CRPS vs CLP vs healthy) using a Kruskal-Wallis test. We performed a chi-square test to compare homogeneity for categorical data. A nonparametric signed rank test was used for the within-group comparison. Statistical analyses were performed at the conventional two-tailed α level of 0.05. ## RESULTS A total of 129 participants were screened for inclusion, and 123 patients were retained after exclusion and age matching (40 patients in the CRPS and CLP group and 43 patients in the Healthy group); the CRPS group comprised 31 women (78%), and the CLP group 23 women (58%) compared to 28 women (70%) for the Healthy group (Table 1). View this table: [Table 1:](http://medrxiv.org/content/early/2023/09/06/2023.04.02.23288051/T1) Table 1: Participant characteristics. Data are presented as medians for continuous variables and numbers and percentage for categorical variables in each group ### Primary objective results There were no statistical differences between the three groups for the MIQ-RS total score (Figure 1) (95%CI p>0.05), the KMI score (95%CI p>0.05), or the VMI score (95%CI p>0.05) (Table 2). View this table: [Table 2:](http://medrxiv.org/content/early/2023/09/06/2023.04.02.23288051/T2) Table 2: MIQ-RS scores of the different groups. Data are presented as medians and Inter Quartile Range (IQR) ![Figure 1:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2023/09/06/2023.04.02.23288051/F1.medium.gif) [Figure 1:](http://medrxiv.org/content/early/2023/09/06/2023.04.02.23288051/F1) Figure 1: Boxplot of the MIQ-RS score between the CRPS, CLP and Healthy Group ### Secondary objective #### CRPS Group There was no statistical difference between the painful side and the healthy side for the MIQ-RS total (95%CI p>0.05), KMI score (95%CI p>0.05) and VMI score (95%CI p>0.05). Results are summarized in Table 3. View this table: [Table 3:](http://medrxiv.org/content/early/2023/09/06/2023.04.02.23288051/T3) Table 3: MIQ-RS scores of the painful and healthy side for patients with CRPS. Data are presented as medians and Inter Quartile Range (IQR). #### Chronic Limb Pain Group There was also no statistical difference between the painful side and the healthy side for the MIQ-RS total, KMI and VMI score (Table 4) in the CLP group. View this table: [Table 4:](http://medrxiv.org/content/early/2023/09/06/2023.04.02.23288051/T4) Table 4: MIQ-RS scores between the painful and healthy side for patients with Chronic Limb Pain (CLP). Data are presented as medians and Inter Quartile Range (IQR). ![Figure 2:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2023/09/06/2023.04.02.23288051/F2.medium.gif) [Figure 2:](http://medrxiv.org/content/early/2023/09/06/2023.04.02.23288051/F2) Figure 2: Boxplot of the MIQ-RS scores between the Healthy and Painful side for the CLP and CRPS Group ### Complementary analysis To allow us to better interpret the results, we carried out a second analysis with a Bayesian statistical approach to test the presence or absence of an effect of CRPS on the subjective MI abilities36–38. This approach determine the degree of evidence to reject the hypothesis. A Bayes factor between 5 and 10 is considered moderate evidence 37. Based on this observation, we can state that the 3 groups have the same subjective MI abilities for the KMI score (BF01 = 7.28), but post hoc analysis shows that the CRPS Group (BF01 = 3.32) and the CLP (BF01 = 4.14) have the same ability than the healthy group. But the CLP and the CRPS group don’t seems to have the same subjective KMI abilities. Results are summarized in table 5. View this table: [Table 5:](http://medrxiv.org/content/early/2023/09/06/2023.04.02.23288051/T5) Table 5: MIQ-RS scores between the CRPS, CLP and Healthy group. Scores are expressed as Bayesian Factor BF01 and with post Hoc analysis In term of Total and VMI score, only the CLP group seems to have the same subjective MI than the healthy group (BF01 = 4.35 for the Total score and BF01=4.24 for the VMI score). Results are summarized in table 6. View this table: [Table 6:](http://medrxiv.org/content/early/2023/09/06/2023.04.02.23288051/T6) Table 6: MIQ-RS scores between the Healthy and Painful side for the CRPS and CLP group. Scores are expressed as Bayesian Factor BF01 and with post Hoc analysis ## DISCUSSION There was no statistical difference in subjective MI abilities between the CRPS, CLP and healthy groups, and between the healthy and painful sides for the CRPS and CLP groups. A secondary analysis using the Bayesian method showed that CLP patients seemed unaffected in their subjective MI abilities (for all scores) compared with healthy individuals, and that the same seemed to apply to CRPS patients with regard to kinesthetic abilities. It appears that pain does not impact the unaffected side. The lack of difference with an inferential model and the absence of similarities with a Bayesian model for certain sub-scores lead us to take precautions in conclusion. These results could be due to a lack of power. Our results could be explained by certain limitations of our study, such as the non-random order in which the questionnaire was completed, furthermore there is a lack of homogeneity in the level of physical activity, the level of diploma could and pain duration bias our results, indeed some authors shows that these factors modifies motor imagery abilities 34. However, patients were all inactive (physical activity level less than 2h30 per week) and the pain groups were all chronic (pain duration greater than 3 months). Education level appears to be a predictor of pain chronicisation 39, and despite lower levels of education in the pain groups, there is no differences in motor imagery abilities, this could mitigate the recruitment bias of our study. The STROBE checklist 40 shows a very low level of bias. Thus, the selection criteria were very strict and may have rendered the population unrepresentative of that commonly encountered in rehabilitation, particularly for education and physical activity level 4,41. The MIQ-RS is a commonly used questionnaire 42, and appears to be a reliable and valid tool 32,34. However, in our study, the questionnaire were available on an online platform version and the median duration was shorter (14 minutes) than in the literature (20 minutes)32, the difference possibly being explained by the greater speed of use of an online form 42. Our results are not consistent with previous studies on the impact of chronic pain condition on motor imagery abilities 7,43. A previous study using the Revised Movement Imagery Questionnaire (MIQ-R) showed impaired KMI and VMI abilities for CLBP patients 21. CLBP patients showed high levels of kinesiophobia, pain catastrophizing and low levels of coping compared with healthy participants. Psychological factors were not assessed in our study and could explain this difference. Pain catastrophizing have impacts motor activity in the cortex 44,45. Furthermore studies show that CRPS patients are weaker than healthy subjects in the lateral judgment task 27 and our results show no difference in questionnaire duration between groups. Chronic pain could affect cortical function and structure in different ways as suggested by the non-similarities of the MIQ-RS scores between CRPS and CLP patients. MIQ-RS is a questionnaire assessing a subjective dimension of the MI ability, however, the KMI subscore appear to correlate well with motor cortex activation in stroke patients 46–48. A previous study showed that motor cortex excitability during MI in patients with CRPS does not appear to differ from that of healthy persons 49. Furthermore, neuroimaging techniques investigating central nervous system dysfunction in CRPS patients are inconclusive or show bilateral disinhibition of the primary motor cortex 50. These studies seem to be more consistent with our findings. It may be that motor imagery assessed by a questionnaire is one of the more complex dimensions of motor behaviors in humans or a component of the body schema 51, as suggested by altered body perception in CRPS patients 13,14. Despite all, MI training appears to be an effective treatment for improving neuronal excitability or synapse conductance in healthy and pathological individuals 52 and KMI has the same cortical correlate in relation to movement execution 53. Recommended rehabilitation programs support the use of MI training alone or in combination with other modalities such as GMI (Graded Motor Imagery) 23,54–56. MI training appears to activate brain areas involved in movement preparation 15,19,52,57. It is plausible that MI helps patients with CRPS by activating other gray matter pathways 12,58,59, or improving body schema deficits 14,60–63. MI training appears to be an effective treatment, but not to improve a MI deficit 25. In futures studies, it might be interesting to correlate subjective MI abilities with medical imaging, such as electroencephalograms, to measure motor cortex activity and connectivity during the MI task, as has been done previously with healthy individuals. 48 or in a longitudinal way in patients with CRPS during rehabilitation ## Data Availability All data produced in the present work are contained in the manuscript ## ACKNOWLEDGMENTS We thank the following people for their support and assistance: Marine Ourmet, Brigitte Laffont for regulatory documents, Willy Fagart, Dr Anaïs Pages, Julie Bourdier, Romain Dolin, Shuan Banh, Kevin Jezequel and Sarah Kabani for editing the manuscript. The authors declare no conflicts of interest. The study data are available upon reasonable request to the corresponding author. ## Footnotes * **AUTHORS CONTRIBUTION** **Cohen-Aknine, Gabriel**: Conceptualization, Methodology, Formal Analysis, Investigation, Writing-Original Draft **Homs, Alexis:** Resources, Writing-Review & Editing, Visualization **Mottet, Denis:** Methodology, Validation, Data Curation, Writing-Review & Editing, Visualization, Supervision, **Mura, Thibault:** Methodology, Writing-Review & Editing **Jedryka, François:** Investigation, Resources, Writing-Review & Editing **Dupeyron, Arnaud:** Validation, Resources, Writing-Review & Editing, Visualization, Project Administration * spelling error in title * Received April 2, 2023. * Revision received September 5, 2023. * Accepted September 6, 2023. * © 2023, Posted by Cold Spring Harbor Laboratory This pre-print is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), CC BY-NC 4.0, as described at [http://creativecommons.org/licenses/by-nc/4.0/](http://creativecommons.org/licenses/by-nc/4.0/) ## References 1. 1.Marinus J, Moseley GL, Birklein F, et al. Clinical features and pathophysiology of complex regional pain syndrome. The Lancet Neurology. 2011;10(7):637–648. doi:10.1016/S1474-4422(11)70106-5 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S1474-4422(11)70106-5&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21683929&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F06%2F2023.04.02.23288051.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000292487400010&link_type=ISI) 2. 2.Birklein F, Ajit SK, Goebel A, Perez RSGM, Sommer C. Complex regional pain syndrome — phenotypic characteristics and potential biomarkers. Nat Rev Neurol. 2018;14(5):272–284. doi:10.1038/nrneurol.2018.20 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/nrneurol.2018.20&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F06%2F2023.04.02.23288051.atom) 3. 3.Elsamadicy AA, Yang S, Sergesketter AR, et al. Prevalence and Cost Analysis of Complex Regional Pain Syndrome (CRPS): A Role for Neuromodulation: PREVALENCE AND COST OF CRPS. Neuromodulation: Technology at the Neural Interface. 2018;21(5):423–430. doi:10.1111/ner.12691 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/ner.12691&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28961359&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F06%2F2023.04.02.23288051.atom) 4. 4.Kim H, Lee CH, Kim SH, Kim YD. Epidemiology of complex regional pain syndrome in Korea: An electronic population health data study. PLoS One. 2018;13(6):e0198147. doi:10.1371/journal.pone.0198147 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0198147&link_type=DOI) 5. 5.Bank P j. m., Peper C e., Marinus J, van Hilten J j., Beek P j. Intended and unintended (sensory-)motor coupling between the affected and unaffected upper limb in complex regional pain syndrome. European Journal of Pain. 2015;19(7):1021–1034. doi:10.1002/ejp.668 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/ejp.668&link_type=DOI) 6. 6.Bank PJM, Peper C (Lieke) E, Marinus J, Beek PJ, van Hilten JJ. Deficient muscle activation in patients with Complex Regional Pain Syndrome and abnormal hand postures: An electromyographic evaluation. Clinical Neurophysiology. 2013;124(10):2025–2035. doi:10.1016/j.clinph.2013.03.029 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.clinph.2013.03.029&link_type=DOI) 7. 7.Chang WJ, O’Connell NE, Beckenkamp PR, Alhassani G, Liston MB, Schabrun SM. Altered Primary Motor Cortex Structure, Organization, and Function in Chronic Pain: A Systematic Review and Meta-Analysis. The Journal of Pain. 2018;19(4):341–359. doi:10.1016/j.jpain.2017.10.007 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jpain.2017.10.007&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F06%2F2023.04.02.23288051.atom) 8. 8.Di Pietro F, McAuley JH, Parkitny L, et al. Primary motor cortex function in complex regional pain syndrome: a systematic review and meta-analysis. J Pain. 2013;14(11):1270–1288. doi:10.1016/j.jpain.2013.07.004 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jpain.2013.07.004&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24035350&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F06%2F2023.04.02.23288051.atom) 9. 9.Lenz M, Höffken O, Stude P, et al. Bilateral somatosensory cortex disinhibition in complex regional pain syndrome type I. Neurology. 2011;77(11):1096–1101. doi:10.1212/WNL.0b013e31822e1436 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1212/WNL.0b013e31822e1436&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21880999&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F06%2F2023.04.02.23288051.atom) 10. 10.Nardone R, Brigo F, Höller Y, et al. Transcranial magnetic stimulation studies in complex regional pain syndrome type I: A review. Acta Neurologica Scandinavica. 2018;137(2):158–164. doi:10.1111/ane.12852 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/ane.12852&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F06%2F2023.04.02.23288051.atom) 11. 11.Cramer SC, Sur M, Dobkin BH, et al. Harnessing neuroplasticity for clinical applications. Brain. 2011;134(6):1591–1609. doi:10.1093/brain/awr039 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/brain/awr039&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21482550&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F06%2F2023.04.02.23288051.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000291063900004&link_type=ISI) 12. 12.Shokouhi M, Clarke C, Morley-Forster P, Moulin DE, Davis KD, St Lawrence K. Structural and Functional Brain Changes at Early and Late Stages of Complex Regional Pain Syndrome. J Pain. 2018;19(2):146–157. doi:10.1016/j.jpain.2017.09.007 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jpain.2017.09.007&link_type=DOI) 13. 13.Punt DT, Cooper L, Hey M, Johnson MI. Neglect-like symptoms in complex regional pain syndrome: learned nonuse by another name? Pain. 2013;154(2):200–203. doi:10.1016/j.pain.2012.11.006 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.pain.2012.11.006&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23290549&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F06%2F2023.04.02.23288051.atom) 14. 14.Halicka M, Vittersø AD, Proulx MJ, Bultitude JH. Neuropsychological Changes in Complex Regional Pain Syndrome (CRPS). Behavioural Neurology. 2020;2020:e4561831. doi:10.1155/2020/4561831 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1155/2020/4561831&link_type=DOI) 15. 15.Gieteling EW, van Rijn MA, de Jong BM, et al. Cerebral activation during motor imagery in complex regional pain syndrome type 1 with dystonia. PAIN. 2008;134(3):302–309. doi:10.1016/j.pain.2007.04.029 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.pain.2007.04.029&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17561345&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F06%2F2023.04.02.23288051.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000253041100009&link_type=ISI) 16. 16.Schwenkreis P, Maier C, Tegenthoff M. Functional imaging of central nervous system involvement in complex regional pain syndrome. AJNR Am J Neuroradiol. 2009;30(7):1279–1284. doi:10.3174/ajnr.A1630 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiYWpuciI7czo1OiJyZXNpZCI7czo5OiIzMC83LzEyNzkiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMy8wOS8wNi8yMDIzLjA0LjAyLjIzMjg4MDUxLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 17. 17.Decety J. Do imagined and executed actions share the same neural substrate? Cognitive Brain Research. 1996;3(2):87–93. doi:10.1016/0926-6410(95)00033-X [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/0926-6410(95)00033-X&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=8713549&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F06%2F2023.04.02.23288051.atom) 18. 18.D’Ostilio K, Garraux G. Brain mechanisms underlying automatic and unconscious control of motor action. Front Hum Neurosci. 2012;6. doi:10.3389/fnhum.2012.00265 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fnhum.2012.00265&link_type=DOI) 19. 19.Guillot A, Collet C. Contribution from neurophysiological and psychological methods to the study of motor imagery. Brain Res Brain Res Rev. 2005;50(2):387–397. doi:10.1016/j.brainresrev.2005.09.004 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.brainresrev.2005.09.004&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16271398&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F06%2F2023.04.02.23288051.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000234058300012&link_type=ISI) 20. 20.Pearson J. The human imagination: the cognitive neuroscience of visual mental imagery. Nat Rev Neurosci. 2019;20(10):624–634. doi:10.1038/s41583-019-0202-9 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41583-019-0202-9&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31384033&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F06%2F2023.04.02.23288051.atom) 21. 21.La Touche R, Grande-Alonso M, Cuenca-Martínez F, Gónzález-Ferrero L, Suso-Martí L, Paris-Alemany A. Diminished Kinesthetic and Visual Motor Imagery Ability in Adults With Chronic Low Back Pain. PM&R. 2019;11(3):227–235. doi:10.1016/j.pmrj.2018.05.025 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.pmrj.2018.05.025&link_type=DOI) 22. 22.Harden RN, McCabe CS, Goebel A, et al. Complex Regional Pain Syndrome: Practical Diagnostic and Treatment Guidelines, 5th Edition. Pain Medicine. 2022;23(Supplement_1):S1–S53. doi:10.1093/pm/pnac046 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/pm/pnac046&link_type=DOI) 23. 23.Duong S, Bravo D, Todd KJ, Finlayson RJ, Tran DQ. Treatment of complex regional pain syndrome: an updated systematic review and narrative synthesis. Can J Anaesth. 2018;65(6):658–684. doi:10.1007/s12630-018-1091-5 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12630-018-1091-5&link_type=DOI) 24. 24.Méndez-Rebolledo G, Gatica-Rojas V, Torres-Cueco R, Albornoz-Verdugo M, Guzmán-Muñoz E. Update on the effects of graded motor imagery and mirror therapy on complex regional pain syndrome type 1: A systematic review. J Back Musculoskelet Rehabil. 2017;30(3):441–449. doi:10.3233/BMR-150500 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3233/BMR-150500&link_type=DOI) 25. 25.Cuenca-Martínez F, Reina-Varona Á, Castillo-García J, La Touche R, Angulo-Díaz-Parreño S, Suso-Martí L. Pain relief by movement representation strategies: An umbrella and mapping review with meta-meta-analysis of motor imagery, action observation and mirror therapy. Eur J Pain. 2022;26(2):284–309. doi:10.1002/ejp.1870 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/ejp.1870&link_type=DOI) 26. 26.Coslett HB, Medina J, Kliot D, Burkey A. Mental motor imagery and chronic pain: the foot laterality task. J Int Neuropsychol Soc. 2010;16(4):603–612. doi:10.1017/S1355617710000299 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1017/S1355617710000299&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20380787&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F06%2F2023.04.02.23288051.atom) 27. 27.Ravat S, Olivier B, Gillion N, Lewis F. Laterality judgment performance between people with chronic pain and pain-free individuals. A systematic review and meta-analysis. Physiother Theory Pract. 2020;36(12):1279–1299. doi:10.1080/09593985.2019.1570575 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1080/09593985.2019.1570575&link_type=DOI) 28. 28.Ravat S, Olivier B, Gillion N, Lewis F. Laterality judgment performance between people with chronic pain and pain-free individuals. A systematic review and meta-analysis. Physiotherapy Theory and Practice. 2020;36(12):1279–1299. doi:10.1080/09593985.2019.1570575 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1080/09593985.2019.1570575&link_type=DOI) 29. 29.Mesaroli G, Hundert A, Birnie KA, Campbell F, Stinson J. Screening and diagnostic tools for complex regional pain syndrome: a systematic review. PAIN. 2021;162(5):1295–1304. doi:10.1097/j.pain.0000000000002146 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/j.pain.0000000000002146&link_type=DOI) 30. 30.Harden RN, Bruehl S, Perez RSGM, et al. Validation of proposed diagnostic criteria (the “Budapest Criteria”) for Complex Regional Pain Syndrome. Pain. 2010;150(2):268–274. doi:10.1016/j.pain.2010.04.030 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.pain.2010.04.030&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20493633&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F06%2F2023.04.02.23288051.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000280611000014&link_type=ISI) 31. 31.Floridou GA, Peerdeman KJ, Schaefer RS. Individual differences in mental imagery in different modalities and levels of intentionality. Mem Cognit. 2022;50(1):29–44. doi:10.3758/s13421-021-01209-7 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3758/s13421-021-01209-7&link_type=DOI) 32. 32.Gregg M, Hall C, Butler A. The MIQ-RS: A Suitable Option for Examining Movement Imagery Ability. Evidence-Based Complementary and Alternative Medicine. 2010;7(2):249–257. doi:10.1093/ecam/nem170 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/ecam/nem170&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18955294&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F06%2F2023.04.02.23288051.atom) 33. 33.Butler AJ, Cazeaux J, Fidler A, et al. The Movement Imagery Questionnaire-Revised, Second Edition (MIQ-RS) Is a Reliable and Valid Tool for Evaluating Motor Imagery in Stroke Populations. Evidence-Based Complementary and Alternative Medicine. 2012;2012:1–11. doi:10.1155/2012/497289 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1155/2012/497289&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22474504&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F06%2F2023.04.02.23288051.atom) 34. 34.Loison B, Moussaddaq AS, Cormier J, et al. Translation and validation of the French Movement Imagery Questionnaire – Revised Second version (MIQ-RS). Annals of Physical and Rehabilitation Medicine. 2013;56(3):157–173. doi:10.1016/j.rehab.2013.01.001 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.rehab.2013.01.001&link_type=DOI) 35. 35.Santos-Couto-Paz CC, Teixeira-Salmela LF, Tierra-Criollo CJ. The addition of functional task-oriented mental practice to conventional physical therapy improves motor skills in daily functions after stroke. Braz J Phys Ther. 2013;17(6):564–571. doi:10.1590/S1413-35552012005000123 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1590/S1413-35552012005000123&link_type=DOI) 36. 36.van Doorn J, van den Bergh D, Böhm U, et al. The JASP guidelines for conducting and reporting a Bayesian analysis. Psychon Bull Rev. 2021;28(3):813–826. doi:10.3758/s13423-020-01798-5 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3758/s13423-020-01798-5&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33037582&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F06%2F2023.04.02.23288051.atom) 37. 37.Kruschke JK. Bayesian Analysis Reporting Guidelines. Nat Hum Behav. 2021;5(10):1282–1291. doi:10.1038/s41562-021-01177-7 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41562-021-01177-7&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=34400814&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F06%2F2023.04.02.23288051.atom) 38. 38.Quintana DS, Williams DR. Bayesian alternatives for common null-hypothesis significance tests in psychiatry: a non-technical guide using JASP. BMC Psychiatry. 2018;18(1):178. doi:10.1186/s12888-018-1761-4 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12888-018-1761-4&link_type=DOI) 39. 39.Prego-Domínguez J, Khazaeipour Z, Mallah N, Takkouche B. Socioeconomic status and occurrence of chronic pain: a meta-analysis. Rheumatology. 2021;60(3):1091–1105. doi:10.1093/rheumatology/keaa758 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/rheumatology/keaa758&link_type=DOI) 40. 40.von Elm E, Altman DG, Egger M, et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. BMJ. 2007;335(7624):806–808. doi:10.1136/bmj.39335.541782.AD [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjEyOiIzMzUvNzYyNC84MDYiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMy8wOS8wNi8yMDIzLjA0LjAyLjIzMjg4MDUxLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 41. 41.Beerthuizen A, Stronks DL, Van’t Spijker A, et al. Demographic and medical parameters in the development of complex regional pain syndrome type 1 (CRPS1): prospective study on 596 patients with a fracture. Pain. 2012;153(6):1187–1192. doi:10.1016/j.pain.2012.01.026 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.pain.2012.01.026&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22386473&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F06%2F2023.04.02.23288051.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000304249100013&link_type=ISI) 42. 42.Suica Z, Behrendt F, Gäumann S, et al. Imagery ability assessments: a cross-disciplinary systematic review and quality evaluation of psychometric properties. BMC Medicine. 2022;20(1):166. doi:10.1186/s12916-022-02295-3 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12916-022-02295-3&link_type=DOI) 43. 43.Kregel J, Coppieters I, DePauw R, et al. Does Conservative Treatment Change the Brain in Patients with Chronic Musculoskeletal Pain? A Systematic Review. Pain Physician. 2017;20(3):139–154. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F06%2F2023.04.02.23288051.atom) 44. 44.Henderson LA, Akhter R, Youssef AM, et al. The effects of catastrophizing on central motor activity. Eur J Pain. 2016;20(4):639–651. doi:10.1002/ejp.781 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/ejp.781&link_type=DOI) 45. 45.Seminowicz DA, Davis KD. Cortical responses to pain in healthy individuals depends on pain catastrophizing. Pain. 2006;120(3):297–306. doi:10.1016/j.pain.2005.11.008 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.pain.2005.11.008&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16427738&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F06%2F2023.04.02.23288051.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000235630700008&link_type=ISI) 46. 46.Confalonieri L, Pagnoni G, Barsalou LW, Rajendra J, Eickhoff SB, Butler AJ. Brain Activation in Primary Motor and Somatosensory Cortices during Motor Imagery Correlates with Motor Imagery Ability in Stroke Patients. ISRN Neurol. 2012;2012:613595. doi:10.5402/2012/613595 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.5402/2012/613595&link_type=DOI) 47. 47.Vuckovic A, Osuagwu BA. Using a motor imagery questionnaire to estimate the performance of a Brain-Computer Interface based on object oriented motor imagery. Clin Neurophysiol. 2013;124(8):1586–1595. doi:10.1016/j.clinph.2013.02.016 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.clinph.2013.02.016&link_type=DOI) 48. 48.Toriyama H, Ushiba J, Ushiyama J. Subjective Vividness of Kinesthetic Motor Imagery Is Associated With the Similarity in Magnitude of Sensorimotor Event-Related Desynchronization Between Motor Execution and Motor Imagery. Frontiers in Human Neuroscience. 2018;12. Accessed April 22, 2022. [https://www.frontiersin.org/article/10.3389/fnhum.2018.00295](https://www.frontiersin.org/article/10.3389/fnhum.2018.00295) 49. 49.van Velzen GAJ, Marinus J, van Dijk JG, van Zwet EW, Schipper IB, van Hilten JJ. Motor Cortical Activity During Motor Tasks Is Normal in Patients With Complex Regional Pain Syndrome. The Journal of Pain. 2015;16(1):87–94. doi:10.1016/j.jpain.2014.10.010 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jpain.2014.10.010&link_type=DOI) 50. 50.Di Pietro F, McAuley JH, Parkitny L, et al. Primary motor cortex function in complex regional pain syndrome: a systematic review and meta-analysis. J Pain. 2013;14(11):1270–1288. doi:10.1016/j.jpain.2013.07.004 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jpain.2013.07.004&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24035350&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F06%2F2023.04.02.23288051.atom) 51. 51.Mohan V, Bhat A, Morasso P. Muscleless motor synergies and actions without movements: From motor neuroscience to cognitive robotics. Phys Life Rev. 2019;30:89–111. doi:10.1016/j.plrev.2018.04.005 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.plrev.2018.04.005&link_type=DOI) 52. 52.Ruffino C, Papaxanthis C, Lebon F. Neural plasticity during motor learning with motor imagery practice: Review and perspectives. Neuroscience. 2017;341:61–78. doi:10.1016/j.neuroscience.2016.11.023 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.neuroscience.2016.11.023&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27890831&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F06%2F2023.04.02.23288051.atom) 53. 53.Yang YJ, Jeon EJ, Kim JS, Chung CK. Characterization of kinesthetic motor imagery compared with visual motor imageries. Sci Rep. 2021;11(1):3751. doi:10.1038/s41598-021-82241-0 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41598-021-82241-0&link_type=DOI) 54. 54.Moseley LG. Graded motor imagery is effective for long-standing complex regional pain syndrome: a randomised controlled trial: Pain. 2004;108(1):192–198. doi:10.1016/j.pain.2004.01.006 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.pain.2004.01.006&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15109523&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F06%2F2023.04.02.23288051.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000220312400024&link_type=ISI) 55. 55.Bowering KJ, O’Connell NE, Tabor A, et al. The Effects of Graded Motor Imagery and Its Components on Chronic Pain: A Systematic Review and Meta-Analysis. The Journal of Pain. 2013;14(1):3–13. doi:10.1016/j.jpain.2012.09.007 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jpain.2012.09.007&link_type=DOI) 56. 56.Harden RN, McCabe CS, Goebel A, et al. Complex Regional Pain Syndrome: Practical Diagnostic and Treatment Guidelines, 5th Edition. Pain Medicine. 2022;23(Supplement_1):S1–S53. doi:10.1093/pm/pnac046 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/pm/pnac046&link_type=DOI) 57. 57.McFarland D, Miner L, Vaughan T, et al. Mu and beta rhythm topographies during motor imagery and actual movements. Brain topography. 2000;12:177–186. doi:10.1023/A:1023437823106 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1023/A:1023437823106&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=10791681&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F06%2F2023.04.02.23288051.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000086677100002&link_type=ISI) 58. 58.Domin M, Strauss S, McAuley JH, Lotze M. Complex Regional Pain Syndrome: Thalamic GMV Atrophy and Associations of Lower GMV With Clinical and Sensorimotor Performance Data. Frontiers in Neurology. 2021;12. Accessed December 16, 2022. [https://www.frontiersin.org/articles/10.3389/fneur.2021.722334](https://www.frontiersin.org/articles/10.3389/fneur.2021.722334) 59. 59.Azqueta-Gavaldon M, Schulte-Göcking H, Storz C, et al. Basal ganglia dysfunction in complex regional pain syndrome - A valid hypothesis? Eur J Pain. 2017;21(3):415–424. doi:10.1002/ejp.975 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/ejp.975&link_type=DOI) 60. 60.Punt DT, Cooper L, Hey M, Johnson MI. Neglect-like symptoms in complex regional pain syndrome: Learned nonuse by another name? PAIN. 2013;154(2):200. doi:10.1016/j.pain.2012.11.006 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.pain.2012.11.006&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23290549&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F06%2F2023.04.02.23288051.atom) 61. 61.Brun C, Giorgi N, Pinard AM, Gagné M, McCabe CS, Mercier C. Exploring the Relationships Between Altered Body Perception, Limb Position Sense, and Limb Movement Sense in Complex Regional Pain Syndrome. The Journal of Pain. 2019;20(1):17–27. doi:10.1016/j.jpain.2018.07.008 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jpain.2018.07.008&link_type=DOI) 62. 62.Kuttikat A, Noreika V, Shenker N, Chennu S, Bekinschtein T, Brown CA. Neurocognitive and Neuroplastic Mechanisms of Novel Clinical Signs in CRPS. Front Hum Neurosci. 2016;10:16. doi:10.3389/fnhum.2016.00016 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fnhum.2016.00016&link_type=DOI) 63. 63.Swart CMAK, Stins JF, Beek PJ. Cortical changes in complex regional pain syndrome (CRPS). Eur J Pain. 2009;13(9):902–907. doi:10.1016/j.ejpain.2008.11.010 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.ejpain.2008.11.010&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19101181&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2023%2F09%2F06%2F2023.04.02.23288051.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000272471800002&link_type=ISI)