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 ABBREVIATIONS  

 
AKI, Acute Kidney Injury 

CKD, Chronic Kidney Disease 

DAO, Donor Age-Only 

DBD, Donation after Brain Death 

DCD, Donation after Circulatory Death 

eGFR, Estimated Glomerular Filtration Rate 

eGFR12, Estimated Glomerular Filtration Rate of recipient at 12 months posttransplant 

ESKD, End-Stage Kidney Disease 

LASSO, Least Absolute Shrinkage and Selection Operator; a regularized regression 

technique 

PRE, Prediction Rule Ensemble 

RMSE, Root Mean Squared Error 

scRNA-seq, Single-cell Transcriptomics 

QUOD, Quality in Organ Donation (biobank) 
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ABSTRACT (250) 

Background. Organ availability limits kidney transplantation, the best treatment 

for end-stage kidney disease. Globally, deceased donor acceptance criteria have been 

relaxed to include older donors, which comes with a higher risk of inferior posttransplant 

outcomes. Donor age, although negatively impacts transplant outcomes, lacks 

granularity in predicting graft dysfunction. Better donor kidney assessment and 

characterization of the biological mechanisms underlying age-associated donor organ 

damage and transplant outcomes is key to improving donor kidney utilisation and 

transplant longevity. 

Methods. 185 deceased pretransplant biopsies (from brain and circulatory death 

donors aged 18-78 years) were obtained from the Quality in Organ Donation (QUOD) 

biobank and proteomic profiles were acquired by mass spectrometry. Machine learning 

exploration using prediction rule ensembles guided LASSO regression modeling of 

kidney proteomes that identified protein signatures and biological mechanisms 

associated with 12-m posttransplant outcome. Data modeling was validated on held-out 

data and contextualised against published spatially resolved kidney injury related 

transcriptomes. 

Results. Our analysis highlighted that outcomes were best modeled using 

combination of donor age and protein abundance signatures, revealing 539 proteins 

with these characteristics.  Modeled age:protein interactions demonstrated stronger 

associations with transplant outcomes than age and protein alone and revealed 

mechanisms of kidney injury including metabolic changes and innate immune 
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responses correlated with poor outcome. Comparison to single-cell transcriptome data 

suggests protein-outcome associations to specific cell types. 

Conclusions. Molecular signatures resulted from integration of donor age and 

proteomic profiles in deceased donor kidney biopsies offer the potential to develop 

improved pretransplant organ assessment and aid decisions on perfusion interventions.  

 

INTRODUCTION 

Kidney transplantation is the optimal treatment for end-stage kidney disease 

(ESKD). Compared to dialysis, transplantation increases life-expectancy, improves 

quality of life and is cost-effective. Limited availability of suitable donor kidneys impedes 

treatment, and often prolongs dialysis, increasing morbidity and mortality. Deceased 

donor organ shortages, living donation decline in some countries, and ageing 

populations drive increased utilization of older deceased donor kidneys, now comprising 

more than half of offered organs 1,2 . 

Ageing correlates with decline of organ function, evidenced in kidneys by 

nephron loss and histological lesions, such as tubular atrophy, interstitial fibrosis, 

glomerulosclerosis, and arteriosclerosis. Increasing age links with declining function as 

kidneys have fewer functioning glomeruli, reduced renal mass, podocyte dysfunction, 

and impaired cellular repair 3. Glomerular diseases are also more common and 

associated with worse disease outcomes in older patients 4. 

Age correlates with increased prevalence of Chronic Kidney Disease (CKD) and 

accelerated transition to chronic disease from Acute Kidney Injury (AKI) 5. In organ 
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donation and transplantation, older donors are more likely to have suffered from 

additional comorbidities such as diabetes, hypertension or cardiovascular disease, and 

organs from these ‘higher risk’ donors have higher rates of graft dysfunction or loss 6. 

As donor age is a major factor in determining transplant outcomes, is incorporated in 

clinical scoring algorithms to guide kidney allocation decisions 7,8. Current front-line 

indices that also include clinical factors such as terminal serum creatinine, history of 

hypertension and diabetes 8,9 show consistent performance across demographics but 

lack granular accuracy for donor kidney quality assessment 10, resulting in increased 

organ decline of potentially viable organs and uncertainty about transplant longevity 11. 

Molecular analyses of biopsies from donor kidneys offer higher resolution 

assessment of organ state, but robust associations with transplant outcomes are yet to 

be established. Deceased donors are frequently assessed as having sustained kidney 

injury (i.e. AKI) based on serum creatinine levels 12, however this metric alone is a poor 

indicator of long term outcomes 12–15. Transcriptomic and proteomic studies of donor 

kidney biopsies provide molecular granularity, highlighting the role of metabolic changes 

and inflammatory response pathways 16,17, but limited availability of well curated and 

annotated clinical samples restricts investigations 18. Integration of molecular 

phenotypes using machine learning approaches from analysis of donor kidneys with 

clinical and demographic factors may enable prognostic judgements about kidney 

donation, taking the next steps towards precision medicine 19.  

Age-associated changes to the donor kidney transcriptome and proteome modify 

the organ capacity to recover from ischemia-reperfusion injury and may influence 

suboptimal outcomes in graft function 17. However, there is limited data on whether 
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ageing changes how proteomic profiles in donor kidneys associate with transplant 

outcome. Our study seeks to disentangle the effects of ageing on kidney proteome 

alterations and define associations with transplant outcome while in parallel provides 

key insights to the key biological processes that may implicated in outcome-relevant 

changes. Overall our investigation has the potential to lead to development of improved 

donor kidney assessment and novel intervention targets for organ reconditioning. 
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METHODS 

Study Design 

Deceased donor pretransplant biopsies (n=186; 1 sample excluded during data 

processing) were obtained from the Quality in Organ Donation (QUOD) biobank, a 

national multi-center UK wide bioresource of deceased donor clinical samples acquired 

during donor management and organ procurement. Pretransplant biopsies were 

obtained from Donation after Brain Death (DBD) donors and Donation after Circulatory 

Death (DCD) donors during back table preparation. 

Kidneys were selected to cover the outcome continuum i.e. the range of 

estimated Glomerular Filtration Rate (eGFR) in the recipient at 12 months 

posttransplant (henceforth, ‘eGFR12’), from primary non-function to eGFR12>80 

ml/min/1.73 m2 from donors aged 18 to 78 years. To minimize the impact of recipient 

factors, we only included kidneys for which the contralateral kidney was transplanted 

with similar outcome, both kidneys having eGFR12< 30 ml/min/1.73 m2, between 30 

and 60 ml/min/1.73 m2, or > 60 ml/min/1.73 m2). Samples were linked to corresponding 

donor and recipient demographic and clinical metadata, provided by NHS Blood and 

Transplant National Registry. 

Study Approval and Ethics statement 

Informed consent from donor families was obtained prior to sample procurement 

consistent with the Declaration of Helsinki. Collection of QUOD samples and research 

ethics approval was provided by QUOD (NW/18/0187). The clinical and research 
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activities being reported are consistent with the Principles of the Declaration of Istanbul 

as outlined in the 'Declaration of Istanbul on Organ Trafficking and Transplant Tourism’. 

Sample Analysis and Statistical Analyses 

Please see Supplementary Methods. 
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RESULTS  

Associations of Clinical Variables with Transplant Outcome are Dominated by 

Donor Age 

The selected cohorts were representative of the deceased donor population 

when demographic and clinical characteristics were considered (Table 1). All 51 donor 

variables used in our modeling are listed in Supplementary Table ST1. eGFR12 was 

strongly inversely correlated with donor age (R2=0.2107; p=5.0×10-11; Supplementary 

Table ST1). UK Kidney Donor Risk Index (R2 =0.2042; p=2.5×10-9; Supplementary 

Table ST1) explained less variance in eGFR12 than donor age alone, despite 

representing a synthesized risk prediction of poor outcomes from UK deceased donors. 

Regression Modeling of Donor Kidney Proteomes and Clinical Metadata Identifies 

Outcome-Associated Proteins 

Proteomic analysis of biopsies from donor kidneys quantified 2984 proteins with 

50% or less missing values (out of 7790 identified protein groups in total; 

Supplementary Figures SF1A and SF2) over 185 samples and 20 interspersed sample 

pools as internal controls. Analysis of sample pools showed minimal mass 

spectrometry-related variance (squared mean pairwise Z-corrected Pearson’s r=0.94). 

To assess individual protein relationships with outcome, we adopted a 

descriptive modeling approach, using 2/3 subset (‘discovery set’; n=118) for data 

exploration and modeling, retaining a held-out 1/3 subset (‘evaluation set’; n=61) to 

check our results generalized to unseen data, selected by stratified random sampling 

across eGFR12 tertiles. 
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Six of the donor kidney biopsies analyzed were paired (3 pairs from 3 donors); 

these were analyzed separately from the discovery and evaluation sets to assess intra-

donor reproducibility. All three pairs showed high correlation of protein intensity values 

between donor pairs (Pearson’s r=0.71, 0.92 and 0.91; Supplementary Figure SF1B).  

For an unbiased assessment of key relationships between clinical variables, 

protein measurements, and outcome, we used iterative Prediction Rule Ensemble 20 

(PRE) learning on our training set to select features among the set of quantified proteins 

and donor type-independent clinical variables available pretransplant (Figure 1, inset). 

PRE modeling uses regularization to generate a minimal model (which prevents 

overfitting). To investigate the multitude of ways in which clinical factors might interact 

with protein associations with outcome we expanded the space of proteins considered 

for interaction with clinical variables by repeating this modeling 2000 times, excluding 

proteins identified in the rule ensemble at each iteration from future iterations while 

retaining all clinical variables. 

Over 2000 iterations, PRE modeling generated 3282 individual prediction rules 

(Fig 2A). Despite all clinical variables remaining in the dataset throughout iteration, rules 

were dominated by prediction functions based on donor age alone (3075/3282; 93.7%). 

Of the remaining rules, 194 (5.9%) referenced proteins and just over a third of this total 

(73) also involved donor age. These rules were predominantly decision tree and spline-

based (out of 194 rules, 106 were decision trees, 20 were linear fits and 68 were spline 

fits), indicating that protein effects on outcome are not well-modeled by simple linear 

associations with protein abundance alone. There were only 13 (0.4%) rules referencing 

clinical variables other than donor age; of these, five referenced donor type, two 
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referenced donor history of hypertension, one referenced hypotension preceding donor 

management, two referenced donor urine output in the last 24 hours, one referenced 

the time between circulatory arrest and cold perfusion, and two referenced recipient 

pretransplant dialysis length. 

Based on our observations from PRE modelling, we tested individual proteins for 

association with eGFR12 using relaxed LASSO regression with protein, donor age, and 

age:protein interaction terms 21. We normalized eGFR12 outcomes against the 

distribution of eGFR12 across UK recipients between 2016-2021 (see Supplementary 

Methods) to linearize outcomes and avoid over-fitting to the particular outcome 

distribution within our discovery data. We selected only proteins which gave models 

better than donor age alone (see Supplementary Methods). 

This approach yielded a set of 539 proteins associated with transplant outcome 

after accounting for the expected effect of donor age alone (donor age only; DAO 

model; Supplementary Table ST2), with mean root mean square error (RMSE) on our 

discovery dataset of 25.78 ml/min/1.73m2, where the upper limit (the DAO model 

RMSE) was 25.88 ml/min/1.73m2. Protein associations identified in the discovery cohort 

replicated well in our evaluation cohort. RMSE on this evaluation data was consistently 

lower (mean RMSE 22.25 ml/min/1.73m2; Figure 2B). 

Reactome pathway analysis of the 539 outcome-associated proteins (Figure 2C) 

indicated that a key mechanistic theme related to metabolism (Fig 2D), including key 

enzymes in gluconeogenesis (Enolase 1; ENO1 and Fructose-1,6-bisphosphatase 1; 

FBP1) and the pentose phosphate pathway (Transketolase; TKT), members of the citric 

acid cycle (Glutamic-oxaloacetic transaminase 2; GOT2, Malate dehydrogenase 2; 
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MDH2) and components of electron transport chain Complexes I (NADH:ubiquinone 

oxidoreductase subunits A3 and B2; NDUFA3, NDUFB2), III (Cytochrome b-c1 complex 

subunit 5; UQCRFS1) and IV (Cytochrome c oxidase subunits 5A, 5B and 7C; COX5A, 

COX5B, COX7C). A second key mechanistic theme was innate immune responses 

(Figure 2E), particularly regulation of complement, via both the classical pathway 

(Complement factor 4 and B; CF4A, CF4B) and alternative pathway (Complement 

factors B, H, I, 3, 5 8A, 8B and 8G; CFB, CFH, CFI, CF3, CF5, CF8A, CF8B, CF8G).  

Association of Proteins with Posttransplant Outcome is Modulated by Donor Age 

For all 539 proteins, their association with outcome was also modulated by donor 

age (Supplementary Table ST2). To explore the implications of each protein model 

further, we considered how the models compared to the expected outcome using a 

DAO We modeled the outcomes according to donor age for each protein at low 

abundance (10th percentile) and high abundance (90th percentile) and compared the 

results to the DAO model, ranking proteins by log2 fold change Euclidean distance to 

DAO across ages (Figure 3C,D). Of the 539 proteins that outperformed the DAO model, 

we found that low abundance was associated with better outcome than the DAO model 

(Figure 3C) while high protein abundance was associated with worse outcome than the 

DAO model (Figure 3D). Furthermore, the amount by which high protein abundance 

associated with worse outcomes generally increased from age of 50 years. 

We compared the top five proteins that diverged the most from the DAO model at 

low protein abundance (in order of decreasing divergence: Immunoglobulin heavy 

constant mu; IGHM, Cadherin 13; CDH13, Cofilin 2; CFL2, Hemoglobin subunit delta; 

HBD and COMM domain-containing protein 9; COMMD9) (Figure 3C) and the top five 
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that diverged the most from the DAO model at high protein abundance (in order of 

decreasing divergence: COMMD9, Lectin galactoside-binding-like protein; LGALSL, 

HBD, CFL2 and Glyoxalase domain-containing protein 4; GLOD4) (Figure 3D), 

revealing three overlapping proteins (CFL2, HBD and COMMD9). These three proteins 

behaved similarly when expressed in donor kidney biopsies at low and high abundance, 

and they were associated with better outcomes than the DAO model at low age, 

trending towards worse outcomes as age increased (Figure 4A,B,C). At high abundance 

the gradient with respect to age was so steep that high abundance of these proteins 

associated with slightly better than otherwise expected outcome (better than the DAO 

model) in young donors but considerably worse than otherwise expected outcome 

(worse than the DAO model) in old donors. 

In contrast, the other four most divergent proteins across low and high 

abundance (IGHM, CDH13, GLOD4, LGALSL) behaved differently in their association 

with outcome over age at low abundance, with protein abundance associating with 

better outcomes regardless of age (IGHM, CDH13; Figure 4D,E) or even slightly 

improving with age (GLOD4, LGALSL; Figure 4F,G). 

While proteins with the most exaggerated difference from the DAO model have 

the strongest mechanistic implications, our list of 539 candidates also includes proteins 

classically associated with kidney function. Of particular note was Cystatin-C (CST3), 

which showed a similar relationship with age as IGHM and CDH13, i.e. relatively 

consistent over age at low abundance but associating with increasingly worse outcomes 

as age increased at high abundance (Figure 4H). Another protein associated with 

outcomes was Apolipoprotein E (APOE), which is also strongly associated with genetic 
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age in other pathologies (particularly Alzheimer’s Disease). We observed modest 

improvement in outcomes with age at low APOE abundance, similar to GLOD4 and 

LGALSL (Figure 4I). 

Collectively, our protein modeling findings show that, in deceased donor kidneys, 

even accounting for age effects on outcome, the interpretation of how proteomic 

changes associate with transplant outcome depends on donor age. 

Comparison to Single-Cell Transcriptome Data Suggests Protein-Outcome 

Associations May Localize to Specific Cell Types 

To further characterize our 539 eGFR12-associated proteins, we sought to 

contextualize biological changes in this set of proteins as a result of organ damage. We 

evaluated our protein set against a publicly available scRNA-seq dataset obtained from 

“Normal” (living donors, healthy reference state) and “Damaged” kidneys with altered 

physiology due to assessed AKI or CKD 22. We compared the set of transcripts that 

matched our proteomic findings between healthy and injured kidney cell types. At 5% 

false discovery rate, we observed that matched transcripts showed an overall increase 

in cells from Damaged kidneys, across both kidney tissue and immune cell types 

(Figure 5, ‘All Matching Transcripts’), providing further confidence that our set of 

proteins with age modulated outcome associations represented omic changes caused 

by kidney damage. To explore these data further, we considered transcript sub-sets 

corresponding to the top 10 shortlisted Reactome pathways that were defined by our 

findings (Figure 2C). We observed that different pathways showed varying levels of 

transcript abundance increase across both kidney tissue and immune cell types (Figure 

5). For example, proximal tubule epithelial cells showed a downregulation of transcripts 
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associated with “Metabolism” and “Metabolism Of Amino Acids And Derivatives”, 

whereas other kidney tissue cell types showed upregulation of these pathways. 
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DISCUSSION  

We examined the relationship between posttransplant kidney function with 

pretransplant kidney proteomes by analyzing biopsies from 185 deceased donor 

kidneys with complete donor and recipient associated metadata. Our analyses revealed 

that ageing changes how proteomic profiles in donor kidneys associate with transplant 

outcome and that modeling kidney proteome information and donor age increases 

granularity in understanding donor kidney quality. Notably, we observed that, even 

accounting for the independent effect of donor age on outcome, interpretation of 

proteomic signals with respect to outcome is modified by donor age. 

Within our set of 539 age modulated proteins associated with outcome there are 

common themes of metabolic disruption and innate immune responses, (Figure 

2C,D,E). This finding is consistent with previous studies of transplant outcome 16,17, as 

well as transcriptomic analyses of diseased kidneys 23; our data further suggest that 

these associations are age-modulated. The set of proteins we identified showed 

increases in matching transcripts derived by comparing healthy reference (living donor) 

versus injured (AKI and CKD) kidneys 22 and differences in pathway-specific fold 

changes between kidney tissue cell types also suggest that specific cell types may drive 

particular components of our reported protein set. Future studies exploring spatial 

patterns of cell omic profile associations with organ susceptibility and resilience to injury 

insults across age have the potential to identify age-informed intervention strategies. 

Our confidence in our modeling is further strengthened by detection of known 

kidney markers. Both Cystatin-C (CST3) and Apolipoprotein E (APOE) associate with 

kidney dysfunction and transplant outcomes in recipients 24–29. Serum CST3 is 
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recognized as a marker of kidney function 30,31, including in transplantation for both 

recipients 24,25,32 and donors 33 since levels are linked to both glomerular filtration rate 

and its role as an inflammatory mediator 34–36. Our identification of an association 

between outcome and tissue CST3 further emphasizes the relevance of the 

inflammatory role. APOE genetic variants associate with kidney dysfunction risk 37–39 

and have widely characterized age-dependent genetic association with other 

pathologies such as cardiovascular disease and Alzheimer’s Disease 40.  

The proteins we highlight as showing the most difference from the DAO model 

(CFL2, COMMD9, HBD) were also consistent with the broader mechanistic theme of 

inflammation across the full list of proteins. Cofilins such as CFL2 have been shown to 

be significantly upregulated in an AKI cell model and may mediate damage via 

endoplasmic reticulum stress-mediated ferroptosis 41, linking to inflammation 42 and 

diabetic nephropathy 43. COMMD9 associates with inflammatory response via the NF-

kB pathway 44. HBD is a relatively small component of adult hemoglobin which shows 

increased expression in inflammatory conditions 45,46; previous studies have identified 

HBD as a marker for early diabetic kidney disease 47. Since HBD is a blood component, 

further investigation is required to determine whether the signal is due to inadequate 

kidney flushing variance that occurs prior to the biopsy being taken, and if so whether 

this is purely a protocol artefact or a true signal, possibly driven by kidney 

microvasculature effects that impair flushing. 

Donor complement activation as part of the innate immune response and 

inflammation is associated with both acute rejection 48–50 and inferior 12-month outcome 

51. Existing evidence and our findings particularly indicate inflammation mediated by the 
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anaphylatoxins C3A, C4B, C5A 52 , suggesting an increase in immunogenicity with 

subsequent negative impact on transplant outcomes. Preventing inflammation and 

associated damage by anti-complement interventions in the donor, or during organ 

preservation (as demonstrated successfully in mouse models 53) may therefore be a 

route to improve outcomes 54,55. 

Our other highlighted proteins are also have been linked with patterns of kidney 

injury.  GLOD4 regulates methylgloxal, accumulation of which drives renal injury in 

diabetic-drive hyperglycemia 56, LGALSL encodes a paralog of Galectin 9 , associated 

with autoimmune renal damage57, and differences in IGHM and CDH13 expression 

have previously been linked to renal damage in mouse models (acute-chronic injury 

transition 58 and ischemia-reperfusion injury 59 respectively). 

Organ allocation algorithms impose a close link between donor and recipient age 

in the sample cohort, so while we might interpret these age-moderated effects as an 

increase in organ susceptibility with donor age, it could also represent a greater ability 

to repair a given level of damage in younger recipients, although the observation that 

transplant of older organs induces ageing-like senescence in young recipients in a 

mouse model 60 implies that donor age is highly relevant to transplant outcome even in 

young recipients. Additionally, we consider only chronological donor age, rather than a 

representation of the epigenomic biological clock 61, or organ-specific ageing 62,63, both 

of which may account for some variation observed with respect to both donors and 

recipients. In contrast to donor age, a clinical variable notable by its absence from our 

association findings was donor type 64, which appeared in just 5 (0.2%) of the initial 

feature selection rules. Previous transcriptomic comparisons of DBD and DCD biopsies 
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to living donors found very similar expression profiles across donor type except in 

samples taken after reperfusion 50, suggesting that donor type specific biological stress 

may manifest post reperfusion. 

In our multicentered collected cohort, our protein models generalized well to 

samples unseen during model training (Figure 2B), reproduced known markers of 

kidney damage among many new leads and were consistent with independent kidney 

damage transcriptome data. The observed effect of donor age on modulating kidney 

proteomes contributes to our understanding of molecular mechanisms of kidney injury 

and offers new approaches in the development of improved assessment tools to stratify 

transplant risk from older donors. In particular, our findings suggest that "one size fits 

all” interventions will continue to be ineffective for many cases, until molecular signals 

interpreted in the light of donor age are given wider consideration to guide personalized 

decision-making. 

A follow up larger study would have increased power to deconvolute age and 

protein effects, especially if paired with variant sequencing to understand genetic 

diversity, and explore the potential developing protein biomarkers for donor kidney 

assessment. 
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SUPPLEMENTARY MATERIALS 

Supplementary Methods: Technical protocols for sample extraction, mass spectrometry 

deep proteome analysis of samples and statistical analysis. 

Supplementary Table ST1: Clinical variable p-values for association with donor type and 

outcome, and summary of clinical value imputation. 

Supplementary Table ST2: Summary of results for all proteins identified as associating 

with eGFR12. 

Note that coefficient values provided are for linearized eGFR12, i.e. they relate to 

eGFR12 quantiles ranging from 0 to 1. 

Supplementary Figure SF1: Summary of protein quantitation quality. A: Percentage of 

missing values across all proteins, showing the cut-off (red line) for poorly quantified 

proteins excluded from analysis. B: Correlation between quantitation values for each of 

the 3 sets of paired kidneys.  

Supplementary Figure SF2: Summary of protein quantitation imputation, showing the 

fraction of imputed values across distribution of all values. 

 

DATA AND MATERIALS AVAILABILITY 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium via the PRIDE 65 partner repository with the dataset identifier PXD033428. 
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Figure 1: Experimental design to discover donor kidney proteome associations with transplant 
outcome 
We selected biopsies from QUOD biobank taken from one kidney from each donor pair. Donor kidney 
samples were selected randomly from pairs where both recipients had similar outcomes. The biopsy 
samples were subjected to proteomic analysis to yield a snapshot of the organ proteome at kidney 
retrieval. We analyzed donor characteristics and clinical variables and protein abundances in a combined 
model against recipient eGFR at 12 months posttransplant (eGFR12; units given in ml/min/1.73 m2). 
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 DBD DCD Total 
Proportion of 

Variance 
Explained 

Association 
p-value 

n 100 85 185   
Recipient kidney function (mean 
eGFR, mL/min per 1.73 m2)  
at 12 Months Posttransplant 
(eGFR12) 

53.47  
± 28.29 

47.38  
± 25.17 

50.67  
± 27.00 - - 

Recipient kidney function (mean 
eGFR, mL/min per 1.73 m2)  
at 3 Months Posttransplant  

54.26  
± 28.94 

48.14  
± 21.20 

51.47  
± 25.81 

0.6589 6.7079×10-44 (***) 

Donor Age, y 
48.37  

± 14.98 
49.60  

± 12.81 
48.94  

± 14.00 
0.2107 5.0067×10-11 (***) 

Donor Sex 
   

0.0051 3.3568e×10-1 
   Female 50 (50.0%) 31 (36.5%) 81 (43.8%)   
   Male 50 (50.0%) 54 (63.5%) 104 (56.2%)   
Donor Ethnicity    0.008 9.1804×10-1 
   White 96 (96.0%) 83 (97.6%) 179 (96.8%)   
   Other 4 (4.0%) 2 (2.4%) 6 (3.2%)   
Donor Weight, kg 80.26  

± 17.97 
80.60  

± 15.34 
80.42  

± 16.77 
0.0017 5.7320×10-1 

Donor Height, cm 171.19  
± 9.96 

171.95  
± 8.99 

171.54  
± 9.51 

0.0229 3.9808×10-2 (*) 

Donor S-Cr terminal, umol/l 86.76  
± 54.60 

68.14  
± 28.14 

78.04  
± 45.08 

0.0055 3.3332×10-1 

Donor Cold Ischemia Time, h 14.70  
± 4.35 

13.92  
± 5.58 

14.34  
± 4.95 

0.0002 8.3482×10-1 

Donor Cause of death    0.0396 6.5924×10-3 (*) 
   Trauma 7 (7.0%) 11 (12.9%) 18 (9.7%)   
   Other 93 (93.0%) 74 (87.1%) 167 (90.3%)   
Donor UKKDRI 1.11  

± 0.47 
1.08  

± 0.45 
1.10  

± 0.46 
0.2042 2.5337e-09 (***) 

Donor Delayed Graft Function    0.025 1.3182e-01 
   Immediate 73 (73.0%) 54 (63.5%) 127 (68.6%)   
   Delayed 17 (17.0%) 18 (21.2%) 35 (18.9%)   
   Primary Non-Function 0 (0.0%) 1 (1.2%) 1 (0.5%) 

     Not Reported 10 (10.0%) 12 (14.1%) 22 (11.9%)   

Recipient Age, y 
49.25  

± 14.36 
51.80  

± 12.68 
50.42  

± 13.64 0.1117 3.3146e-06 (***) 

Recipient Sex  
  

0.0005 7.5185e-01 
   Female 46 (46.0%) 21 (24.7%) 67 (36.2%) 

     Male 54 (54.0%) 64 (75.3%) 118 (63.8%) 
  

Recipient Ethnicity  
  

0.0191 7.4663e-01 
   White 72 (72.0%) 65 (76.5%) 137 (74.1%) 

     Other 28 (28.0%) 20 (23.5%) 48 (25.9%) 
  

HLA Mismatch Groups  
  

0.03 1.3682e-01 
    0 Mismatches 16 (16.0%) 2 (2.4%) 18 (9.7%) 

      0 DR and 0/1 B 30 (30.0%) 24 (28.2%) 54 (29.2%) 
  

    0 DR and 2 B 44 (44.0%) 49 (57.6%) 93 (50.3%)   
    or 1 DR and 0/1 B 10 (10.0%) 10 (11.8%) 20 (10.8%)   
Donor/Recipient Sex Mismatch    0.0017 5.7505e-01 
    No 58 (58.0%) 26 (30.6%) 84 (45.4%)   
    Yes 42 (42.0%) 59 (69.4%) 101 (54.6%)   
 
Table 1: Donor and recipient clinical and demographic variables 
Donor kidney associated metadata. Samples are subdivided by donor type for information purposes. 
Numerical variables are given as mean ± standard deviation. Categorial variables are given as frequency 
alongside percentage of total cohort. Correlation values and associated p values given are for the 
correlation between each variable and Recipient eGFR at 12 months posttransplant (i.e. not a 
comparison between DBD and DCD)  
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Figure 2: Protein association with transplant outcome is dominated by donor age effects. 
A: Breakdown of prediction function (‘rule’) terms identified in any ensemble across 2000 PRE iterations. 
B: Evaluation of individual protein model performance (Root-Mean-Squared Error, lower is better) on the 
discovery dataset used for fitting each model (circles) and corresponding performance on a ‘held out’ 
evaluation dataset (diamonds). The dashed line indicates the performance of the donor-age only model 
on the discovery dataset, applied as a maximum threshold for protein selection. C: Top 10 Reactome 
terms identified by pathway analysis of all 539 proteins. D & E: STRINGdb functional association 
networks of identified proteins associated with Metabolism (D) and Innate Immune System (E), the most 
and second most significant Reactome terms respectively. Only connected vertices are shown. Edges 
represent ‘highest confidence’ functional interactions (confidence score >0.9).  
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Figure 3: Modeled associations between proteins and kidney transplant outcome change with 
donor age 
Our modeling found that the effect of candidate protein levels on outcome changed with age. 
A: Distribution of donor age over out dataset. B: Donor-age-only model; fitted effect of donor age on 
eGFR12. 
C & D: Effect of low protein abundance (10th percentile) (C) and high protein abundance (90th percentile) 
(D) on modeled eGFR12, relative to donor age-only (DAO) model eGFR12, across donor age. The 5 most
different (highest Euclidean distance to donor age-only model) proteins are shown in each case. 
  

st 
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Figure 4: Effect of difference in protein abundances change with age 
Comparisons of the effect of low and high protein abundance on modeled eGFR12, across donor age. 
Panels A-G (yellow, purple and pink backgrounds; qualitative grouping by relationship with age – see 
Results): proteins highlighted in Figure 3C,D. Panels H & I (green background): known kidney function 
markers. Fold changes shown (y axes) are the modeled eGFR12 relative to donor age-only (DAO) model 
eGFR12, across donor age.  Qualitative summaries of low and high abundance effects are given below 
the panels.  
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Figure 5: Independent scRNA-seq data confirm corresponding transcriptomic increases in injured 
organs 
Evaluation of our protein set against independent transcriptomic data comparing Normal kidneys from 
living donors versus Damaged kidneys assessed as having AKI or CKD (Lake et al.) 22. Transcripts 
matching our set of 539 proteins were considered across cell type assignments in Lake et al. (labels on 
left side of panel). We considered the full set of transcripts (‘All Matching Transcripts’, red symbols), as 
well as subsets of protein-matching transcripts corresponding to the top 10 Reactome pathways as 
reported in Figure 2C. X-axis shows the mean log2 fold change across all matching transcripts within 
each set. 
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