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ABSTRACT  31 

Organ availability limits kidney transplantation, the best treatment for end-stage kidney 32 

disease. Deceased donor acceptance criteria have been relaxed to include older donors with 33 

higher risk of inferior posttransplant outcomes. More granular prediction models, based on 34 

deeper resolution organ assessment and understanding of damage processes, could substantially 35 

improve donor organ allocation and reduce graft dysfunction risk. Here, we profiled pre-36 

implantation kidney biopsy proteomes from 185 deceased donors by high-resolution mass 37 

spectrometry and used machine learning to integrate and model these data, and donor and 38 

recipient clinical metadata to predict outcome. Our analysis and orthogonal validation on an 39 
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independent cohort revealed 136 proteins predictive of outcome, 124 proteins of which showed 40 

donor-age modulated predictive effects. Observed associations with inflammatory, catabolic, 41 

lipid metabolism and apoptotic pathways may predispose donor kidneys to suboptimal 42 

posttransplant outcomes. Our work shows that integrating kidney proteome information with 43 

clinical metadata enhances the resolution of donor kidney quality stratification, and the 44 

highlighted biological mechanisms open new research directions in developing interventions 45 

during donor management or preservation to improve kidney transplantation outcome. 46 

 47 

TRANSLATIONAL STATEMENT 48 

We profiled the proteome of pre-implantation biopsies selected from donor kidneys on 49 

the basis of paired 12-month graft function. Our data reveal a signature of proteins which 50 

contribute to transplant outcomes, many of these show different strengths of association 51 

dependent on donor age. The biological themes of the identified candidates reinforce immuno-52 

metabolic and catabolic mechanisms as potential contributors to donor kidney susceptibility that 53 

may reduce graft recovery after transplantation. 54 

 55 

INTRODUCTION 56 

Kidney transplantation is the optimal treatment for end-stage kidney disease. Compared 57 

to dialysis, transplantation increases life-expectancy, improves quality of life and is cost-58 

effective. Limited availability of suitable donor kidneys impedes treatment of chronic kidney 59 

disease, and often prolongs dialysis, increasing morbidity and mortality. Deceased donor organ 60 

shortages, living donation decline in some countries and emerging ageing populations drive 61 
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increased utilization of older deceased donor kidneys, now comprising more than half of offered 62 

organs1,2. 63 

Ageing associates with time-dependent decline of organ function, evidenced in kidneys 64 

by histologic lesions, such as tubular atrophy, interstitial fibrosis, glomerulosclerosis, and 65 

arteriosclerosis. Older kidneys demonstrate fewer functioning glomeruli, less renal mass, 66 

podocyte dysfunction, and impaired cellular repair3. Glomerular diseases are more common and 67 

associated with worse outcomes in older patients4. Age accelerates the transition from Acute 68 

Kidney Injury (AKI) to chronic injury5 and is an independent risk factor of graft dysfunction and 69 

loss for deceased donor kidneys6; furthermore, older donors are more likely to suffer from 70 

additional risk factors such as diabetes, hypertension or cardiovascular disease. 71 

Donor age is incorporated in clinical scoring algorithms to inform kidney allocation 72 

decisions7,8, but is insufficient to consistently predict transplant outcomes. Current front-line 73 

models incorporating further clinical factors such as terminal serum creatinine, history of 74 

hypertension and diabetes8,9 show consistent performance across demographics but lack granular 75 

predictive accuracy10. 76 

Molecular analyses of biopsies plausibly offer higher resolution assessment of organ 77 

state; but require ‘big picture’ understanding of mechanisms associated specifically with poor 78 

outcome, rather than immediate (but potentially recoverable) acute injury. Deceased donors are 79 

frequently assessed as having sustained damage (i.e. AKI) based on serum creatinine levels14, 80 

however this metric poorly associates with longer term outcomes13–16. 81 

Mass spectrometry (MS) proteomic studies can provide such a ‘big picture’, but have 82 

heretofore lacked cohort capacity to represent demographic diversity17. Advances in high-83 

throughput techniques18 now allow sensitivity and depth without sacrificing throughput capacity. 84 
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Developments in machine learning and nonlinear regression analyses furthermore offer tools to 85 

extract maximal knowledge from limited size experimental cohorts, with applications in disease 86 

staging, disease recurrence prediction, treatment response monitoring, and biomarker 87 

identification19,20. 88 

Integration of deep proteomic profiles with heterogenous clinical and demographic 89 

factors using modern statistical tools can empower the next steps toward precision medicine21. 90 

Here, we benefit from the granularity provided by our MS-based proteomic profiling to report 91 

age- and immunometabolism-related proteomic signatures in pre-implantation kidney biopsies 92 

associated with transplant outcomes. 93 

 94 

METHODS 95 

Study Design 96 

Deceased donor pre-transplantation kidney biopsies (n=186; 1 sample excluded during 97 

data processing) were obtained from the Quality in Organ Donor (QUOD) biobank, a national 98 

multi-center UK wide bioresource of deceased donor clinical samples acquired during donor 99 

management and organ procurement. Biopsies were obtained from Donation after Brain Death 100 

(DBD) donors and Donation after Circulatory Death (DCD) donors at the back table immediately 101 

after kidney procurement. 102 

Selection of biopsies was based on paired 12-month post-transplant outcomes. To 103 

minimize the impact of recipient factors, we only included kidneys for which the contralateral 104 

kidney was transplanted with similar outcome. Kidneys were selected to cover the outcome 105 

continuum i.e. the range of estimated Glomerular Filtration Rate (eGFR) in the recipient at 12 106 
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months posttransplant, from primary non-function to eGFR>80 ml/min/1.73 m2, excluding 107 

extreme demographic or clinical factors where possible. Samples were linked to corresponding 108 

donor and recipient demographic and clinical metadata, provided by NHS Blood and Transplant 109 

National Registry. 110 

Study Approval and Ethics statement 111 

Informed consent from donor families was obtained prior to sample procurement. 112 

Collection of QUOD samples and research ethics approval was provided by QUOD 113 

(NW/18/0187).  114 

Experimental Protocols and Statistical Analysis 115 

See Supplementary Methods. 116 

 117 

RESULTS  118 

Donor clinical and demographic variable relevance for eGFR at 12-month posttransplant 119 

For exploratory analysis, we considered eGFR values in two ways. Firstly, to compare 120 

clinical factors, we grouped 12 month posttransplant outcomes into tertiles; Suboptimal Outcome 121 

(SO; eGFR≤39), Intermediate Outcome (IO; 40<eGFR≤59), and Good Outcome (GO; 122 

eGFR≥60), all units ml/min/1.73 m2 (Figure 1). We refer to this henceforth as ‘stratified eGFR’. 123 

Secondly, all eGFR values (both recipient and donor) were rank-transformed so that we could 124 

model against a continuum of outcomes while mitigating extreme values, or values recorded as 0 125 

due to graft failure. We refer to ‘ranked eGFR’ henceforth to indicate ranked recipient eGFR at 126 

12 months posttransplant. 127 
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Clinical metadata illustrated that stratified eGFR donor groups gave a balanced 128 

representation of the UK donor population (Table 1), with no significant association between 129 

donor type (DBD/DCD) and ranked eGFR (t-test; p=0.2028). We investigated associations 130 

between clinical variables and stratified eGFR subgroups within each donor type, and between 131 

donor types within stratified eGFR subgroups (Supplementary Table 1). There was a significant 132 

difference in the current front-line selection score, the UK Kidney Donor Risk Index (UKKDRI)8 133 

between outcome groups across donor types (ANOVA F-test; DBD: p=1.298e-6; DCD: 134 

p=3.946e-7). In both donor types, the major component of UKKDRI, donor age, was 135 

significantly different between outcome subgroups with donor age in SO being older (ANOVA 136 

F-test; DBD: p=1.253e-9; DCD: p=1.196e-7). Histories of hypertension (also a component of 137 

UKKDRI) were different between subgroups in DBD (ANOVA F-test; DBD: p=0.0020; DCD: 138 

p=0.1069). Histories of diabetes (used in the US risk index, but not UKKDRI) were not 139 

significantly different (ANOVA F-test; p=0.6188; DCD: p=0.2348). Terminal serum creatinine 140 

levels were similar across outcome subgroups (ANOVA F-test; DBD: p=0.6972; DCD: 141 

p=0.6448), although within the GO group it was higher in DBD than in DCD (t-test; p=0.0443).  142 

After imputation of missing values, we examined associations between clinical variables 143 

common to both DBD and DCD donors (Figure 2). The strongest associations with ranked eGFR 144 

were donor age (Pearson’s r=-0.52), and recipient age (r=-0.28). Donor history of hypertension 145 

and cardiological disease also clustered closely due to correlation with donor age (r=0.35 and 146 

r=0.33 respectively) but had a weaker direct correlation with outcome (r=0.30 and r=0.23 147 

respectively). 148 

Unsupervised analysis of pretransplant kidney proteomes 149 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 25, 2023. ; https://doi.org/10.1101/2023.03.31.23288011doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.31.23288011
http://creativecommons.org/licenses/by-nc/4.0/


Proteomic analysis quantified 2984 protein groups with 50% or less missing values (out 150 

of 7790 identified protein groups in total) over 185 samples and 20 interspersed sample pools 151 

(Supplementary Figure 1A). Analysis of sample pools showed minimal technical variance across 152 

sample acquisition (squared mean pairwise Z-corrected Pearson’s r=0.94). Six samples were 153 

paired biopsies from the left and right kidneys of three donors. These samples showed high 154 

correlation of protein intensity values between donor pairs (Pearson’s r=0.71, 0.92 and 0.91; 155 

Supplementary Figure 1B). 156 

We explored the proteomic data using Principal Component Analysis (PCA) to find 157 

underlying linear trends. Sample variance concentrated in the first two principal components 158 

(PC1: 20.01%; PC2: 13.38%; Figure 3A). K-means clustering identified 4 distinct clusters 159 

(Figure 3A) whose membership associated with donor type, with a preponderance of DBD 160 

samples towards Cluster 2 and a preponderance of DCD samples towards Cluster 4 (Figure 3B, 161 

upper left panel; p=0.0235). Clustering did not associate strongly with recipient ranked eGFR 162 

(p=0.4134), nor with donor ranked eGFR (p=0.1684), or donor age (p=0.7907) (Figure 3B, upper 163 

middle, upper right and lower left panels). There was a weakly significant association between 164 

cluster membership and donor BMI (p=0.0350) and with serum creatinine (p=0.0326) (Figure 165 

3B, lower middle and lower right panels). 166 

Integration of kidney proteomes with clinical metadata enhances the resolution of donor 167 

kidney quality stratification 168 

To identify possible clinical variable-protein interaction relationships with outcome, we 169 

used machine learning (Prediction Rule Ensembles22; PRE) to select features from the set of 170 

quantified proteins and all donor type-independent clinical variables. 171 
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We split our data into training and test sets, excluding the six paired kidneys, and 172 

sampling equally across stratified eGFR using a 2/3:1/3 train:test split. Test data was only used 173 

for validation (see below). The six paired kidneys were reserved as a second ‘biological 174 

duplicates’ test set. 175 

A PRE model finds a minimal predictor set in the form of decision tree, linear regression 176 

and multivariate adaptive regression spline24 rules, but does not yield an exhaustive list of 177 

predictors. We performed PRE iteratively, modelling against ranked eGFR; any proteins 178 

identified in the final ensemble model of any iteration were excluded from the dataset in future 179 

iterations, retaining only non-identified proteins plus all clinical variables. 2000 iterations of 180 

PRE generated 3282 rules across all ensembles. The most common rules involved donor age, 181 

featuring as a term in 3154 (~96.1%) rules; in comparison, protein terms (collectively) featured 182 

in 198 (~6.0%) rules, while the next largest non-protein term was donor group, featuring in 5 183 

(~0.1%) rules (Figure 4A). Feature selection became progressively inefficient, in terms of 184 

candidate yield per iteration, however new candidates were still found up to termination at 185 

iteration 2000. This process generated 195 candidate proteins; we supplemented this list with 186 

proteins that had high correlation (Pearson’s r>0.65) with any of those candidates; bringing the 187 

final list up to 255 candidates. 188 

Regression spline modelling reveals protein associations with posttransplant outcome are 189 

modulated by donor age 190 

Next, we tested each protein candidate for individual association with outcome. Since 191 

eGFR rank transformation is cohort specific, to generate results which generalized to other 192 

settings we modelled against an outcome binary, calibrated against a population-level threshold. 193 

Based on UK Renal Registry data, the donor type-weighted average median eGFR at 12 months 194 
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posttransplant since 201325 was approximately ~50.25 ml/min/1.73 m2 (±0.24 standard error; ); 195 

for simplicity we used a threshold of 50 ml/min/1.73 m2. We refer to ‘sub-median outcome’ 196 

henceforth to refer to recipient eGFR at 12 months posttransplant less than 50 ml/min/1.73 m2. 197 

Using multivariate adaptive regression spline modelling23 to assess individual protein 198 

relationships, we generated predictive models for sub-median outcome using each protein, donor 199 

age, and age:protein interaction. This was performed in a regularized framework to retain only a 200 

minimal set of predictors in each model. We discarded candidates whose model either did not 201 

feature a protein or age:protein term, or gave a worse prediction error (Brier score26) than donor 202 

age alone.  203 

After filtering we had identified 136 proteins which predicted sub-median outcome 204 

(Supplementary Table 2). We performed a network analysis of shared Reactome pathways 205 

(Figure 4). Walktrap clustering revealed 4 major clusters of shared-pathway proteins (Table 2); 206 

Immune Regulation and Complement Activation, Protein Metabolism and Regulation, 207 

Metabolism and Apoptosis. 208 

For 124 proteins, the model included an age:protein interaction term where the predictive 209 

effect of protein abundance was modulated by age, independent of the effect of age alone or 210 

protein abundance alone (Figure 5, Supplementary Table 2). To visualize these effects, we used 211 

each model to predict outcomes across increasing donor age for a high (90th percentile), median 212 

and low (10th percentile) protein abundance (Figure 5A and Supplementary Figure 2). The 213 

majority of proteins were positively associated with the chance of sub-median outcome 214 

(simplistically, more protein = worse outcome), with the effect appearing to increase up to 215 

around donor age 45-55, including representative proteins for all four major clusters including 216 

known markers Cystatin-C (CST3; nephron function) and Vitronectin (VTN; fibrosis) as well as 217 
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a protein known for age-modulated disease associations, Apolipoprotein E (APOE). Several 218 

proteins were negatively associated with the chance of sub-median outcome (simplistically more 219 

protein = better outcome), with the largest effects shown by MAP2K1 and SLC27A2, the latter 220 

in particular being modelled as having minimal effect in donors younger than 40. The selection 221 

and filtering steps are summarized in Figure 5B. 222 

Orthogonal validation confirms model performance, including age-modulated immuno-223 

metabolic impact on transplant outcomes 224 

We adopted two orthogonal validation approaches. Firstly, we assessed the performance 225 

of each model on test data. Going from train to test data, the models showed a small increase in 226 

accuracy (Brier score; mean square error) and a small decrease in overall predictive performance 227 

as measured by the area under the curve (AUC) (Figure 6A), indicating that the models 228 

generalized well to unseen data, with most of the models (~110/136) showing almost no 229 

degradation in performance.  230 

Secondly, we selected several cluster-representative proteins (VTN, APOE, CST3 and 231 

Prolactin Regulatory Element Binding; PREB) that had robust available antibodies (Figure 6B). 232 

We investigated the predicted pattern of associations between protein abundance and outcome 233 

(Figure 6C), by performing western blot validation of our results (Figure 6D). Selecting samples 234 

with remaining material from our cohort from the Good and Suboptimal Outcome stratified 235 

eGFR tertiles of our sample set, we compared protein abundance between younger (oldest 236 

sample 49) and older (youngest sample 58) donors. Our results were broadly consistent with the 237 

associations anticipated by our modelling: 238 

For VTN, our model suggests a strong association between protein abundance and 239 

outcome in younger donors that strengthens towards age 40-50 and then weakens. We observed a 240 
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significant difference in abundance by western blot between GO and SO outcome strata in 241 

younger donors (t-test; p=2.107e-9) and a weaker but mildly significant difference in older 242 

donors (t-test; p=0.0245). 243 

For PREB, the model suggests that the age of maximum difference is shifted towards 244 

older donors compared to VTN; we did not observe any significant difference by western (t-test; 245 

p=0.4530) in young donors but did find such a difference in older donors (t-test, p=8.800e-5). 246 

For APOE, the model suggests that the strongest association is over the middle of the age 247 

range, where outcome changes rapidly with donor age, followed by a weaker but consistent 248 

association from donor age 49-50 onwards. We observed no difference among younger donors, 249 

although examination of the sampled age ranges indicate the area of starkest difference was 250 

under-sampled (Figure 5C; t-test, p=0.3719). In older donors, we saw a mildly significant 251 

difference in APOE abundance between outcomes (t-test, p=0.0323). 252 

For CST3, the model again predicted a strong association in young donors which then 253 

weakens (and even reverses, such that GO samples would tend to have higher CST3 than SO 254 

samples); in younger donor western blots we observed a significant difference (t-test, p=0.0084) 255 

between GO and SO, while in older donors we saw a nonsignificant difference, but (in contrast 256 

to the prediction) still with a positive median protein abundance difference from GO to SO. 257 

Finally, we compared the predicted outcome for each of the six paired kidneys from the 258 

second ‘biological duplicates’ test set against their actual recipient eGFR at 12 months 259 

posttransplant (Figure 6E). All three kidney pairs in this dataset had consistent outcomes across 260 

pairs; two pairs with sub-median outcome (15 and 36 ml/min/1.73 m2; 23 and 27 ml/min/1.73 261 

m2) and one pair with above-median outcome (72 and 81 ml/min/1.73 m2); all four protein 262 

models assigned the four kidneys from the two sub-median outcome donors a probability of sub-263 
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median outcome greater than 0.6 (except in one case for PREB, where it was 0.48), and assigned 264 

both kidneys from the above-median outcome donor a probability of sub-median outcome less 265 

that 0.3. 266 

DISCUSSION  267 

Increasingly, shortages of optimal organs require utilization of kidneys from older 268 

deceased donors with increased risks of graft failure or functional decline. Here, we show that 269 

age-modulated kidney proteomic profiles improve risk stratification of donor kidney quality, 270 

revealing clinically relevant age-protein interaction effects. 271 

Donor age remains a key contributor in these clinical decisions and is rightfully one of 272 

the most strongly weighted terms in extant scoring systems to determine kidney allocation8,27. In 273 

our analysis, we found no obvious difference according to age when comparing donor kidney 274 

proteomes by unbiased PCA. However, looking specifically at outcomes, it was the single most 275 

important factor. PCA considers only a linear combination of variables and is ill-suited to 276 

exploring nonlinear effects or interaction between variables. When we explored our data with our 277 

iterative PRE feature selection approach, a substantial number of proteins were revealed to be 278 

relevant. 279 

The effect of donor age is not a novel finding, but integration of the age and proteomic 280 

information resulted in enhanced prediction of 12 month sub-median function without reference 281 

to other currently considered clinical factors. In particular, a factor often described as relevant to 282 

transplant outcome is donor type28. This is true at a clinical level in terms of donor management, 283 

and donation after circulatory death is considered an adverse factor for transplant outcome in the 284 

US7 (although not in the UK8,29). Our initial PCA analysis found that non-supervised clustering 285 

of the sample proteomes did partially separate samples by type but did not extend to association 286 
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with outcome. Weaker association may be obscured by factors associated with the overwhelming 287 

effect of donor age, but (without disputing donor type-specific mechanisms of kidney injury30), 288 

our data are consistent with the idea that extent of injury (rather than the cause) is the primary 289 

contributor towards recovery potential31. 290 

Within our final list of 136 proteins associated with outcome there is a common theme of 291 

implication in immune response to kidney injury (including both chronic injury, and acute 292 

injury) particularly as a result of ischemic metabolic disruption. Our analysis of proteins 293 

associated with outcome also revealed that most (124/136) proteins showed age-moderated 294 

differences in their effect; for most proteins manifesting as a stronger negative association 295 

between abundance and outcome starting around donor age 40-50. This second-order age 296 

interaction effect, where weightings of other factors are themselves age dependent, has not (to 297 

our knowledge) been explored in transplantation, and may be key to fully understanding the 298 

effects of molecular predictors. 299 

A prominent age-modulated example of a chronic injury associated marker in our 300 

candidate list is VTN, a primary component of the extracellular matrix involved in in cell 301 

adhesion, enhancing the activity of plasminogen activator inhibitor-1 and inhibition of the 302 

terminal complement pathway32. Vitronectin has been suggested as a biomarker of kidney 303 

fibrosis, although the mode of its multifaced action needs further investigation33. Further acute 304 

injury associated markers include components of the membrane attack complex, C5 (in the form 305 

of C5b cleavage product) and C8A, which has been associated with tissue injury resulting from 306 

ischemia/reperfusion34,35, Complement Component 1r (C1R), part of the activation complex for 307 

the classical complement pathway36, and Complement Factor B (CFB), a component of the 308 

alternative pathway. Another candidate associated with immune regulation is Maltase 309 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 25, 2023. ; https://doi.org/10.1101/2023.03.31.23288011doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.31.23288011
http://creativecommons.org/licenses/by-nc/4.0/


Glucoamylase (MGAM), characterized as an intestinal enterocyte but with expression in several 310 

tissues including kidney, and whose presence in urinary exosomes been cited as a marker of AKI 311 

in cirrhosis patients37.  312 

Mitogen-activated protein kinase 1 (MAP2K1, aka MEK1), a key component of the MAP 313 

kinase signal transduction pathway and closely involved in both cellular control and immune 314 

regulation (as part of TNF� signaling response38), is notable as one of the few proteins for which 315 

higher abundance was associated with a reduced probability of sub-median outcome, indicating 316 

resilience to injury. Increased TNF� is more usually associated with renal injury39, so this result 317 

is counterintuitive. The MAPK/ERK cascade impacts many regulatory pathways so it is 318 

reasonable to assume such intuition may oversimplify the effect of increased MEK1 abundance. 319 

Several age-moderated proteins we report are characterized as markers of protein 320 

regulation and proteasomal activity, suggesting alterations within the proteostasis network that 321 

increase susceptibility of donor grafts to subsequent injury and reduce capacity for recovery. 322 

CST3 is particularly noteworthy as, measured in serum, it is a known and effective general 323 

biomarker for kidney function and has previously been reported as having predictive power for 324 

outcomes in transplant recipients40–42. Our evidence indicates a further association between 325 

CST3 levels in the donor kidney tissue and outcome; moreover, that this effect is age dependent, 326 

starting around age 40. Interestingly, while serum CST3 is relatively independent of age in 327 

children and young adults43, there is some evidence for an increase in later years44. 328 

We found the age-modulated candidate PREB (Prolactin Regulatory Element Binding 329 

protein) biologically interesting for three reasons. Firstly, there is a well characterized 330 

relationships between kidney dysfunction (in the form of CKD), cardiovascular disease and 331 

prolactinemia45, with CKD patients being associated with elevated prolactinemia. Secondly, it is 332 
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a regulator of glucose homeostasis in the liver and therefore a plausible key node for metabolic 333 

regulation in kidneys as well46, acknowledging the large emphasis in our pathway analysis on 334 

metabolic functions. Thirdly, it has a predicted47 role in exit from the endoplasmic reticulum and 335 

the unfolded protein response, which has an association with CKD via NFκB -mediated 336 

inflammation48. 337 

Another age-moderated protein, APOE, stands out as having previously reported genetic 338 

allele age-related associations with disease and organ dysfunction including risk of Alzheimer’s 339 

Disease (AD)57 (with the strongest effect manifesting around age 6558), macular dysfunction, 340 

atherosclerosis and pulmonary scarring59,60, and evidence for shared allele risk across diseases61. 341 

In kidneys, APOE plays an important role in lipid metabolism to regulate the growth and 342 

survival of mesangial cells and preserve organ function49; it is a marker for outcome in transplant 343 

recipients50–52, and there is already evidence for APOE genetic allele association with kidney 344 

dysfunction risk53–55, possibly manifested by lipidomic differences between allelic profiles56. We 345 

have previously observed small (not statistically significant) increases in APOE due to ischemic 346 

reperfusion injuries62 possibly explained by a recent description of the role of APOE in 347 

mediating senescence63. Such evidence supports further in-depth investigation of the APOE 348 

genotype in outcomes across donor kidney age. There is existing evidence for similar allele 349 

dependent transplant outcome effects in another apolipoprotein (APOL1)64, suggesting that the 350 

broader apolipoprotein allelic profile may play an important role in outcome.  351 

Our list of outcome-associated candidates, controlling for the effect of donor age, 352 

including those for which we report a further age-moderated effect, cannot be exhaustive. 353 

Practicalities of sample acquisition limited sampling of a wide range of outcomes outside the 30-354 

60 donor age range, especially limited good outcome events at high donor age. Organ allocation 355 
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algorithms impose a close link between donor and recipient age in the sample cohort, so while 356 

we interpret these age-moderated effects in terms of organ resilience in older donors, it could 357 

also represent a greater ability to repair a given level of damage in younger recipients. Further, 358 

we consider only chronological donor age, rather than a more nuanced representation of the 359 

epigenomic biological clock 65, which may to account for some variation observed with respect 360 

to both donors and recipients. 361 

In the vast majority of proteins, the modelling suggests a plateauing effect at high donor 362 

age where the differences in outcome due to both protein and age are smaller. This effect may be 363 

an artifact of the distribution of sub-median outcomes in our UK population-representative data 364 

(>95% sub-median outcome above age 60 in our training set). The protein abundance differences 365 

between GO and SO outcomes in our western blot validation were broadly consistent with our 366 

differences expected given our prediction models. There were some differences; firstly, the 367 

differences in both VTN and PREB in older donors were larger than might be expected by 368 

examination of the prediction curves (Figure 6B, upper panel); secondly, the prediction for CST3 369 

of a small reversal of the effect is both unexpected and biologically counterintuitive. Both 370 

examples are most readily explained as model artifacts due to lack of outcome diversity at high 371 

age ranges. 372 

It is immediately clear from our results that the strength of the donor age factor is 373 

enormous relative to any other protein or clinical effect; this age effect is liable to dominate any 374 

prediction weighting and reduce the accuracy of estimated protein contribution. A much larger 375 

cohort could mitigate this issue. Advances in high-throughput proteomics techniques continue to 376 

increase feasible cohort sizes66 but fundamental limitations on organ acquisition remain. 377 

Archiving at scale of clinical samples in bioresources such as the QUOD biobank to parallel 378 
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advancements in big data analysis and interpretation platforms is therefore necessary for future 379 

development of granular evidence-based decision making. 380 

In this work, we profiled the proteome of pre-implantation biopsies selected from donor 381 

kidneys on the basis of paired 12-month graft function. Using machine learning and regression 382 

models, we identified 136 proteins associated with sub-median outcomes, suggesting molecular 383 

signatures which may refine models of graft dysfunction based on clinical and demographic 384 

factors alone. We also found that most of these proteins furthermore show donor-age modulated 385 

association. The biological themes of the identified proteins reinforce known immuno-metabolic 386 

mechanisms of kidney injury but raise interesting possibilities for further work, especially with 387 

regard to donor genetic background, and also suggest that the possibility of donor age-moderated 388 

weighting should be considered as a matter of course in future work. 389 

 390 

SUPPLEMENTARY MATERIALS 391 

Supplementary Methods  392 

Supplementary Table 1: Clinical variable p-values for association with donor type and outcome 393 

Supplementary Table 2: Summary of results for all candidate proteins 394 

Supplementary Figure 1: Protein quantification quality 395 

A: Missingness comparison: Proteins are shown ranked by the number of missing values 396 

across all samples and the twenty standard pools, excluding one run which was removed 397 

due to low signal. 2984 proteins had missing values in 50% or less runs. 398 

B: Paired Kidney Comparison: Protein abundance values from paired kidneys (left/right) 399 

from 3 individual donors were compared, as these are effectively biological replicates. x 400 

axes: value in left kidney. y axes: value in right kidney. Inset: R-squared value 401 
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Supplementary Figure 2: Prediction of sub-median outcome differences between high and low 402 

protein across donor age, for all shortlisted proteins with a predicted age modulation effect 403 

Black traces: prediction at median protein abundance. Purple trace: prediction at 90th 404 

percentile of protein abundance. Orange traces: prediction at 10th percentile of protein 405 

abundance. The corresponding point on the main figure thus indicates the age at which 406 

the difference between orange and purple lines is greatest. 407 
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FIGURES AND TABLES 629 

Figure 1: Experimental design to discover donor kidney proteome associations with transplant outcome 630 
One kidney from each donor pair was biopsied at the back table. Donor kidney samples were selected randomly 631 
from pairs where both recipients had similar outcomes. The biopsy samples were subjected to proteomic analysis to 632 
yield a snapshot of the organ proteome before transplantation. We analyzed donor characteristics and clinical 633 
variables, recipient characteristics and protein abundances in a combined model against outcome. eGFR units for 634 
stratification given in ml/min/1.73 m2.  635 
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Donor Type   DBD   DCD  
Outcome 
Tertile 
(eGFR in 
ml/min/1.73 m2) 

1st: 
Suboptimal 
(eGFR≤39) 

2nd: 
Intermediate 
(40≤eGFR≤59) 

3rd: 
Good 

(eGFR≥60) 

1st: 
Suboptimal 
(eGFR≤39) 

2nd: 
Intermediate 
(40≤eGFR≤59) 

3rd: 
Good 

(eGFR≥60) 

n 31 31 38 31 28 26 

Donor Age, y 56.84 
± 12.29 

51.32 
± 12.24 

39.05 
± 14.12 

55.48 
± 9.34 

53.57 
± 9.75 

38.31 
± 12.28 

Donor Sex   
 

  
   

    Male 15 
(48.4%) 

16 
(51.6%) 

19 
(50.0%) 

22 
(71.0%) 

16 
(57.1%) 

16 
(61.5%) 

    Female 16 
(51.6%) 

15 
(48.4%) 

19 
(50.0%) 

9 
(29.0%) 

12 
(42.9%) 

10 
(38.5%) 

Donor 
Ethnicity 

  
 

  
   

    White 30 
(96.8%) 

30 
(96.8%) 

36 
(94.7%) 

30 
(96.8%) 

28 
(100.0%) 

25 
(96.2%) 

    Other 1 
(3.2%) 

1 
(3.2%) 

2 
(5.3%) 

1 
(3.2%) 

0 
(0.0%) 

1 
(3.8%) 

Donor 
Weight, kg 

82.53 
± 18.20 

76.61 
± 18.07 

81.38 
± 17.72 

80.58 
± 14.95 

82.43 
± 17.20 

78.67 
± 13.96 

Donor 
Height, cm 

168.42 
± 9.37 

169.52 
± 7.67 

174.82 
± 11.16 

169.97 
± 7.98 

171.64 
± 9.73 

174.65 
± 8.98 

Donor S-Cr 
terminal, 
µmol/l 

86.54 
± 40.81 

82.57 
± 49.65 

90.19 
± 67.36 

73.37 
± 19.03 

70.31 
± 39.02 

59.60 
± 22.39 

Donor CIT, h 15.80 
± 3.88 

14.20 
± 4.60 

13.42 
± 4.67 

13.65 
± 5.20 

11.72 
± 3.55 

12.80 
± 4.49 

Donor COD   
 

  
   

    Trauma 1 
(3.2%) 

3 
(9.7%) 

3 
(7.9%) 

4 
(12.9%) 

3 
(10.7%) 

4 
(15.4%) 

    Other 30 
(96.8%) 

28 
(90.3%) 

35 
(92.1%) 

27 
(87.1%) 

25 
(89.3%) 

22 
(84.6%) 

Donor 
UKKDRI 

1.41 
± 0.52 

1.10 
± 0.36 

0.85 
± 0.36 

1.31 
± 0.37 

1.21 
± 0.40 

0.73 
± 0.35 

Recipient 
Age, y 

53.03 
± 12.21 

52.10 
± 14.61 

39.71 
± 16.03 

51.90 
± 9.85 

50.93 
± 11.04 

44.92 
± 12.87 

Recipient Sex         
    Female 15 

(48.4%) 
8 

(25.8%) 
12 

(31.6%) 
11 

(35.5%) 
9 

(32.1%) 
5 

(19.2%) 

    Male 16 
(51.6%) 

23 
(74.2%) 

26 
(68.4%) 

20 
(64.5%) 

19 
(67.9%) 

21 
(80.8%) 

Recipient 
Ethnicity 

  
 

  
   

    White 24 
(77.4%) 

21 
(67.7%) 

29 
(76.3%) 

22 
(71.0%) 

23 
(82.1%) 

20 
(76.9%) 

    Other 7 
(22.6%) 

10 
(32.3%) 

9 
(23.7%) 

9 
(29.0%) 

5 
(17.9%) 

6 
(23.1%) 

Recipient Posttransplant Kidney Function (mean eGFR, ml/min/1.73 m2)  

    3 months 29.71 
± 12.06 

50.32 
± 17.28 

78.54 
± 25.97 

31.72 
± 12.24 

46.50 
± 10.34 

77.88 
± 18.57 

    12 months 26.58 
± 11.98 

49.58 
± 6.10 

85.58 
± 35.84 

25.10 
± 12.01 

48.24 
± 6.29 

80.26 
± 15.91 

Table 1: Donor and recipient clinical and demographic variables 636 
Donor kidney associated metadata. Samples are subdivided by donor type and by final assigned outcome tertile. 637 
Numerical variables are given ± standard deviation. Categorial variables are given alongside percentage of total 638 
cohort  639 
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Figure 2: Donor and recipient clinical and demographic data association with recipient 12 month eGFR rank 640 
Single-linkage hierarchical clustering of curated, imputed clinical variables by relative association strength (taking 641 
distance as 1-association). The outcome variable (ranked recipient eGFR at 12 months post-transplantation) is 642 
highlighted in red.  643 
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Figure 3: Unbiased analysis of pretransplant kidney proteomes and cluster associations  644 
A: Unbiased analysis of proteomic data by k-means clustering. Sample separation by Principal Component Analysis.645 
Top Left: Samples were assigned to four clusters by k-means. Bottom & Right: There was a difference in the 646 
distribution of DBD and DCD donors across clusters, with the DBD donors being more heavily concentrated in 647 
Cluster 2 (‘+’ symbol; orange shading), and DCD in Cluster 4 (‘x’ symbol; pink shading) 648 
B: There were no associations between proteome clusters and most donor and recipient factors, except for mildly 649 
significant differences in donor BMI and creatinine (selected comparisons shown; left-right, top-bottom: donor type, 650 
recipient 12-month posttransplant eGFR (outcome), donor eGFR, donor age, donor BMI, donor creatinine at 651 
retrieval).  652 

is. 

e, 
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Figure 4: Age and combined age:protein related associations link to construction of age-modulated immune 653 
metabolic biological networks  654 
A: Prediction Rule Ensemble (PRE) modelling was performed in an iterative manner to select protein and clinical 655 
variable associations with ranked eGFR. At each iteration, only proteins not previously featured in a model were 656 
considered. The rules found across all iterations were dominated by donor age terms. 657 
B: Cumulative protein features identified at each iteration. Black line: all features identified by feature selection 658 
approach. Blue line: features passing the secondary filter for predictive power and accuracy. 659 
C: Shared Reactome pathway membership network analysis of filtered features. Nodes are colored by assigned 660 
cluster, and the clusters are annotated according to the top three most enriched pathways within each cluster. 661 
  662 
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Cluster Label Top 3 Shared Pathways 
Immune Regulation and Complement Activation Immune System 

Innate Immune System 
Regulation Of Complement Cascade 

Protein Metabolism and Regulation Metabolism Of Proteins 
Post-translational Protein Modification 
Mitochondrial Translation Elongation 

Metabolism Metabolism 
Metabolism Of Amino Acids And Derivatives 
Pyruvate Metabolism And Citric Acid (TCA) Cycle 

Apoptosis Developmental Biology 
Role Of GTSE1 In G2/M Progression After G2 
Checkpoint 
Apoptosis 

Striated Muscle Contraction Striated Muscle Contraction 
Table 2: Shared Pathway Network Clusters 663 
Proteins in Figure 4C were clustered by pathway membership, forming 4 major clusters and one minor cluster 664 
(Striated Muscle Contraction). We assigned summary labels to each cluster based on the top 3 pathways with shared 665 
membership in each cluster.  666 
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Figure 5: Modelled associations between proteins and kidney transplant outcome change with donor age 667 
A: Ages at which the predicted probability of sub-median outcome is most different between the 10th percentile and 668 
90th percentile of protein abundance.  x axis: age at which difference is greatest (i.e. when protein has greatest 669 
effect). y axis: greatest difference. 670 
Proteins above x=0 are modelled as having a more negative association with outcome when the protein abundance is 671 
high, at that donor age. Proteins below x=0 are modelled to have a more positive association with outcome when 672 
protein abundance is high, at that donor age. 673 
Proteins with absolute net difference >0.5 are labelled, as well as the selected proteins VTN, PREB, APOE and 674 
CST3. 675 
The inset graphs indicate how the prediction of sub-median outcome (“P(S-M outcome)”; y axes) changes with 676 
donor age (x axes) for labelled proteins. Black trace: prediction at median protein abundance. Purple trace: 677 
prediction at 90th percentile of protein abundance. Orange trace: prediction at 10th percentile of protein abundance. 678 
The corresponding point on the main figure thus indicates the age at which the difference between orange and purple679 
lines is greatest. 680 
B: Summary of feature selection and modelling analysis  681 

 is 

le 
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Figure 6: Orthogonal validation confirms age-modulated immuno-metabolic proteins predict 12-month 683 
transplant outcomes 684 
A: Validation of models in test dataset. Models are plotted in order of decreasing Brier score (mean squared 685 
prediction error) difference between test and train data along the x axis. The lower two traces indicate the Brier score 686 
in train (purple) and test (green) data. The upper two traces indicate the AUC from the corresponding ROC analyses 687 
in train (orange) and test (blue) data.  688 
B-E: Validation of four selected proteins. Left-Right: VTN, PREB, APOE, CST3. 689 
B: Final ROC curves and AUC values for models trained on each protein (and donor age) against test data. The 690 
dotted line indicates the original performance against training data. 691 
C: Change in the prediction of sub-median outcome (“P(S-M Outcome)”; y axes) with donor age (x axes) for each 692 
protein. Black trace: prediction at median protein abundance. Purple trace: prediction at 90th percentile of protein 693 
abundance. Orange trace: prediction at 10th percentile of protein abundance. (These are the same as the inset graphs 694 
in Figure 5). The light grey and dark grey vertical lines, respectively, indicate the corresponding ‘younger’ and 695 
‘older’ sampled ages for the western blots below. 696 
D: Western blots comparing younger (age ≤  49) and older (age ≥ 58) donors between Good Outcome (GO; 697 
eGFR ≥ 60) and Suboptimal Outcome (SO; eGFR ≤ 40) outcome tertiles. Top row: representative western blots 698 
(n=5 per group) from comparison of younger donors. Middle row: representative western blots (n=5 per group) from 699 
comparison of older donors. Bottom row: result values for all quantified samples relative to the GO mean. Error bars 700 
indicate ±1 standard deviation; the central wider bar indicates mean. Significance stars indicate t-test comparison p-701 
values (***: < 0.001, *: < 0.05). 702 
E: Predicted outcome for six paired Left (L) and Right (R) kidneys from three donors. x axes: recipient eGFR at 12 703 
months (i.e. actual outcome). y axes: predicted probability of sub-median outcome (“P(S-M Outcome)”) using 704 
models trained on each protein with donor age. Vertical dotted line indicated median outcome (eGFR = 50). 705 
Horizontal dotted line indicates P(Sub-Median Outcome) = 0.5 706 
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